Reaction of Chalcones with Cellular Thiols. The Effect of the 4-Substitution of Chalcones and Protonation State of the Thiols on the Addition Process. Diastereoselective Thiol Addition
Abstract
:1. Introduction
2. Results
2.1. Reactions under Basic (pH 8.0/8.5) Conditions
2.2. Reactions under Slightly Acidic (pH 6.3/6.8) Conditions
2.3. Reactions under Acidic (pH 3.2/3.7) Conditions
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Preparation of Solutions
4.3. RP-HPLC-UV-VIS Measurements
4.4. HPLC-MS Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rozmer, Z.; Perjési, P. Naturally occurring chalcones and their biological activities. Phytochem. Rev. 2016, 15, 87–120. [Google Scholar] [CrossRef]
- Gomes, M.N.; Muratov, E.N.; Pereira, M.; Peixoto, J.C.; Rosseto, L.P.; Cravo, P.V.L.; Andrade, C.H.; Neves, B.J. Chalcone derivatives: Promising starting points for drug design. Molecules 2017, 22, 1210. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B. Diverse molecular targets for chalcones with varied bioactivities. Med. Chem. 2015, 5, 388–404. [Google Scholar] [CrossRef]
- Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem. 2017, 17, 3146–3169. [Google Scholar] [CrossRef]
- Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr. 2011, 6, 125–147. [Google Scholar] [CrossRef] [Green Version]
- Amslinger, S.; Al-Rifai, N.; Winter, K.; Wörmann, K.; Scholz, R.; Baumeister, P.; Wild, M. Reactivity assessment of chalcones by a kinetic thiol assay. Org. Biomol. Chem. 2013, 11, 549–554. [Google Scholar] [CrossRef] [Green Version]
- Al-Rifai, N.; Rücker, H.; Amslinger, S. Opening or closing the lock? when reactivity is the key to biological activity. Chem. Eur. J. 2013, 19, 15384–15395. [Google Scholar] [CrossRef]
- Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017, 117, 7762–7810. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Holtzclaw, W.D.; Cole, R.N.; Itoh, K.; Wakabayashi, N.; Katoh, Y.; Yamamoto, M.; Talalay, P. Direct Evidence That sulfhydryl groups of keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA 2002, 99, 11908–11913. [Google Scholar] [CrossRef] [Green Version]
- Nasir Abbas Bukhari, S.; Jantan, I.; Jasamai, M. Anti-inflammatory trends of 1, 3-diphenyl-2-propen-1-one derivatives. Mini Rev. Med. Chem. 2012, 13, 87–94. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Song, D.; Zhao, D.; Sha, Y.; Jiang, Y.; Jing, Y.; Cheng, M. Chalcone derivatives inhibit glutathione S-transferase P1-1 activity: Insights into the interaction mode of α, β-unsaturated carbonyl compounds. Chem. Biol. Drug Des. 2009, 73, 511–514. [Google Scholar] [CrossRef]
- Jin, Y.L.; Jin, X.Y.; Jin, F.; Sohn, D.H.; Kim, H.S. Structure activity relationship studies of anti-inflammatory TMMC derivatives: 4-dimethylamino group on the B ring responsible for lowering the potency. Arch. Pharm. Res. 2009, 31, 1145. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Massiah, M.A.; Bozak, R.E.; Hicks, R.J.; Talalay, P. Potency of michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc. Natl. Acad. Sci. USA 2001, 98, 3404–3409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groitl, B.; Jakob, U. Thiol-based redox switches. Biochim. Biophys. Acta 2014, 1844, 1335–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, P.A.; Widen, J.C.; Harki, D.A.; Brummond, K.M. Covalent modifiers: A chemical perspective on the reactivity of α,β-unsaturated carbonyls with thiols via hetero-michael addition reactions. J. Med. Chem. 2017, 60, 839–885. [Google Scholar] [CrossRef] [PubMed]
- Poole, L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 2015, 80, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Samuni, Y.; Goldstein, S.; Dean, O.M.; Berk, M. The chemistry and biological activities of N-acetylcysteine. Biochim. Biophys. Acta 2013, 1830, 4117–4129. [Google Scholar] [CrossRef] [PubMed]
