Key Aspects of Amadori Rearrangement Products as Future Food Additives †
Abstract
:1. Introduction
2. Analytical Methods
Initial System | Molecular Ratio | Method | ARP Yield (to Amino Acid/Peptide) | Detection | Ref. |
---|---|---|---|---|---|
Glycine-ribose, aqueous | 1:1 | CTR (pH 7.5, 100 °C, 60 min) + VD (80 °C, 20 min) | 64.50% | HPLC-ELSD & NMR | [14] |
Cysteine-xylose, aqueous | 2:1 | Heating (90 °C, 40 min) + spray drying (pH 9.5, inlet temperature 190 °C) | 59.48% | HPLC-ELSD & NMR | [26] |
Phenylalanine-xylose, aqueous | 1:2 | CTR (pH 7.4, 80 °C, 50 min) + VD (30 °C, 30 min) | 47% | UPLC-MS & NMR | [27] |
Carnosine-glucose, NADES | 1:2 | Glucose/sucrose/water = 1:1:9, NADES (80 °C, 2 h) | 49% | LC-TOF-MS & NMR | [28] |
Phenylalanine-xylose, aqueous | 1:2 | CTR (pH 7.4, 90 °C, 15 min) + VD (30 °C, 30 min) | 47.23% | LC-TOF-MS & NMR | [29] |
Glutathione-xylose, aqueous | 1:2 | VD (90 °C, 25 min) | 67.98% | LC-TOF-MS & NMR | [30] |
Glutamic acid-glucose, aqueous | 1:8 | Freeze drying + heating (pH 9, 90 °C, 80 min) | 96.08% | UPLC-MS/MS & NMR | [17] |
Carnosine-glucose, aqueous | 1:13 | Freeze drying + heating (pH 7, 90 °C, 80 min) | 95% | UPLC-MS/MS & NMR | [17] |
Glycine-glucose, aqueous | 1:1 | Freeze drying + heating (50 °C, 16 h) | >40% | LC & NMR | [31] |
Alanine-xylose, aqueous | 1:2 | EGCG addition + VD (pH 7.5, 90 °C, 15 min) | 95% | LC-TOF-MS & NMR | [32] |
Phenylalanine-xylose, aqueous | 1:2 | CTR (pH 7, 90 °C, 40 min) + VD (80 °C, 100 min) | 74.86% | LC-MS & NMR | [33] |
Proline-glucose, aqueous | 1:1 | CTR (pH 7.4, 90 °C, 60 min, 4% Na2SO3) + VD (15 min) | 69.15% | UPLC-MS/MS & NMR | [34] |
3. Occurrence in Foods
4. Traditional and Recent Advances in Preparation
5. Stability
6. Taste
7. Flavor Generation
8. Toxicology
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maillard, L.C. Action of amino acids on sugars. Formation of melanoidins in a methodical way. Compt. Rend. 1912, 154, 66–68. [Google Scholar]
- Hodge, J.E. The Amadori rearrangement. Adv. Carbohydr. Chem. 1955, 10, 169–205. [Google Scholar] [PubMed]
- Heyns, K.; Noack, H. The conversion of D-fructose with L-lysine and L-arginine and their relationship to non-enzymatic browning reactions. Chem. Ber. 1962, 95, 720–727. [Google Scholar] [CrossRef]
- Xing, H.; Mossine, V.V.; Yaylayan, V. Diagnostic MS/MS fragmentation patterns for the discrimination between Schiff bases and their Amadori or Heyns rearrangement products. Carbohydr. Res. 2020, 491, 107985. [Google Scholar] [CrossRef] [PubMed]
- Ruan, D.L.; Wang, H.; Cheng, F.L. The chemistry of the Maillard reaction. In The Maillard Reaction in Food Chemistry Current Technology and Applications; Parisi, S., Ed.; Springer: Berlin, Germany, 2018. [Google Scholar]
- Hansen, A.P.; Arora, D. Loss of flavor compounds from aseptically processed food products packaged in aseptic containers. In Barrier Polymers and Structures; Koros, W.J., Ed.; American Chemical Society: Boston, FL, USA, 1990; pp. 318–332. [Google Scholar]
- Ghajari, M.A.; Iman, K.; Mohammad, G.; Mahdi, J.S. Chapter 7—Nanoencapsulation of flavors. In Nanoencapsulation of Food Bioactive Ingredients; Jafari, S.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 261–296. [Google Scholar]
