Chromenol Derivatives as Novel Antifungal Agents: Synthesis, In Silico and In Vitro Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. PASS Prediction and Similarity Search in CDDI Database
2.3. Biological Evaluation
Antifungal Activity
2.4. Docking Studies
2.5. In Silico Predictive Studies
2.6. Cytotoxicity Studies
3. Materials and Methods
3.1. Chemistry
3.1.1. General Information
3.1.2. Synthesis
3.2. Crystallographic Study
3.3. PASS Predictions and Similarity Assessment
3.4. Biological Evaluation: Antifungal Activity
3.5. Molecular Docking
3.6. In Silico Predictive Studies
3.7. Cytotoxicity Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Maertens, J. History of the development of azole derivatives. Clin. Microbiol. Infect. 2004, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mast, N.; Zheng, W.; Stout, C.D.; Pikuleva, I. Antifungal Azoles: Structural Insights into Undesired Tight Binding to Cholesterol-Metabolizing CYP46A1. Mol. Pharmacol. 2013, 84, 86–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavrel, M.; Esquivel, B.D.; White, T.C. The Ins and Outs of Azole Antifungal Drug Resistance: Molecular Mechanisms of Transport. In Handbook of Antimicrobial Resistance; Springer: Berlin/Heidelberg, Germany, 2017; pp. 423–452. [Google Scholar]
- Smith, E.B.; Henry, J.C. Ketoconazole: An Orally Effective Antifungal Agent Mechanism of Action, Pharmacology, Clinical Efficacy and Adverse Effects. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1984, 4, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Korting, H.C.; Schöllmann, C. The significance of itraconazole for treatment of fungal infections of skin, nails and mucous membranes. J. Dtsch. Dermatol. Ges. 2009, 7, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Lackner, T.E.; Clissold, S.P. Bifonazole. Drugs 1989, 38, 204–225. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Estrella, M.; Gomez-Lopez, A.; Mellado, E.; Garcia-Effron, G.; Rodriguez-Tudela, J.L. In Vitro Activities of Ravuconazole and Four Other Antifungal Agents against Fluconazole-Resistant or -Susceptible Clinical Yeast Isolates. Antimicrob. Agents Chemother. 2004, 48, 3107–3111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, L.B.; Kauffman, C.A. Voriconazole: A New Triazole Antifungal Agent. Clin. Infect. Dis. 2003, 36, 630–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greer, N.D. Voriconazole: The Newest Triazole Antifungal Agent. In Baylor University Medical Center Proceedings; Informa UK Limited: London, UK, 2003; Volume 16, pp. 241–248. [Google Scholar]
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Sobel, J.D. Emerging azole antifungals. Expert Opin. Emerg. Drugs 2005, 10, 21–33. [Google Scholar] [CrossRef]
- Cowen, L.; Sanglard, D.; Howard, S.J.; Rogers, P.D.; Perlin, D.S. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb. Perspect. Med. 2015, 5, a019752. [Google Scholar] [CrossRef]
- Marichal, P.; Bossche, H.V. Mechanisms of resistance to azole antifungals. Acta Biochim. Pol. 1995, 42, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Chai, X.; Wang, Y.; Cao, Y.; Zhang, J.; Wu, Q.; Zhang, D.; Jiang, Y.; Yan, T.; Sun, Q. Triazole derivatives with improved in vitro antifungal activity over azole drugs. Drug Des. Devel. Ther. 2014, 8, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Sun, Z.; Cao, Y.; Wang, R.; Cai, T.; Chu, W.; Hu, W.; Yang, Y. Design, Synthesis, and Structure–Activity Relationship Studies of Novel Fused Heterocycles-Linked Triazoles with Good Activity and Water Solubility. J. Med. Chem. 2014, 57, 3687–3706. [Google Scholar] [CrossRef]
