Bio-Guided Fractionation of Stem Bark Extracts from Phyllanthus muellarianus: Identification of Phytocomponents with Anti-Cholinesterase Activity
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material
3.2. Extraction Procedure
3.3. Determination of Polyphenol Content
3.4. Fractionation of dPMME by Solid Phase Extraction
3.5. Fractionation of PMME by Flash Chromatography
3.6. Chromatographic Analysis
3.7. Isolation of PC1 from F1
3.8. Isolation of PC2a and PC2b from Fraction F2
3.9. Isolation of PC3 from Fraction F4
3.10. MS Analysis of Isolated Phytocomponents
3.11. 1H-NMR Analysis
3.12. Inhibition of Human Cholinesterase Activity
3.13. Inhibition of Aβ1–42 Self-Aggregation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Li, F.S.; Weng, J.K. Demystifying traditional herbal medicine with modern approaches. Nat. Plants 2017, 3, 17109. [Google Scholar] [CrossRef]
- Sen, S.; Chakraborty, R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. J. Tradit. Complement. Med. 2017, 7, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.D.; Ma, Q.Q.; Cui, H.Y.; Liu, G.C.; Zhao, X.Y.; Li, W.; Piao, G. How Can Synergism of Traditional Medicines Benefit from Network Pharmacology? Molecules 2017, 22, 1135. [Google Scholar] [CrossRef]
- Lee, W.Y.; Lee, C.Y.; Kim, Y.S.; Kim, C.E. The Methodological Trends of Traditional Herbal Medicine Employing Network Pharmacology. Biomolecules 2019, 9, 362. [Google Scholar] [CrossRef] [Green Version]
- Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural Products for Drug Discovery in the 21st Century, Innovations for Novel Drug Discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amirkia, V.; Heinrich, M. Natural products and drug discovery: A survey of stakeholders in industry and academia. Front. Pharmacol. 2015, 6, 237. [Google Scholar] [CrossRef] [Green Version]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Shen, B. A New Golden Age of Natural Products Drug Discovery. Cell 2015, 163, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Andrade, S.; Ramalho, M.J.; Loureiro, J.A.; Pereira, M.D.C. Natural Compounds for Alzheimer’s Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. Int. J. Mol. Sci. 2019, 20, 2313. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol. Med. Rep. 2019, 20, 1479–1487. [Google Scholar] [CrossRef] [Green Version]
- Andrisano, V.; Naldi, M.; De Simone, A.; Bartolini, M. A patent review of butyrylcholinesterase inhibitors and reactivators 2010–2017. Expert Opin. Ther. Pat. 2018, 28, 455–465. [Google Scholar] [CrossRef]
- Corey-Bloom, J. Galantamine: A review of its use in Alzheimer’s disease and vascular dementia. Int. J. Clin. Pract. 2003, 57, 219–223. [Google Scholar]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Agyare, C.; Asase, A.; Lechtenberg, M.; Niehues, M.; Deters, A.; Hensel, A. An ethnopharmacological survey and in vitro confirmation of ethnopharmacological use of medicinal plants used for wound healing in Bosomtwi-Atwima-Kwanwoma area, Ghana. J. Ethnopharmacol. 2009, 125, 393–403. [Google Scholar] [CrossRef]
- Brusotti, G.; Cesari, I.; Frassa, G.; Grisoli, P.; Dacarro, C.; Caccialanza, G. Antimicrobial properties of stem bark extracts from Phyllanthus muellerianus (Kuntze) Excell. J. Ethnopharmacol. 2011, 135, 797–800. [Google Scholar] [CrossRef]
- Fowler, D.G. Traditional Fever Remedies: A List of Zambian Plants; Royal Botanic Gardens, Kew: Richmond, UK, 2006. [Google Scholar]