- Andersen, C.M.; Mortensen, G. Fluorescence spectroscopy: A rapid tool for analyzing dairy products. J. Agric. Food Chem. 2008, 56, 720–729. [Google Scholar] [CrossRef]
- Bourais, I.; Amine, A.; Moscone, D.; Palleschi, G. Investigation of glycated protein assay for assessing heat treatment effect in food samples and protein-sugar models. Food Chem. 2006, 96, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Yaylayan, V.A.; Huyghuesdespointes, A.; Polydorides, A. A fluorescamine-based assay for the degree of glycation in bovine serum-albumin. Food. Res. Int. 1992, 25, 269–275. [Google Scholar] [CrossRef]
- Hashiba, H. The browning reaction of amadori compounds derived from various sugars. Agric. Biol. Chem. 1982, 46, 547–548. [Google Scholar]
- Hofmann, T.; Schieberle, P. Formation of aroma-active strecker-aldehydes by a direct oxidative degradation of Amadori compounds. J. Agric. Food Chem. 2000, 48, 4301–4305. [Google Scholar] [CrossRef]
- Miki Hayashi, C.; Nagai, R.; Miyazaki, K.; Hayase, F.; Araki, T.; Ono, T.; Horiuchi, S. Conversion of Amadori products of the Maillard reaction to N(epsilon)-(carboxymethyl)lysine by short-term heating: Possible detection of artifacts by immunohistochemistry. Lab. Investig. 2002, 82, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Zhan, H.; Tang, W.; Cui, H.; Hayat, K.; Hussain, S.; Tahir, M.U.; Zhang, S.; Zhang, X.; Ho, C.T. Formation kinetics of Maillard reaction intermediates from glycine-ribose system and improving Amadori rearrangement product through controlled thermal reaction and vacuum dehydration. Food Chem. 2020, 311, 125877. [Google Scholar] [CrossRef]
- Davidek, T.; Clety, N.; Devaud, S.; Robert, F.; Blank, I. Simultaneous quantitative analysis of Maillard reaction precursors and products by high-performance anion exchange chromatography. J. Agric. Food Chem. 2003, 51, 7259–7265. [Google Scholar] [CrossRef]
- Hao, Z.; Lu, C.Y.; Xiao, B.; Weng, N.; Parker, B.; Knapp, M.; Ho, C.T. Separation of amino acids, peptides and corresponding Amadori compounds on a silica column at elevated temperature. J. Chromatogr. A 2007, 1147, 165–171. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, M.; Gao, N.; Su, G.; Sun, B.; Zhang, J.; Ho, C.T. Maillard mimetic food-grade synthesis of N-(beta-D-deoxyfructos-1-yl)-l-glutamic acid and N-(beta-D-deoxyfructos-1-yl)-beta-alanyl-L-histidine by a combination of lyophilization and thermal treatment. J. Agric. Food Chem. 2020, 68, 8008–8015. [Google Scholar] [CrossRef]
- Demarque, D.P.; Crotti, A.E.; Vessecchi, R.; Lopes, J.L.; Lopes, N.P. Fragmentation reactions using electrospray ionization mass spectrometry: An important tool for the structural elucidation and characterization of synthetic and natural products. Nat. Prod. Rep. 2016, 33, 432–455. [Google Scholar] [CrossRef] [Green Version]
- Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64–71. [Google Scholar] [CrossRef]
- Wnorowski, A.; Yaylayan, V.A. Influence of pyrolytic and aqueous-phase reactions on the mechanism of formation of Maillard products. J. Agric. Food Chem. 2000, 48, 3549–3554. [Google Scholar] [CrossRef]