- Gupta, D.; Jain, D.K. Synthesis, antifungal and antibacterial activity of novel 1,2,4-triazole derivatives. J. Adv. Pharm. Technol. Res. 2015, 6, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Jiang, Y.; Fei, Q.; Du, H.; Yang, M. Synthesis and antifungal activity of novel 1,2,4-triazole derivatives containing an amide moiety. J. Heterocycl. Chem. 2019, 57, 1379–1386. [Google Scholar] [CrossRef]
- Sadeghpour, H.; Khabnadideh, S.; Zomorodian, K.; Pakshir, K.; Hoseinpour, K.; Javid, N.; Faghih-Mirzaei, E.; Rezaei, Z. Design, Synthesis, and Biological Activity of New Triazole and Nitro-Triazole Derivatives as Antifungal Agents. Molecules 2017, 22, 1150. [Google Scholar] [CrossRef]
- Jin, R.; Liu, J.; Zhang, G.; Li, J.; Zhang, S.; Guo, H. Design, Synthesis, and Antifungal Activities of Novel 1,2,4-Triazole Schiff Base Derivatives. Chem. Biodivers. 2018, 15, e1800263. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Wang, T.; Xiao, J.; Huang, G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur. J. Med. Chem. 2019, 173, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Bao, X.-P. Synthesis of novel 1,2,4-triazole derivatives containing the quinazolinylpiperidinyl moiety and N-(substituted phenyl)acetamide group as efficient bactericides against the phytopathogenic bacterium Xanthomonas oryzae pv. oryzae. RSC Adv. 2017, 7, 34005–34011. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Fan, Z.; Yang, L.; Bao, X. Synthesis of novel quinazolin-4(3H)-one derivatives containing the 7-oxo-1,2,4-triazolo[1,5-a]pyrimidine moiety as effective agricultural bactericides against the pathogen Xanthomonas oryzae pv. oryzae. Mol. Divers. 2017, 22, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Gupta, P.S.; Shukla, P.K.; Verma, A.; Pathak, P. 1, 2, 4-Triazole Scafolds: Recent Advances and Pharmacological Applications. Int. J. Curr. Res. Acad. Rev. 2016, 4, 277–296. [Google Scholar] [CrossRef]
- Singh, R.; Kashaw, S.K.; Mishra, V.K.; Mishra, M.; Rajoriya, V.; Kashaw, V. Design and Synthesis of New Bioactive 1,2,4-Triazoles, Potential Antitubercular and Antimicrobial Agents. Indian J. Pharm. Sci. 2018, 80, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Chatelain, E.; Kaiser, M.; Wilkinson, S.R.; McKenzie, C.; Ioset, J.-R. Novel 3-Nitro-1H-1,2,4-triazole-Based Amides and Sulfonamides as Potential Antitrypanosomal Agents. J. Med. Chem. 2012, 55, 5554–5565. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, M.V.; Bloomer, W.D.; Lepesheva, G.I.; Rosenzweig, H.S.; Kaiser, M.; Aguilera-Venegas, B.; Wilkinson, S.R.; Chatelain, E.; Ioset, J.-R. Novel 3-Nitrotriazole-Based Amides and Carbinols as Bifunctional Antichagasic Agents. J. Med. Chem. 2015, 58, 1307–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, X.-M.; Wang, C.; Wang, W.-L.; Liang, L.; Liu, W.; Gong, K.-K.; Sun, K.L. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem. 2019, 166, 206–223. [Google Scholar] [CrossRef]
- Li, Z.; Cao, Y.; Zhan, P.; Pannecouque, C.; Balzarini, J.; De Clercq, E.; Liu, X. Synthesis and Anti-HIV Evaluation of Novel 1,2,4-triazole Derivatives as Potential Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors. Lett. Drug Des. Discov. 2012, 10, 27–34. [Google Scholar] [CrossRef]