- Brusotti, G.; Cesari, I.; Gilardoni, G.; Tosi, S.; Grisoli, P.; Picco, A.M.; Caccialanza, G. Chemical composition and antimicrobial activity of Phyllanthus muellerianus (Kuntze) Excel essential oil. J. Ethnopharmacol. 2012, 142, 657–662. [Google Scholar] [CrossRef]
- Cesari, I.; Grisoli, P.; Paolillo, M.; Milanese, C.; Massolini, G.; Brusotti, G. Isolation and characterization of the alkaloid Nitidine responsible for the traditional use of Phyllanthus muellerianus (Kuntze) Excell stem bark against bacterial infections. J. Pharmaceut. Biomed. 2015, 105, 115–120. [Google Scholar] [CrossRef]
- Agyare, C.; Boakye, Y.D.; Bekoe, E.O.; Hensel, A.; Dapaah, S.O.; Appiah, T. Review: African medicinal plants with wound healing properties. J. Ethnopharmacol. 2016, 177, 85–100. [Google Scholar] [CrossRef]
- Boakye, Y.D.; Agyare, C.; Hensel, A. Anti-infective properties and time-kill kinetics of Phyllanthus muellerianus and its major constituent, geraniin. J. Med. Chem. 2016, 6, 95–104. [Google Scholar] [CrossRef]
- Adesegun, A.; Samuel, F.; Adesina, O. Antibacterial activity of the volatile oil of Phyllanthus muellerianus and its inhibition against the extracellular protease of Klebsiella granulomatis. EJMP 2016, 14, 1–10. [Google Scholar] [CrossRef]
- Boakye, Y.D.; Agyare, C.; Ayande, G.P.; Titiloye, N.; Asiamah, E.A.; Danquah, K.O. Assessment of wound-healing properties of medicinal plants: The case of Phyllanthus muellerianus. Front. Pharmacol. 2018, 9, 945. [Google Scholar] [CrossRef]
- Doughari, J.H.; Sunday, D. Antibacterial activity of Phyllanthus muellerianus. Pharm. Biol. 2008, 46, 400–405. [Google Scholar] [CrossRef]
- Ibitoye, O.B.; Aliyu, N.O.; Ajiboye, T.O. Protective Influence of Phyllanthus muellarianus on Ciprofloxacin-Induced Neurotoxicity in Male Rats. J. Diet Suppl. 2020, 17, 321–335. [Google Scholar] [CrossRef]
- Joshi, H.; Parle, M. Pharmacological evidences for antiamnesic potentials of Phyllanthus amarus in mice. Afr. J. Biomed. Res. 2007, 10, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Koay, Y.H.; Basiri, A.; Murugaiyah, V.; Chan, K.L. Isocorilagin, a cholinesterase inhibitor from Phyllanthus niruri. Nat. Prod. Commun. 2014, 9, 515–517. [Google Scholar] [CrossRef] [Green Version]
- Boakye, Y.D.; Agyare, C.; Abotsi, W.K.M.; Ayande, P.G.; Ossei, P.P.S. Anti-inflammatory activity of aqueous leaf extract of Phyllanthus muellerianus (Kuntze) Exell. and its major constituent, geraniin. J. Ethnopharmacol. 2016, 187, 17–27. [Google Scholar] [CrossRef]
- Boakye, Y.D.; Agyare, C.; Dapaah, S.O. In vitro and in vivo antioxidant properties of Phyllanthus muellerianus and its major constituent, geraniin. Oxid. Antioxid. Med. Sci. 2016, 5, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Calsolaro, V.; Edison, P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. 2016, 12, 719–732. [Google Scholar] [CrossRef]
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 2018, 4, 575–590. [Google Scholar] [CrossRef]
- Gella, A.; Durany, N. Oxidative stress in Alzheimer disease. Cell Adh. Migr. 2009, 3, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Butterfield, D.A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef]
- Estrada, L.D.; Soto, C. Disrupting beta-amyloid aggregation for Alzheimer disease treatment. Curr. Top. Med. Chem. 2007, 7, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MetFrag. Available online: https://msbi.ipb-halle.de/MetFragBeta/ (accessed on 14 May 2020).