- Shiga, K.; Yamamoto, S.; Nakajima, A.; Kodama, Y.; Imamura, M.; Sato, T.; Uchida, R.; Obata, A.; Bamba, T.; Fukusaki, E. Metabolic profiling approach to explore compounds related to the umami intensity of soy sauce. J. Agric. Food Chem. 2014, 62, 7317–7322. [Google Scholar] [CrossRef]
- Ruan, D.L.; Wang, H.; Cheng, F.L. MS charaterization of ARPs. In The Maillard Reaction in Food Chemistry Current Technology and Applications; Parisi, S., Ed.; Springer: Berlin, Germany, 2018. [Google Scholar]
- Meitinger, M.; Hartmann, S.; Schieberle, P. Development of stable isotope dilution assays for the quantitation of Amadori compounds in foods. J. Agric. Food Chem. 2014, 62, 5020–5027. [Google Scholar] [CrossRef]
- Vinale, F.; Fogliano, V.; Schieberle, P.; Hofmann, T. Development of a stable isotope dilution assay for an accurate quantification of protein-bound N(epsilon)-(1-deoxy-D-fructos-1-yl)-L-lysine using a (13)C-labeled internal standard. J. Agric. Food Chem. 1999, 47, 5084–5092. [Google Scholar] [CrossRef]
- Berger, C.; Martin, N.; Collin, S.; Gijs, L.; Khan, J.A.; Piraprez, G.; Spinnler, H.E.; Vulfson, E.N. Combinatorial approach to flavor analysis. 2. Olfactory investigation of a library of S-methyl thioesters and sensory evaluation of selected components. J. Agric. Food Chem. 1999, 47, 3274–3279. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Cui, H.; Hayat, K.; Hussain, S.; Tahir, M.U.; Deng, S.; Zhang, Q.; Zhang, X.; Ho, C.T. Transformation between 2-threityl-thiazolidine-4-carboxylic acid and xylose-cysteine Amadori rearrangement product regulated by pH adjustment during high-temperature instantaneous dehydration. J. Agric. Food Chem. 2020, 68, 10884–10892. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Yu, J.; Xia, S.; Duhoranimana, E.; Huang, Q.; Zhang, X. Improved controlled flavor formation during heat-treatment with a stable Maillard reaction intermediate derived from xylose-phenylalanine. Food Chem. 2019, 271, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Kranz, M.; Hofmann, T. Food-grade synthesis of Maillard-type taste enhancers using natural deep eutectic solvents (NADES). Molecules 2018, 23, 261. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Hayat, K.; Jia, C.; Duhoranimana, E.; Huang, Q.; Zhang, X.; Ho, C.T. Synergistic effect of a thermal reaction and vacuum dehydration on improving xylose-phenylalanine conversion to N-(1-deoxy-D-xylulos-1-yl)-phenylalanine during an aqueous Maillard Reaction. J. Agric. Food Chem. 2018, 66, 10077–10085. [Google Scholar] [CrossRef]
- Tang, W.; Cui, H.; Sun, F.; Yu, X.; Hayat, K.; Hussain, S.; Tahir, M.U.; Zhang, X.; Ho, C.T. N-(1-Deoxy-D-xylulos-1-yl)-glutathione: A Maillard reaction intermediate predominating in aqueous glutathione-xylose systems by simultaneous dehydration-reaction. J. Agric. Food Chem. 2019, 67, 8994–9001. [Google Scholar] [CrossRef]
- Davidek, T.; Marabi, A.; Mauroux, O.; Bauwens, I.; Kraehenbuehl, K. Preparation of activated flavor precursor DFG, N-(1-deoxy-1-fructosylglycine) by combination of vacuum evaporation and closed system heating steps. Food Chem. 2018, 244, 177–183. [Google Scholar] [CrossRef]