- Wu, G.; Gao, Y.; Kang, D.; Huang, B.; Huo, Z.; Liu, H.; Poongavanam, V.; Zhan, P.; Liu, X. Design, synthesis and biological evaluation of tacrine-1,2,3-triazole derivatives as potent cholinesterase inhibitors. MedChemComm 2017, 9, 149–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Pasunooti, K.K.; Li, R.-J.; Liu, W.; Head, S.A.; Shi, W.Q.; Liu, J.O. Novel Tetrazole-Containing Analogues of Itraconazole as Potent Antiangiogenic Agents with Reduced Cytochrome P450 3A4 Inhibition. J. Med. Chem. 2018, 61, 11158–11168. [Google Scholar] [CrossRef] [PubMed]
- El-Sherief, H.A.; Youssif, B.G.; Bukhari, S.N.A.; Abdel-Aziz, M.; Abdel-Rahman, H. Novel 1,2,4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies. Bioorg. Chem. 2018, 76, 314–325. [Google Scholar] [CrossRef]
- Mahanti, S.; Sunkara, S.; Bhavani, R. Synthesis, biological evaluation and computational studies of fused acridine containing 1,2,4-triazole derivatives as anticancer agents. Synth. Commun. 2019, 49, 1729–1740. [Google Scholar] [CrossRef]
- Mohamed, M.A.A.; Allah, O.A.A.; Bekhit, A.A.; Kadry, A.M.; El-Saghier, A.M.M. Synthesis and antidiabetic activity of novel triazole derivatives containing amino acids. J. Heterocycl. Chem. 2020, 57, 2365–2378. [Google Scholar] [CrossRef] [Green Version]
- Ye, G.-J.; Lan, T.; Huang, Z.-X.; Cheng, X.-N.; Cai, C.-Y.; Ding, S.-M.; Xie, M.-L.; Wang, B. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion. Eur. J. Med. Chem. 2019, 177, 362–373. [Google Scholar] [CrossRef]
- Sari, S.; Kaynak, F.B.; Dalkara, S. Synthesis and anticonvulsant screening of 1,2,4-triazole derivatives. Pharmacol. Rep. 2018, 70, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Chen, C.; Liu, Y.; Ge, G.; Dou, T.; Wang, P. Synthesis and Structure-Activity Relationship of Daphnetin Derivatives as Potent Antioxidant Agents. Molecules 2018, 23, 2476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashhadinezhad, M.; Mamaghani, M.; Rassa, M.; Shirini, F. A Facile Green Synthesis of Chromene Derivatives as Antioxidant and Antibacterial Agents through a Modified Natural Soil. Chem. 2019, 4, 4920–4932. [Google Scholar] [CrossRef]
- Gandhi, D.; Agarwal, D.K.; Kalal, P.; Bhargava, A.; Jangid, D.; Agarwal, S. Synthesis, characterization and evaluation of novel benzothiazole clubbed chromene derivatives for their anti-inflammatory potential. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 840–847. [Google Scholar] [CrossRef]
- Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Naik, N.S.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Green, unexpected synthesis of bis-coumarin derivatives as potent anti-bacterial and anti-inflammatory agents. Eur. J. Med. Chem. 2018, 143, 1744–1756. [Google Scholar] [CrossRef]
- Youssef, M.S.K.; Abeed, A.A.O.; El-Emary, T.I. Synthesis and evaluation of chromene-based compounds containing pyrazole moiety as antimicrobial agents. Heterocycl. Commun. 2017, 23, 55–64. [Google Scholar] [CrossRef]
- Khan, M.S.; Agrawal, R.; Ubaidullah, M.; Hassan, I.; Tarannum, N.; Ubaidullah, M. Design, synthesis and validation of anti-microbial coumarin derivatives: An efficient green approach. Heliyon 2019, 5, e02615. [Google Scholar] [CrossRef] [Green Version]
- Bhagat, K.; Bhagat, J.; Gupta, M.K.; Singh, J.V.; Gulati, H.K.; Singh, A.; Kaur, K.; Kaur, G.; Sharma, S.; Rana, A.; et al. Design, Synthesis, Antimicrobial Evaluation, and Molecular Modeling Studies of Novel Indolinedione–Coumarin Molecular Hybrids. ACS Omega 2019, 4, 8720–8730. [Google Scholar] [CrossRef] [Green Version]