- Aldini, G.; Altomare, A.; Baron, G.; Vistoli, G.; Carini, M.; Borsani, L.; Sergio, F. N-acetylcysteine as an antioxidant and disulphide breaking agent: The reasons why. Free Radic. Res. 2018, 52, 751–762. [Google Scholar] [CrossRef]
- Roos, G.; Foloppe, N.; Messens, J. Understanding the pK(a) of redox cysteines: The key role of hydrogen bonding. Antioxid. Redox Signal. 2013, 18, 94–127. [Google Scholar] [CrossRef]
- Shibata, S. Anti-tumorigenic chalcones. Stem Cells 1994, 12, 44–52. [Google Scholar] [CrossRef]
- Drutovic, D.; Chripkova, M.; Pilatova, M.; Kruzliak, P.; Pal Perjesi, P.; Sarissky, M.; Lupi, M.; Damia, G.; Broggini, M.; Mojzis, J. Benzylidenetetralones, cyclic chalcone analogues, induce cell cycle arrest and apoptosis in HCT116 colorectal cancer cells. Tumor Biol. 2014, 35, 9967–9975. [Google Scholar] [CrossRef]
- Dimmock, J.R.; Elias, D.W.; Beazely, M.A.; Kandepu, N.M. Bioactivities of chalcones. Curr. Med. Chem. 1999, 6, 1125–1149. [Google Scholar]
- Dimmock, J.R.; Kandepu, N.M.; Nazarali, A.J.; Kowalchuk, T.P.; Motaganahalli, N.; Quail, J.W.; Mykytiuk, P.A.; Audette, G.F.; Prasad, L.; Perjési, P.; et al. Conformational and quantitative structure−activity relationship study of cytotoxic 2-arylidenebenzocycloalkanones. J. Med. Chem. 1999, 42, 1358–1366. [Google Scholar] [CrossRef]
- Rozmer, Z.; Berki, T.; Maász, G.; Perjési, P. Different effects of two cyclic chalcone analogues on redox status of jurkat T cells. Toxicol. In Vitro 2014, 28, 1359–1365. [Google Scholar] [CrossRef]
- Noyce, D.S.; Jorgenson, M. Jefraim. Carbonyl reactions. XIX. The basicities of substituted chalcones. J. Am. Chem. Soc. 1962, 84, 4312–4319. [Google Scholar] [CrossRef]
- Bernasconi, C.R. Nucleophilic addition to olefins. Kinetics and mechanism. Tetrahedron 1989, 45, 4017–4090. [Google Scholar] [CrossRef]
- Bernardes, A.; Pérez, C.; Mayer, M.; da Silva, C.; Martins, F.; Perjési, P. Study of reactions of two mannich bases derived of 4′-hydroxychalcones with glutathione by RP-TLC, RP-HPLC and RP-HPLC-ESI-MS analysis. J. Braz. Chem. Soc. 2017, 28, 1048–1062. [Google Scholar] [CrossRef]
- Bernardes, A.; D’Oliveira, G.D.C.; Silezin, A.; Kuzma, M.; Molnár, S.; Noda Pérez, C.; Perjési, P. Reagent-induced asymmetric induction in addition reaction of reduced glutathione onto bis-mannich chalcones. Arch. Pharm. 2018, 351, 1700386. [Google Scholar] [CrossRef]
- Caccuri, A.M.; Antonini, G.; Board, P.G.; Parker, M.W.; Nicotra, M.; Bello, M.L.; Federici, G.; Ricci, G. Proton release on binding of glutathione to alpha, mu and delta class glutathione transferases. Biochem. J. 1999, 344, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Rohani, N.; Hao, L.; Alexis, M.; Joughin, B.; Krismer, K.; Moufarrej, M.; Soltis, A.; Lauffenburger, D.; Yaffe, M.; Burge, C.; et al. Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes. Cancer Res. 2019, 79, 1952–1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perjési, P. (E)-2-benzylidenebenzocyclanones: Part XIII—(E)/(Z)-isomerization of some cyclic chalcone analogues. Effect of ring size on lipophilicity of geometric isomers. Monatsh. Chem. Chem. Mon. 2015, 146, 1275–1281. [Google Scholar] [CrossRef]
- LoPachin, R.M.; Gavin, T. Reactions of electrophiles with nucleophilic thiolate sites: Relevance to pathophysiological mechanisms and remediation. Free Radic. Res. 2016, 50, 195–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perjési, P.; Linnanto, J.; Kolehmainen, E.; Ősz, E.; Virtanen, E. E-2-benzylidenebenzocycloalkanones. IV. Studies on transmission of substituent effects on 13C NMR chemical shifts of E-2-(X-benzylidene)-1-tetralones, and -benzosuberones. Comparison with the 13C NMR data of chalcones and E-2-(X-benzylidene)-1-indanones. J. Mol. Struct. 2005, 740, 81–89. [Google Scholar] [CrossRef]
- Allen, C.F.H.; Humphlett, W.J. The thermal reversibility of the michael reaction V. The effect of the structure of certain thiol adducts on cleavage. Can. J. Chem. 1966, 44, 2315–2321. [Google Scholar] [CrossRef] [Green Version]