- Yu, J.; Cui, H.; Tang, W.; Hayat, K.; Hussain, S.; Tahir, M.U.; Gao, Y.; Zhang, X.; Ho, C.T. Interaction of (-)-epigallocatechin gallate and deoxyosones blocking the subsequent Maillard reaction and improving the yield of N-(1-deoxy-D-xylulos-1-yl)alanine. J. Agric. Food Chem. 2020, 68, 1714–1724. [Google Scholar] [CrossRef]
- Cui, H.; Duhoranimana, E.; Karangwa, E.; Jia, C.; Zhang, X. Sodium sulfite pH-buffering effect for improved xylose-phenylalanine conversion to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine during an aqueous Maillard reaction. Food Chem. 2018, 246, 442–447. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, H.; Zhang, Q.; Hayat, K.; Yu, J.; Hussain, S.; Usman Tahir, M.; Zhang, X.; Ho, C.-T. Proline-glucose Amadori compounds: Aqueous preparation, characterization and saltiness enhancement. Food Res. Int. 2021, 144, 110319. [Google Scholar] [CrossRef]
- Ingles, D.L.; Reynolds, T.M. Chemistry of non-enzymic browing. IV. determination of amino acids and amino acid-deoxyfructoses in browned freeze-dried apricots. Aust. J. Chem. 1958, 11, 575–580. [Google Scholar] [CrossRef]
- Hashiba, H. Isolation and Identification of Amadori compounds from soy sauce. Agric. Biol. Chem. 2014, 42, 763–768. [Google Scholar]
- Yang, C.; Zhang, S.; Shi, R.; Yu, J.; Li, S.; Tao, G.; Tsao, R.; Zhang, J.; Zhang, L. LC-MS/MS for simultaneous detection and quantification of Amadori compounds in tomato products and dry foods and factors affecting the formation and antioxidant activities. J. Food Sci. 2020, 85, 1007–1017. [Google Scholar] [CrossRef]
- Yaylayan, V.A.; Huyghues-Despointes, A. Chemistry of Amadori rearrangement products: Analysis, synthesis, kinetics, reactions, and spectroscopic properties. Crit. Rev. Food Sci. Nutr. 1994, 34, 321–369. [Google Scholar] [CrossRef]
- Amadori, M. Condensation products of glucose with p-toluidine. Atti. R. Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. 1931, 13, 72–78. [Google Scholar]
- Weygand, F. About N-glycosides, Part II: Amadori rearrangements. Ber. Dtsch. Chem. Ges. 1940, 73, 1259–1278. [Google Scholar] [CrossRef]
- Kaufmann, M.; Meissner, P.M.; Pelke, D.; Mugge, C.; Kroh, L.W. Structure-reactivity relationship of Amadori rearrangement products compared to related ketoses. Carbohydr. Res. 2016, 428, 87–99. [Google Scholar] [CrossRef]
- Cerny, C.; Fitzpatrick, F.; Ferreira, J. Effect of salt and sucrose addition on the formation of the Amadori compound from methionine and glucose at 40 °C. Food Chem. 2011, 125, 973–977. [Google Scholar] [CrossRef]
- Rizzi, G.P. Effects of cationic species on visual color formation in model Maillard reactions of pentose sugars and amino acids. J. Agric. Food Chem. 2008, 56, 7160–7164. [Google Scholar] [CrossRef]
- Inoue, Y.; Onodera, K. The synthesis of amino acid glycosides. Intramolecular rearrangement of nitrogen glycosides. J. Agric. Chem. Soc. Japan 1948, 22, 120. [Google Scholar]
- Jalbout, A.F.; Roy, A.K.; Shipar, A.H.; Ahmed, M.S. Density functional computational studies on the glucose and glycine Maillard reaction: Formation of the Amadori rearrangement products. Int. J. Quantum Chem. 2008, 108, 589–597. [Google Scholar] [CrossRef]