- Prusty, J.S.; Kumar, A. Coumarins: Antifungal effectiveness and future therapeutic scope. Mol. Divers. 2020, 24, 1367–1383. [Google Scholar] [CrossRef]
- Fouad, S.A.; Hessein, S.A.; Abbas, S.Y.; Farrag, A.; Ammar, Y.A. Synthesis of Chromen-2-one, Pyrano[3,4-c]chromene and Pyridino[3,4-c]chromene Derivatives as Potent Antimicrobial Agents. Croat. Chem. Acta 2018, 91, 99–107. [Google Scholar] [CrossRef]
- Kushwaha, K.; Kaushik, N.; Lata; Jain, S.C. Design and synthesis of novel 2H-chromen-2-one derivatives bearing 1,2,3-triazole moiety as lead antimicrobials. Bioorg. Med. Chem. Lett. 2014, 24, 1795–1801. [Google Scholar] [CrossRef]
- Al-Masoudi, N.A.; Mohammed, H.H.; Hamdy, A.M.; Akrawi, O.A.; Eleya, N.; Spannenberg, A.; Pannecouque, C.; Langer, P. Synthesis and anti-HIV Activity of New Fused Chromene Derivatives Derived from 2-Amino-4-(1-naphthyl)-5-oxo-4H,5H-pyrano[3,2- c]chromene-3-carbonitrile. Z. Für Nat. B 2013, 68, 229–238. [Google Scholar] [CrossRef]
- Jesumoroti, O.J.; Faridoon, F.; Mnkandhla, D.; Isaacs, M.; Hoppe, H.C.; Klein, R. Evaluation of novel N′-(3-hydroxybenzoyl)-2-oxo-2H-chromene-3-carbohydrazide derivatives as potential HIV-1 integrase inhibitors. MedChemComm 2019, 10, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Datar, P.; Auti, P.B. Design and synthesis of novel 4-substituted 1,4-dihydropyridine derivatives as hypotensive agents. J. Saudi Chem. Soc. 2016, 20, 510–516. [Google Scholar] [CrossRef] [Green Version]
- Venkateswararao, E.; Kim, M.-S.; Sharma, V.K.; Lee, K.-C.; Subramanian, S.; Roh, E.; Kim, Y.; Jung, S.-H. Identification of novel chromenone derivatives as interleukin-5 inhibitors. Eur. J. Med. Chem. 2013, 59, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Shaveta; Mishra, S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem. 2016, 124, 500–536. [Google Scholar] [CrossRef]
- Bérubé, G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov. 2016, 11, 281–305. [Google Scholar] [CrossRef] [PubMed]
- Lödige, M.; Hiersch, L. Design and Synthesis of Novel Hybrid Molecules against Malaria. Int. J. Med. Chem. 2015, 2015, 458319. [Google Scholar] [CrossRef] [Green Version]
- Defant, A.; Vozza, A.; Mancini, I. Design, Synthesis and Antimicrobial Evaluation of New Norfloxacin-Naphthoquinone Hybrid Molecules. Proceedings 2019, 41, 9. [Google Scholar] [CrossRef] [Green Version]
- Stingaci, E.; Zveaghinteva, M.; Pogrebnoi, S.; Lupascu, L.; Valica, V.; Uncu, L.; Smetanscaia, A.; Drumea, M.; Petrou, A.; Ciric, A.; et al. New vinyl-1,2,4-triazole derivatives as antimicrobial agents: Synthesis, biological evaluation and molecular docking studies. Bioorganic Med. Chem. Lett. 2020, 30, 127368. [Google Scholar] [CrossRef]
- Shi, Y.-L.; Shi, M. The synthesis of chromenes, chromanes, coumarins and related heterocycles via tandem reactions of salicylic aldehydes or salicylic imines with α,β-unsaturated compounds. Org. Biomol. Chem. 2007, 5, 1499–1504. [Google Scholar] [CrossRef]
- Filimonov, D.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Poroikov, V.V. Computer-Aided Drug Design: From Discovery of Novel Pharmaceutical Agents to Systems Pharmacology. Biochem. Suppl. Ser. B Biomed. Chem. 2020, 14, 216–227. [Google Scholar] [CrossRef]
- Cortellis Drug Discovery Intelligence Database. Available online: https://www.cortellis.com/drugdiscovery/ (accessed on 7 July 2021).