- d’Oliveira, G.D.C.; Custodio, J.M.F.; Moura, A.F.; Napolitano, H.B.; Pérez, C.N.; Moraes, M.O.; Prókai, L.; Perjési, P. Different reactivity to glutathione but similar tumor cell toxicity of chalcones and their quinolinone analogues. Med. Chem. Res. 2019, 28, 1448–1460. [Google Scholar] [CrossRef] [Green Version]
- De Freitas Silva, M.; Pruccoli, L.; Morroni, F.; Sita, G.; Seghetti, F.; Viegas Jr, C.; Tarozzi, A. The keap1/Nrf2-ARE pathway as a pharmacological target for chalcones. Molecules 2018, 23, 1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozurkova, M.; Tomeckova, V. Interaction of chalcone derivatives with important biomacromolecules. In Chalcones and Their Synthetic Analogs; Perjési, P., Ed.; Nova Science Publisher: New York, NY, USA, 2020; pp. 95–133. [Google Scholar]
- Katsori, A.-M.; Hadjipavlou-Litina, D. Chalcones in cancer: Understanding their role in terms of QSAR. Curr. Med. Chem. 2009, 16, 1062–1081. [Google Scholar] [CrossRef] [PubMed]
- Rozmer, Z.; Perjési, P.; Takács-Novák, K. Use of RP-TLC for determination of log P of isomeric chalcones and cyclic chalcone analogues. JPC Mod. TLC 2006, 19, 124–128. [Google Scholar] [CrossRef]
- Perjési, P.; Földesi, A.; Szabó, D. Synthesis of 4,6-diaryl-2,3-dihydro-6H-1,3-thiazine-2-thiones by the reaction of chalcones with dithiocarbamic acid. Acta Chim. Hung. 1986, 122, 119–125. [Google Scholar] [CrossRef]
pH 3 | Compound | tR (E)-Chalcone | Area Ratio 4 A315/A0 | tR (Z)-Chalcone | Area (Z)-Chalcone | tR GSH–1 | Area GSH–1 | tR GSH–2 | Area GSH–2 |
---|---|---|---|---|---|---|---|---|---|
3.2 | 1 | 16.4 | 0.81 | 16.2 | <100 | 13.8 | 4245 | N/D 5 | - |
3.2 | 2 | 15.9 | 0.96 | 15.7 | <100 | 11.9 | 3352 | N/D 5 | - |
6.3 | 1 | 16.3 | 0.09 | 16.0 | <100 | 13.2 | 16,571 | N/D 5 | - |
6.3 | 2 | 15.8 | 0.21 | 15.5 | <100 | 11.3 | 17,160 | N/D 5 | - |
8 | 1 | 16.3 | 0.04 | 16.1 6 | <100 | 13.3 | 17,419 | N/D 5 | - |
8 | 2 | 15.7 | 0.08 | 15.5 | <100 | 11.0 | 20,387 | N/D 5 | - |
pH 3 | Compound | tR (E)-Chalcone | Area Ratio 4 A315/A0 | tR (Z)-Chalcone | Area (Z)-Chalcone | tR NAC–1 | Area NAC–1 | tR NAC–2 | Area NAC–2 |
---|---|---|---|---|---|---|---|---|---|
3.2 | 1 | 16.3 | 0.89 | 16.1 | <100 | 15.2 | 1260 | 15.3 | 2173 |
3.2 | 2 | 15.8 | 0.98 | 15.5 | <100 | 14.1 | 1156 | 14.2 | 1507 |
6.3 | 1 | 16.3 | 0.24 | 16.0 | <100 | 15.1 | 4906 | 15.2 | 6457 |
6.3 | 2 | 15.8 | 0.47 | 15.5 | <100 | 14.1 | 4712 | 14.2 | 5422 |
8 | 1 | 16.2 | 0.05 | 16.0 | <100 | 15.1 | 6167 | 15.2 | 8875 |
8 | 2 | 15.7 | 0.10 | 15.5 | <100 | 14.1 | 7167 | 14.2 | 8975 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenari, F.; Molnár, S.; Perjési, P. Reaction of Chalcones with Cellular Thiols. The Effect of the 4-Substitution of Chalcones and Protonation State of the Thiols on the Addition Process. Diastereoselective Thiol Addition. Molecules 2021, 26, 4332. https://doi.org/10.3390/molecules26144332
Kenari F, Molnár S, Perjési P. Reaction of Chalcones with Cellular Thiols. The Effect of the 4-Substitution of Chalcones and Protonation State of the Thiols on the Addition Process. Diastereoselective Thiol Addition. Molecules. 2021; 26(14):4332. https://doi.org/10.3390/molecules26144332
Chicago/Turabian StyleKenari, Fatemeh, Szilárd Molnár, and Pál Perjési. 2021. "Reaction of Chalcones with Cellular Thiols. The Effect of the 4-Substitution of Chalcones and Protonation State of the Thiols on the Addition Process. Diastereoselective Thiol Addition" Molecules 26, no. 14: 4332. https://doi.org/10.3390/molecules26144332
APA StyleKenari, F., Molnár, S., & Perjési, P. (2021). Reaction of Chalcones with Cellular Thiols. The Effect of the 4-Substitution of Chalcones and Protonation State of the Thiols on the Addition Process. Diastereoselective Thiol Addition. Molecules, 26(14), 4332. https://doi.org/10.3390/molecules26144332