- Frank, H.S.; Wen, W.Y. Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: A suggested picture of water structure. Faraday Discuss 1957, 24, 133–140. [Google Scholar] [CrossRef]
- Weerawatanakorn, M.; Wu, J.C.; Pan, M.H.; Ho, C.T. Reactivity and stability of selected flavor compounds. J. Food Drug Anal. 2015, 23, 176–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deblander, J.; Van Aeken, S.; Adams, A.; De Kimpe, N.; Abbaspour Tehrani, K. New short and general synthesis of three key Maillard flavour compounds: 2-Acetyl-1-pyrroline, 6-acetyl-1,2,3,4-tetrahydropyridine and 5-acetyl-2,3-dihydro-4H-1,4-thiazine. Food Chem. 2015, 168, 327–331. [Google Scholar] [CrossRef]
- Andrewes, P. Changes in Maillard reaction products in ghee during storage. Food Chem. 2012, 135, 921–928. [Google Scholar] [CrossRef]
- Shu, C.K.; Mookherjee, B.D.; Ho, C.T. Volatile components of the thermal degradation of 2,5-dimethyl-4-hydroxy-3(2H)-furanone. J. Agric. Food Chem. 1985, 33, 446–448. [Google Scholar] [CrossRef]
- Beksan, E.; Schieberle, P.; Robert, F.; Blank, I.; Fay, L.B.; Schlichtherle-Cerny, H.; Hofmann, T. Synthesis and sensory characterization of novel umami-tasting glutamate glycoconjugates. J. Agric. Food Chem. 2003, 51, 5428–5436. [Google Scholar] [CrossRef]
- Davidek, T.; Clety, N.; Aubin, S.; Blank, I. Degradation of the Amadori compound N-(1-deoxy-D-fructos-1-yl)glycine in aqueous model systems. J. Agric. Food Chem. 2002, 50, 5472–5479. [Google Scholar] [CrossRef]
- Eichner, K.; Labile, R.; Wolf, W. Properties of water in foods. In North Atlantic Treaty Organization Scientific Affairs Division; Simatos, D., Multon, J., Eds.; Martinus Nijhoff Publishers: Dordrecht, The Netherlands, 1985; p. 191. [Google Scholar]
- Deng, S.; Cui, H.; Hayat, K.; Hussain, S.; Tahir, M.U.; Zhai, Y.; Zhang, Q.; Zhang, X.; Ho, C.T. Effect of methionine on the thermal degradation of N-(1-deoxy-D-fructos-1-yl)-methionine affecting browning formation. J. Agric. Food Chem. 2021, 69, 5167–5177. [Google Scholar] [CrossRef]
- Yaylayan, V.; Forage, N.G. Determination of the kinetics and mechanism of decomposition of tryptophan Amadori rearrangement product by RP-HPLC analysis. J. Agric. Food Chem. 1991, 39, 364–369. [Google Scholar] [CrossRef]
- Yamamoto, S.; Bamba, T.; Sano, A.; Kodama, Y.; Imamura, M.; Obata, A.; Fukusaki, E. Metabolite profiling of soy sauce using gas chromatography with time-of-flight mass spectrometry and analysis of correlation with quantitative descriptive analysis. J. Biosci. Bioeng. 2012, 114, 170–175. [Google Scholar] [CrossRef]
- Kaneko, S.; Kumazawa, K.; Nishimura, O. Isolation and identification of the umami enhancing compounds in Japanese soy sauce. Biosci. Biotechnol. Biochem. 2011, 75, 1275–1282. [Google Scholar] [CrossRef] [Green Version]
- Katayama, H.; Tatemichi, Y.; Nakajima, A. Simultaneous quantification of twenty Amadori products in soy sauce using liquid chromatography-tandem mass spectrometry. Food Chem. 2017, 228, 279–286. [Google Scholar] [CrossRef]
- Kranz, M.; Viton, F.; Smarrito-Menozzi, C.; Hofmann, T. Sensomics-based molecularization of the taste of pot-au-feu, a traditional meat/vegetable broth. J. Agric. Food Chem. 2018, 66, 194–202. [Google Scholar] [CrossRef]