- Martin, Y.C.; Kofron, A.J.L.; Traphagen, L.M. Do Structurally Similar Molecules Have Similar Biological Activity? J. Med. Chem. 2002, 45, 4350–4358. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Amiranashvili, L.; Nadaraia, N.; Merlani, M.; Kamoutsis, C.; Petrou, A.; Geronikaki, A.; Pogodin, P.; Druzhilovskiy, D.; Poroikov, V.; Ciric, A.; et al. Antimicrobial Activity of Nitrogen-Containing 5-α-Androstane Derivatives: In Silico and Experimental Studies. Antibiotics 2020, 9, 224. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolber, G.; Langer, T. LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model. 2004, 45, 160–169. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef]
- Muegge, I.; Heald, S.L.; Brittelli, D. Simple Selection Criteria for Drug-like Chemical Matter. J. Med. Chem. 2001, 44, 1841–1846. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the Rule of 5 and drugability. Adv. Drug Deliv. Rev. 2016, 101, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Mladěnka, P.; Karlíčková, J.; Hrubša, M.; Veljović, E.; Muratović, S.; Carazo, A.; Mali, A.S.; Špirtović-Halilović, S.; Saso, L.; Pour, M.; et al. Interaction of 2,6,7-Trihydroxy-Xanthene-3-Ones with Iron and Copper, and Biological Effect of the Most Active Derivative on Breast Cancer Cells and Erythrocytes. Appl. Sci. 2020, 10, 4846. [Google Scholar] [CrossRef]
Compounds ID | A1, Pa | A2, Pa | Compounds ID | A1, Pa | A2, Pa |
---|---|---|---|---|---|
3a | 0.43 | 0.16 | 3i | 0.50 | 0.29 |
3b | 0.43 | 0.25 | 3j | 0.45 | 0.19 |
3c | 0.49 | 0.27 | 3k | 0.47 | 0.20 |
3d | 0.l5 | 0.29 | 3i | 0.49 | 0.23 |
3e | 0.l4 | 0.17 | 3m | 0.50 | 0.28 |
3f | 0.51 | 0.33 | 3n | 0.49 | 0.18 |
Compounds | A. fum. | A.v. | A.o. | A.n. | T.v. | P.f. | P.o. | P.v.c. | |
---|---|---|---|---|---|---|---|---|---|
3a | MIC | 270 ± 1.0 | 540 ± 2.0 | 270 ± 1.0 | 270 ± 1.0 | 190 ± 5.0 | 270 ± 2.0 | 270 ± 1.0 | 270 ± 2.0 |
MFC | 540 ± 1.0 | 810 ± 3.0 | 540 ± 1.0 | 540 ± 2.0 | 270 ± 1.0 | 540 ± 2.0 | 540 ± 1.0 | 540 ± 3.0 | |
3b | MIC | 600 ± 2.0 | 210 ± 1.0 | 150 ± 3.0 | 150 ± 5.0 | 113 ± 1.0 | 150 ± 2.0 | 76 ± 1.0 | 300 ± 1.0 |
MFC | 1800 ± 40.0 | 300 ± 1.0 | 300 ± 3.0 | 300 ± 1.0 | 150 ± 1.0 | 600 ± 2.0 | 150 ± 2.0 | 600 ± 3.0 | |
3c | MIC | 612 ± 3.0 | 306 ± 1.0 | 150 ± 1.0 | 150 ± 2.0 | 150 ± 1.0 | 214 ± 2.0 | 76 ± 1.0 | 306 ± 1.0 |