- Chen, J.; Wang, F.; Liu, J.; Lee, F.S.; Wang, X.; Yang, H. Analysis of alkaloids in Coptis chinensis Franch by accelerated solvent extraction combined with ultra performance liquid chromatographic analysis with photodiode array and tandem mass spectrometry detections. Anal. Chim. Acta 2008, 613, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.D.; Choi, S.U.; Lee, K.R. Aporphine alkaloids and their reversal activity of multidrug resistance (MDR) from the stems and rhizomes of Sinomenium acutum. Arch. Pharm. Res. 2006, 29, 627–632. [Google Scholar] [CrossRef]
- Okon, E.; Kukula-Koch, W.; Jarzab, A.; Halasa, M.; Stepulak, A.; Wawruszak, A. Advances in Chemistry and Bioactivity of Magnoflorine and Magnoflorine-Containing Extracts. Int. J. Mol. Sci. 2020, 21, 1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukula-Koch, W.; Kruk-Slomka, M.; Stepnik, K.; Szalak, R.; Biala, G. The Evaluation of Pro-Cognitive and Antiamnestic Properties of Berberine and Magnoflorine Isolated from Barberry Species by Centrifugal Partition Chromatography (CPC), in Relation to QSAR Modelling. Int. J. Mol. Sci. 2017, 18, 2511. [Google Scholar] [CrossRef] [Green Version]
- Networking GGNPSM. Available online: https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp (accessed on 14 May 2020).
- Bouquet, J.; Rivaud, M.; Chevalley, S.; Deharo, E.; Jullian, V.; Valentin, A. Biological activities of nitidine, a potential anti-malarial lead compound. Malar. J. 2012, 11, 67. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Wu, L.; Cao, R.; Xu, H.; Xia, J.; Wang, Z.P.; Ma, J. Antitumor functions and mechanisms of nitidine chloride in human cancers. J. Cancer 2020, 11, 1250–1256. [Google Scholar] [CrossRef] [Green Version]
- Rashd, M.A.; Gusiafson, K.R.; Kashman, Y.; Caredellina, J.H.; McMahon, J.B.; Boyd, M.R. Anti-HIV alkaloids from Toddalia asiatica. Nat. Prod. Lett. 1995, 6, 153–156. [Google Scholar] [CrossRef]
- Kutchan, T.M.; Dittrich, H. Characterization and mechanism of the berberine bridge enzyme, a covalently flavinylated oxidase of benzophenanthridine alkaloid biosynthesis in plants. J. Biol. Chem. 1995, 270, 24475–24481. [Google Scholar] [CrossRef] [Green Version]
- Brunhofer, G.; Fallarero, A.; Karlsson, D.; Batista-Gonzalez, A.; Shinde, P.; Gopi Mohan, C.; Vuorela, P. Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: The case of chelerythrine. Bioorg. Med. Chem. 2012, 20, 6669–6679. [Google Scholar] [CrossRef]
- Bartolini, M.; Naldi, M.; Fiori, J.; Valle, F.; Biscarini, F.; Nicolau, D.V.; Andrisano, V. Kinetic characterization of amyloid-beta 1-42 aggregation with a multimethodological approach. Anal. Biochem. 2011, 414, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol. 1999, 299, 152–178. [Google Scholar]
- Brusotti, G.; Ngueyem, T.A.; Biesuz, R.; Caccialanza, G. Optimum extraction process of polyphenols from Bridelia grandis stem bark using experimental design. J. Sep. Sci. 2010, 33, 1692–1697. [Google Scholar] [CrossRef] [PubMed]
- Naiki, H.; Higuchi, K.; Nakakuki, K.; Takeda, T. Kinetic analysis of amyloid fibril polymerization in vitro. Lab. Investig. 1991, 65, 104–110. [Google Scholar] [PubMed]
- Tundis, R.; Loizzo, M.R.; Nabavi, S.M.; Orhan, I.E.; Skalicka-Wozniak, K.; D’Onofrio, G.; Aiello, F. Natural compounds and their derivatives as multifunctional agents for the treatment of Alzheimer disease. In Discovery and Development of Neuroprotective Agents from Natural Products: Natural Product Drug Discovery, 1st ed.; Brahmachari, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 63–102. [Google Scholar]