- Sonntag, T.; Kunert, C.; Dunkel, A.; Hofmann, T. Sensory-guided identification of N-(1-methyl-4-oxoimidazolidin-2-ylidene)-alpha-amino acids as contributors to the thick-sour and mouth-drying orosensation of stewed beef juice. J. Agric. Food Chem. 2010, 58, 6341–6350. [Google Scholar] [CrossRef]
- Dunkel, A.; Hofmann, T. Sensory-directed identification of beta-alanyl dipeptides as contributors to the thick-sour and white-meaty orosensation induced by chicken broth. J. Agric. Food Chem. 2009, 57, 9867–9877. [Google Scholar] [CrossRef]
- Su, G.; Cui, C.; Zheng, L.; Yang, B.; Ren, J.; Zhao, M. Isolation and identification of two novel umami and umami-enhancing peptides from peanut hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS. Food Chem. 2012, 135, 479–485. [Google Scholar] [CrossRef]
- Zhou, X.; Cui, H.; Zhang, Q.; Hayat, K.; Yu, J.; Hussain, S.; Tahir, M.U.; Zhang, X.; Ho, C.T. Taste improvement of Maillard reaction intermediates derived from enzymatic hydrolysates of pea protein. Food Res. Int. 2021, 140, 109985. [Google Scholar] [CrossRef]
- Oconnor, T. Food flavours part C: The flavour of fruits. Trends Food Sci. Technol. 1991, 2, 232. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.; Soladoye, O.P.; Aluko, R.E. Maillard reaction products derived from food protein-derived peptides: Insights into flavor and bioactivity. Crit. Rev. Food Sci. Nutr. 2020, 60, 3429–3442. [Google Scholar] [CrossRef]
- Temussi, P.A. The good taste of peptides. J. Pept. Sci. 2012, 18, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.C.; Hartman, T.G.; Ho, C.T. Volatile compounds generated from the Maillard reaction of pro-gly, gly-pro, and a mixture of glycine and proline with glucose. J. Agric. Food Chem. 1992, 40, 1878–1880. [Google Scholar] [CrossRef]
- Hartmann, S.; Schieberle, P. On the role of Amadori rearrangement products as precursors of aroma-active strecker aldehydes in cocoa. In Browned Flavors: Analysis, Formation and Physiology; Granvogl, M., Peterson, D., Schieberle, P., Eds.; American Chemican Society: Washington, DC, USA, 2016; pp. 1–13. [Google Scholar]
- Hou, L.; Xie, J.; Zhao, J.; Zhao, M.; Fan, M.; Xiao, Q.; Liang, J.; Chen, F. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems. Food Chem. 2017, 232, 135–144. [Google Scholar] [CrossRef]
- Ho, C.T.; Oh, Y.C.; Zhang, Y.G.; Shu, C.K. Peptides as flavor precursors in model Maillard reactions. In Flavor Precursor; Teranishi, R., Ed.; American Chemical Society: Washington, DC, USA, 1992; pp. 193–202. [Google Scholar]
- Sun, F.; Cui, H.; Zhan, H.; Xu, M.; Hayat, K.; Tahir, M.U.; Hussain, S.; Zhang, X.; Ho, C.T. Aqueous preparation of Maillard reaction intermediate from glutathione and xylose and its volatile formation during thermal treatment. J. Food Sci. 2019, 84, 3584–3593. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services. 14th Report on Carcinogens. 2016. Available online: https://ntp.niehs.nih.gov/whatwestudy/assessments/cancer/roc/index.html?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=roc (accessed on 20 May 2021).