MFC | 1224 ± 4.0 | 612 ± 2.0 | 306 ± 1.0 | 306 ± 2.0 | 306 ± 1.0 | 306 ± 1.0 | 150 ± 3.0 | 612 ± 2.0 | |
3d | MIC | 560 ± 1.0 | 70 ± 1.0 | 70 ± 2.0 | 140 ± 1.0 | 102 ± 3.0 | 140 ± 1.0 | 35 ± 1.0 | 194 ± 1.0 |
MFC | 1120 ± 30.0 | 140 ± 1.0 | 140 ± 1.0 | 280 ± 1.0 | 140 ± 1.0 | 280 ± 1.0 | 70 ± 2.0 | 280 ± 1.0 | |
3e | MIC | 654 ± 2.0 | 81.75 ± 1.0 | 81.75 ± 2.0 | 163 ± 1.0 | 163 ± 1.0 | 229 ± 3.0 | 81.75 ± 1.0 | 654 ± 3.0 |
MFC | 1308 ± 30.0 | 163 ± 1.0 | 163 ± 1.0 | 327 ± 2.0 | 327 ± 1.0 | 327 ± 3.0 | 163 ± 1.0 | 1630 ± 30.0 | |
3f | MIC | 379.5 ± 1.0 | 759 ± 2.0 | 379.5 ± 1.0 | 379.5 ± 1.0 | 189.75 ± 2.0 | 759 ± 2.0 | 253 ± 1.0 | 379.5 ± 1.0 |
MFC | 506 ± 2.0 | 1012 ± 30.0 | 506 ± 2.0 | 506 ± 1.0 | 253 ± 1.0 | 1012 ± 20.0 | 506 ± 1.0 | 506 ± 3.0 | |
3g | MIC | 113.8 ± 2.0 | 113.8 ± 1.0 | 56.9 ± 1.0 | 113.8 ± 1.0 | 79.7 ± 2.0 | 113.8 ± 1.0 | 113.8 ± 2.0 | 159.4 ± 3.0 |
MFC | 227.7 ± 1.0 | 227.7 ± 2.0 | 113.8 ± 1.0 | 227.7 ± 1.0 | 113.8 ± 1.0 | 227.7 ± 1.0 | 227.7 ± 2.0 | 227.7 ± 1.0 | |
3h | MIC | 246.7 ± 1.0 | 123.3 ± 1.0 | 123.3 ± 2.0 | 123.3 ± 1.0 | 123.3 ± 1.0 | 246.7 ± 1.0 | 246.7 ± 2.0 | 246.7 ± 1.0 |
MFC | 493.5 ± 2.0 | 246.7 ± 1.0 | 246.7 ± 1.0 | 246.7 ± 2.0 | 246.7 ± 1.0 | 493.5 ± 2.0 | 493.5 ± 1.0 | 740.1 ± 2.0 | |
3i | MIC | 458.4 ± 1.0 | 458.4 ± 1.0 | 114.6 ± 1.0 | 229.2 ± 1.0 | 114.6 ± 1.0 | 229.2 ± 2.0 | 229.2 ± 1.0 | 229.2 ± 1.0 |
MFC | 916.8 ± 3.0 | 687.6 ± 2.0 | 229.2 ± 1.0 | 458.4 ± 1.0 | 229.2 ± 1.0 | 458.4 ± 1.0 | 458.4 ± 2.0 | 458.4 ± 1.0 | |
3j | MIC | 431.7 ± 1.0 | 431.7 ± 1.0 | 201.4 ± 1.0 | 143.9 ± 1.0 | 143.9 ± 2.0 | 431.7 ± 1.0 | 1151 ± 30.0 | 1151 ± 20.0 |
MFC | 575.6 ± 1.0 | 575.6 ± 2.0 | 287.8 ± 1.0 | 287.8 ± 1.0 | 287.8 ± 1.0 | 575.6 ± 2.0 | 1439 ± 30.0 | 1439 ± 20.0 | |
3k | MIC | 33.1 ± 1.0 | 92.1 ± 1.0 | 184.2 ± 2.0 | 22.1 ± 1.0 | 92.1 ± 1.0 | 184.2 ± 1.0 | 184.2 ± 1.0 | 184.2 ± 1.0 |
MFC | 46.0 ± 1.0 | 184.2 ± 2.0 | 368.5 ± 1.0 | 46.0 ± 1.0 | 184.2 ± 1.0 | 368.5 ± 1.0 | 368.5 ± 1.0 | 368.5 ± 2.0 | |
3l | MIC | 316.1 ± 1.0 | 316.1 ± 1.0 | 158 ± 1.0 | 316.1 ± 1.0 | 158 ± 1.0 | 632.2 ± 2.0 | 79 ± 1.0 | 632.2 ± 1.0 |
MFC | 632.2 ± 2.0 | 632.2 ± 1.0 | 316.1 ± 1.0 | 632.2 ± 3.0 | 316.1 ± 1.0 | 1264.5 ± 30 | 158 ± 1.0 | 1264.5 ± 40 | |
3m | MIC | 229 ± 2.00 | 163.5 ± 1.0 | 163.5 ± 1.0 | 81.7 ± 1.0 | 115 ± 2.0 | 163.5 ± 1.0 | 163.5 ± 1.0 | 163.5 ± 1.0 |