- Ibrahim, M.M.; Gabr, M.T. Multitarget therapeutic strategies for Alzheimer’s disease. Neural Regen. Res. 2019, 14, 437–440. [Google Scholar]
- Bolognesi, M.L.; Andrisano, V.; Bartolini, M.; Banzi, R.; Melchiorre, C. Propidium-based polyamine ligands as potent inhibitors of acetylcholinesterase and acetylcholinesterase-induced amyloid-beta aggregation. J. Med. Chem. 2005, 48, 24–27. [Google Scholar] [CrossRef]
hAChE Inhibition % ± SD | hBuChE Inhibition % ± SD | |
---|---|---|
PMWE | 22.6 ± 0.6 | 51.4 ± 0.8 |
PMME | 46.8 ± 1.8 | 64.1 ± 0.7 |
dPMME | 52.6 ± 0.6 | 70.1 ± 3.1 |
dPMME | Composition of the Eluting Solution | Inhibition hAChE, % ± SD | Inhibition hBuChE, % ± SD |
---|---|---|---|
Whole extract | 52.6 ± 0.6 | 70.1 ± 3.1 | |
Water-soluble fraction | 60.4 ± 1.0 | 74.9 ± 0.9 | |
Loading solution | H2O | n.a. | 18.4 ± 0.9 |
Subfraction I | H2O/MeOH 90/10 | n.a. | 28.3 ± 2.4 |
Subfraction II | H2O/MeOH 75/25 | 10.4 ± 1.2 | 46.3 ± 5.5 |
Subfraction III | H2O/MeOH 75/25 | 6.5 ± 1.1 | 20.2 ± 5.6 |
Subfraction IV | H2O/MeOH 60/40 | 16.2 ± 5.0 | 13.5 ± 1.3 |
Subfraction V | H2O/MeOH 45/55 | 42.0 ± 1.7 | 28.2 ± 1.3 |
Subfraction VI | MeOH | 12.0 ± 3.5 | 13.4 ± 2.5 |
Water-insoluble fraction | 18.1 ± 3.0 | 28.1 ± 3.0 |
Fraction Code | Inhibition hAChE. % ± SD | IC50 hAChE, µg/mL | Inhibition hBuChE. % ± SD |
---|---|---|---|
PMF1 | 31.0 ± 0.7 | 167 ± 8 | 76.1 ± 1.7 |
PMF2 | 52.9 ± 0.3 | 84.4 ± 5.9 | 64.6 ± 2.1 |
PMF4 | >90 | 2.95 ± 0.14 | >90 |
Compound | Inhibition hAChE at 100 µg/mL % ± SD | IC50 hAChE µM ± SD | Inhibition hBuChE at 100 µg/mL % ± SD | IC50 hBuChE µM ± SD |
---|---|---|---|---|
Magnoflorine (PC1) | 19.0 ± 2.9 | 1120 ± 83 | 69.9 ± 2.4 | 131 ± 9 |
PC2a | n.a. | n.d. | n.a. | n.d. |
PC2b | n.a. | n.d. | n.a. | n.d. |
Nitidine (PC3) | >90 | 5.31 ± 0.50 | >90 | 6.68 ± 0.13 |
Galanthamine | >90 | 2.01 ± 0.15 | >90 | 20.7 ± 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naldi, M.; Brusotti, G.; Massolini, G.; Andrisano, V.; Temporini, C.; Bartolini, M. Bio-Guided Fractionation of Stem Bark Extracts from Phyllanthus muellarianus: Identification of Phytocomponents with Anti-Cholinesterase Activity. Molecules 2021, 26, 4376. https://doi.org/10.3390/molecules26144376
Naldi M, Brusotti G, Massolini G, Andrisano V, Temporini C, Bartolini M. Bio-Guided Fractionation of Stem Bark Extracts from Phyllanthus muellarianus: Identification of Phytocomponents with Anti-Cholinesterase Activity. Molecules. 2021; 26(14):4376. https://doi.org/10.3390/molecules26144376
Chicago/Turabian StyleNaldi, Marina, Gloria Brusotti, Gabriella Massolini, Vincenza Andrisano, Caterina Temporini, and Manuela Bartolini. 2021. "Bio-Guided Fractionation of Stem Bark Extracts from Phyllanthus muellarianus: Identification of Phytocomponents with Anti-Cholinesterase Activity" Molecules 26, no. 14: 4376. https://doi.org/10.3390/molecules26144376
APA StyleNaldi, M., Brusotti, G., Massolini, G., Andrisano, V., Temporini, C., & Bartolini, M. (2021). Bio-Guided Fractionation of Stem Bark Extracts from Phyllanthus muellarianus: Identification of Phytocomponents with Anti-Cholinesterase Activity. Molecules, 26(14), 4376. https://doi.org/10.3390/molecules26144376