- Pedreschi, F.; Mariotti, M.S.; Granby, K. Current issues in dietary acrylamide: Formation, mitigation and risk assessment. J. Sci. Food Agric. 2014, 94, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Fennell, T.R.; Sumner, S.C.; Snyder, R.W.; Burgess, J.; Spicer, R.; Bridson, W.E.; Friedman, M.A. Metabolism and hemoglobin adduct formation of acrylamide in humans. Toxicol. Sci. 2005, 85, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Spies, C.D.; Rommelspacher, H.; Schnapper, C.; Müller, C.; Marks, C.; Berger, G.; Conrad, C.; Blum, S.; Specht, M.; Hannemann, L. Beta-carbolines in chronic alcoholics undergoing elective tumor resection. Alcohol Clin. Exp. Res. 1995, 19, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, W.; Muller, T.; Grosse, H.; Rommelspacher, H. Elevated levels of harman and norharman in cerebrospinal fluid of parkinsonian patients. J. Neural. Transm. 1996, 103, 1435–1440. [Google Scholar] [CrossRef]
- Pfau, W.; Skog, K. Exposure to beta-carbolines norharman and harman. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 802, 115–126. [Google Scholar] [CrossRef]
- Gross, G.A.; Gruter, A. Quantitation of mutagenic/carcinogenic heterocyclic aromatic amines in food products. J. Chromatogr. 1992, 592, 271–278. [Google Scholar] [CrossRef]
- Totsuka, Y.; Ushiyama, H.; Ishihara, J.; Sinha, R.; Goto, S.; Sugimura, T.; Wakabayashi, K. Quantification of the co-mutagenic beta-carbolines, norharman and harman, in cigarette smoke condensates and cooked foods. Cancer Lett. 1999, 143, 139–143. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, Q.; Fan, D.; Xiao, J.; Zhao, Y.; Cheng, K.-W.; Wang, M. Novel roles of hydrocolloids in foods: Inhibition of toxic Maillard reaction products formation and attenuation of their harmful effects. Trends Food Sci. Technol. 2021, 111, 706–715. [Google Scholar] [CrossRef]
Fru-Ile | Fru-Tyr | Fru-Phe | Fru-His | Fru-Met | Fru-Leu | Fru-Val | ||
Cocoa (unroasted) | 104.00 ± 10.40 | 73.00 ± 2.92 | 104.00 ± 8.32 | 27.20 ± 1.36 | 2.33 ± 0.33 | 152.00 ± 12.16 | 342.00 ± 10.26 | |
Cocoa (roasted) | 5.38 ± 0.32 | 3.04 ± 0.09 | 3.99 ± 0.28 | 0.62 ± 0.06 | 1.34 ± 0.12 | 6.47 ± 0.39 | 19.00 ± 0.95 | |
Coffee (green) | 2.51 ± 0.13 | 0.18 ± 0.03 | 2.80 ± 0.81 | 0.36 ± 0.08 | 0.59 ± 0.08 | 4.65 ± 0.65 | 0.60 ± 0.03 | |
Coffee (roasted) | 0.87 ± 0.14 | ND | 0.09 ± 0.02 | 15.33 ± 2.30 | ND | 0.81 ± 0.11 | ND | |
Barley malt | 29.20 ± 2.04 | 11.00 ± 1.65 | 25.40 ± 3.05 | 13.10 ± 1.97 | 5.91 ± 0.95 | 33.80 ± 2.70 | 39.40 ± 4.73 | |
Wheat malt | 27.80 ± 3.89 | 6.70 ± 0.34 | 21.10 ± 2.53 | 10.60 ± 1.06 | 4.31 ± 0.26 | 35.40 ± 5.00 | 148.00 ± 8.88 | |
Wheat beer | 6.05 ± 0.12 | 2.91 ± 0.12 | 5.28 ± 0.05 | 2.77 ± 0.28 | ND | 11.50 ± 0.92 | 34.60 ± 0.00 | |