MFC | 327 ± 1.0 | 327 ± 1.0 | 327 ± 2.0 | 327 ± 1.0 | 163.5 ± 1.0 | 327 ± 2.0 | 327 ± 1.0 | 327 ± 2.0 | |
3n | MIC | 142.7 ± 1.0 | 199.8 ± 2.00 | 71.3 ± 2.0 | 71.3 ± 1.0 | 71.3 ± 2.0 | 142.7 ± 1.0 | 99.9 ± 2.0 | 142.7 ± 1.0 |
MFC | 285.5 ± 1.0 | 285.5 ± 2.0 | 142.7 ± 1.0 | 142.7 ± 1.0 | 142.7 ± 2.0 | 285.5 ± 1.0 | 142.7 ± 1.0 | 285.5 ± 2.0 | |
Ket/zole | MIC | 380 ± 1.20.0 | 2850 ± 68.0 | 380 ± 1.20.0 | 380 ± 8.20.0 | 4750 ± 58.0 | 380 ± 1.6 | 3800 ± 58.0 | 380 ± 1.2 |
MFC | 950 ± 2.3 | 3800 ± 84.0 | 950 ± 3.3 | 950 ± 6.3 | 5700 ± 86.0 | 950 ± 2.6 | 3800 ± 48.0 | 950 ± 2.3 | |
Bif/zole | MIC | 480 ± 2.2 | 480 ± 1.2 | 480 ± 2.8 | 480 ± 1.2 | 640 ± 2.8 | 640 ± 1.2 | 480 ± 2.0 | 480 ± 2.2 |
MFC | 640 ± 3.4 | 640 ± 0.8 | 800 ± 1.8 | 640 ± 2.3 | 800 ± 3.8 | 800 ± 2.1 | 640 ± 1.6 | 640 ± 3.4 |
N/N | Est. Binding Energy (kcal/mol) | I-H | Residues CYP51 of C. albicans | Interactions with HEM601 | |
---|---|---|---|---|---|
DNA Topoisomerase IV 1S16 | CYP51 5V5Z | ||||
3a | −2.15 | −8.74 | 1 | Tyr132 | Hydrophobic |
3b | - | −8.52 | 1 | Tyr132 | Hydrophobic |
3c | −1.82 | −8.97 | 1 | Tyr135 | Hydrophobic, aromatic |
3d | - | −8.95 | 1 | Tyr145 | Hydrophobic, aromatic |
3e | −1.20 | −8.66 | 1 | Tyr132 | Hydrophobic |
3f | - | −8.62 | 1 | Tyr145 | Hydrophobic |
3g | −4.10 | −9.12 | 2 | Tyr145, Tyr132 | Hydrophobic, aromatic |
3h | −3.62 | −8.83 | 1 | Tyr132 | Hydrophobic, aromatic |
3i | −2.73 | −8.84 | 1 | Tyr132 | Hydrophobic |
3j | −1.28 | −8.25 | 1 | Tyr132 | Hydrophobic |
3k | - | −9.56 | - | - | Hydrophobic, Fe binding |
3l | - | −8.37 | 1 | Tyr132 | Hydrophobic |
3m | −2.03 | −9.02 | 1 | Tyr145 | Hydrophobic, aromatic |
3n | −2.56 | −9.51 | - | - | Hydrophobic, Fe binding |
Ketoconazole | - | −8.23 | 1 | Tyr64 | Hydrophobic, aromatic |
No | MW | Number of HBA a | Number of HBD b | Log Po/w (iLOGP) c | Log S d | TPSA e | BBB Permeant f | Lipinski, Ghose, Veber, Egan, and Muegge Violations | Bioavailability Score | Drug-Likeness Model Score |
---|---|---|---|---|---|---|---|---|---|---|
3a | 369.01 | 4 | 1 | 2.78 | Moderately soluble | 60.17 | Yes | 0 | 0.55 | −0.56 |
3b | 325.06 | 4 | 1 | 2.67 | Moderately soluble | 60.17 | Yes | 0 | 0.55 | −0.23 |
3c | 325.75 | 4 | 1 | 2.51 | Moderately soluble | 60.17 | Yes | 0 | 0.55 | −0.54 |
3d | 360.19 | 4 | 1 | 2.77 | Moderately soluble | 60.17 | Yes | 0 | 0.55 | −0.44 |
3e | 305.33 | 4 | 1 | 2.53 | Moderately soluble | 60.17 | Yes | 0 | 0.55 | −0.27 |
3f | 394.64 | 4 | 1 | 3.04 | Poorly soluble | 60.17 | Yes | 0 | 0.55 | −0.53 |
3g | 439.09 | 4 | 1 | 3.15 | Poorly soluble | 60.17 | Yes | 0 | 0.55 | −0.29 |
3h | 405.19 | 6 | 1 | 2.38 | Moderately soluble | 105.99 | No | 0 | 0.55 | −0.60 |
3i | 436.29 | 4 | 1 | 3.46 | Poorly soluble | 60.17 | Yes | 1 | 0.55 | −0.26 |
3j | 347.41 | 4 | 1 | 3.08 | Moderately soluble | 60.17 | Yes | 0 | 0.55 | 0.29 |
3k | 271.31 | 4 | 1 | 2.02 | Soluble | 60.17 | Yes | 0 | 0.55 | 0.29 |
3l | 316.31 | 6 | 1 | 1.85 | Soluble | 105.99 | No | 0 | 0.55 | 0.29 |
3m | 305.76 | 4 | 1 | 2.25 | Moderately soluble | 60.17 | Yes | 0 | 0.55 | −0.63 |
3n | 350.21 | 4 | 1 | 2.38 | Moderately soluble | 60.17 | Yes | 0 | 0.55 | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zveaghintseva, M.; Stingaci, E.; Pogrebnoi, S.; Smetanscaia, A.; Valica, V.; Uncu, L.; Ch. Kravtsov, V.; Melnic, E.; Petrou, A.; Glamočlija, J.; et al. Chromenol Derivatives as Novel Antifungal Agents: Synthesis, In Silico and In Vitro Evaluation. Molecules 2021, 26, 4304. https://doi.org/10.3390/molecules26144304
Zveaghintseva M, Stingaci E, Pogrebnoi S, Smetanscaia A, Valica V, Uncu L, Ch. Kravtsov V, Melnic E, Petrou A, Glamočlija J, et al. Chromenol Derivatives as Novel Antifungal Agents: Synthesis, In Silico and In Vitro Evaluation. Molecules. 2021; 26(14):4304. https://doi.org/10.3390/molecules26144304
Chicago/Turabian StyleZveaghintseva, Marina, Eugenia Stingaci, Serghei Pogrebnoi, Anastasia Smetanscaia, Vladimir Valica, Livia Uncu, Victor Ch. Kravtsov, Elena Melnic, Anthi Petrou, Jasmina Glamočlija, and et al. 2021. "Chromenol Derivatives as Novel Antifungal Agents: Synthesis, In Silico and In Vitro Evaluation" Molecules 26, no. 14: 4304. https://doi.org/10.3390/molecules26144304
APA StyleZveaghintseva, M., Stingaci, E., Pogrebnoi, S., Smetanscaia, A., Valica, V., Uncu, L., Ch. Kravtsov, V., Melnic, E., Petrou, A., Glamočlija, J., Soković, M., Carazo, A., Mladěnka, P., Poroikov, V., Geronikaki, A., & Macaev, F. Z. (2021). Chromenol Derivatives as Novel Antifungal Agents: Synthesis, In Silico and In Vitro Evaluation. Molecules, 26(14), 4304. https://doi.org/10.3390/molecules26144304