Bell pepper | 0.10 ± 0.00 | ND | 0.08 ± 0.00 | 0.97 ± 0.20 | 0.10 ± 0.00 | 0.07 ± 0.01 | 0.58 ± 0.12 | |
Bell pepper (DW) | 1.00 | ND | 0.80 | 9.70 | 1.00 | 0.70 | ND | |
Bell pepper powder | 509.00 ± 15.27 | 210.00 ± 42.00 | 329.00 ± 26.32 | 405.00 ± 52.65 | 81.90 ± 4.10 | 592.00 ± 11.84 | 3460.00 ± 103.8 | |
Tomato | 0.12 ± 0.01 | ND | 0.19 ± 0.03 | 0.57 ± 0.02 | ND | 0.16 ± 0.05 | ND | |
Tomato (DW) | 2.40 | ND | 3.80 | 11.40 | ND | 3.20 | ND | |
Tomato powder | 9.30 ± 1.67 | 7.96 ± 1.59 | 22.60 ± 3.39 | 45.00 ± 4.95 | ND | 9.60 ± 0.38 | 10.60 ± 1.70 | |
Fru-Arg | Fru-Ala | Fru-Phe | Fru-His | Fru-Met | Fru-Leu | Fru-Val | Fru-Glu | |
Dried strawberries (DW) | 8.4 ± 1.7 f | 30.5 ± 9.7 f | 9.0 ± 1.7 e | 12.5 ± 3.6 fg | 4.5 ± 2.2 e | 8.1 ± 1.6 e | 16.2 ± 4.5 d | 4.8 ± 2.0 d |
Dried bananas (DW) | 2.3 ± 0.1 f | 1.6 ± 0.1 f | 0.2 ± 0.1 f | 8.2 ± 5.6 gh | 0.3 ± 0.2 e | 0.1 ± 0.1 e | 0.9 ± 0.3 d | ND |
Dried taro (DW) | 2.3 ± 0.1 f | 74.5 ± 16.5 f | 11.4 ± 1.2 e | 16.6 ± 1.5 ef | 32.6 ± 8.1 c | 20.6 ± 8.9 e | ND | ND |
Milk powder (DW) | 5.4 ± 0.3 f | ND | 0.2 ± 0.1 f | 0.2 ± 0.1 h | 0.7 ± 0.1 e | 0.2 ± 0.1 e | ND | ND |
Pulled figs (DW) | 78.6 ± 3.7 e | 431.0 ± 43.8 d | 32.9 ± 2.7 d | 24.6 ± 1.4 e | 9.1 ± 0.7 de | 101.7 ± 24.1 d | 93.9 ± 20.3 c | ND |
Tomato juice (DW) | 90.0 ± 0.8 e | ND | 10.0 ± 2.0 e | 10.0 ± 2.0 f | 16.0 ± 4.0 d | 10.0 ± 2.0 e | ND | 154.0 ± 1.5 b |
Tomato paste (DW) | 156.0 ± 13.7 d | 295.2 ± 3.7 e | 428.7 ± 62.1 c | 186.0 ± 3.7 d | 46.3 ± 3.7 c | 262.5 ± 3.7 c | 103.3 ± 3.7 c | 1517.7 ± 3.7 a |
Red pepper I (DW) | 2171.1 ± 103.5 b | 1291.5 ± 100.7 c | 974.3 ± 73.7 b | 454.4 ± 41.2 b | 300.0 ± 23.1 b | 1299.9 ± 90.8 b | 1341.5 ± 101.1 b | ND |
Red pepper II (DW) | 1092.9 ± 101.1 c | 1952.2 ± 113.3 a | 836.1 ± 62.4 b | 264.5 ± 34.5 c | 240.2 ± 21.2 b | 1260.7 ± 123.1 b | 1453.9 ± 112.1 b | ND |
Red pepper III (DW) | 24477.8 ± 212.6 a | 1479.7 ± 100.5 b | 2120.6 ± 183.7 a | 560.3 ± 49.2 a | 660.5 ± 65.2 a | 2613.6 ± 155.2 a | 2181.3 ± 143.5 a | 65.4 ± 8.7 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Li, S.; Ho, C.-T. Key Aspects of Amadori Rearrangement Products as Future Food Additives. Molecules 2021, 26, 4314. https://doi.org/10.3390/molecules26144314
Luo Y, Li S, Ho C-T. Key Aspects of Amadori Rearrangement Products as Future Food Additives. Molecules. 2021; 26(14):4314. https://doi.org/10.3390/molecules26144314
Chicago/Turabian StyleLuo, Yue, Shiming Li, and Chi-Tang Ho. 2021. "Key Aspects of Amadori Rearrangement Products as Future Food Additives" Molecules 26, no. 14: 4314. https://doi.org/10.3390/molecules26144314
APA StyleLuo, Y., Li, S., & Ho, C. -T. (2021). Key Aspects of Amadori Rearrangement Products as Future Food Additives. Molecules, 26(14), 4314. https://doi.org/10.3390/molecules26144314