Chemical Derivatization and Characterization of Novel Antitrypanosomals for African Trypanosomiasis
Abstract
:1. Introduction
2. Results
2.1. Derivatization and Characterization of Compounds
2.2. Antitrypanosomal Potency Analysis
2.3. Antioxidant Capacity of Compounds in T. brucei
2.4. Antitrypanosomal Sensitivity Analysis of Compounds
2.5. Effects of Compounds on the Structure and Distribution of T. brucei
3. Discussion
4. Materials and Methods
4.1. Culture of Parasites and Mammalian Cell Lines
4.2. Derivatization, Spectrometric and Spectroscopic Analysis
4.3. Analysis of Cell Viability and Cytotoxicity
4.4. Antioxidant Analysis of Antitrypanosomals
4.5. Growth Kinetics Analysis
4.6. Fluorescence Microscopy
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Simarro, P.P.; Cecchi, G.; Franco, J.R.; Paone, M.; Diarra, A.; Ruiz-Postigo, J.A.; Fevre, E.M.; Mattioli, R.C.; Jannin, J.G. Estimating and mapping the population at risk of sleeping sickness. PLoS Negl. Trop. Dis. 2012, 6, e1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, L.J.; Vezza, L.; Rowan, T.; Hope, J.C. Animal African Trypanosomiasis: Time to Increase Focus on Clinically Relevant Parasite and Host Species. Trends Parasitol. 2016, 32, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Deeks, E.D. Fexinidazole: First Global Approval. Drugs 2019, 79, 215–220. [Google Scholar] [CrossRef]
- Ogoti, P.; Magiri, E.; Auma, J.; Magoma, G.; Imbuga, M.; Murilla, G. Evaluation of in vivo antitrypanosomal activity of selected medicinal plant extracts. J. Med. Plants Res. 2009, 3, 849–854. [Google Scholar]
- Mann, A.; Ifarajimi, O.R.; Adewoye, A.T.; Ukam, C.; Udeme, E.E.; Okorie, I.I.; Sakpe, M.S.; Ibrahim, D.R.; Yahaya, Y.A.; Kabir, A.Y.; et al. In vivo antitrypanosomal effects of some ethnomedicinal plants from Nupeland of north central Nigeria. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Mann, A.; Ogbadoyi, E.O. Evaluation of Medicinal Plants from Nupeland for Their in vivo Antitrypanosomal Activity. Am. J. Biochem. 2012, 2, 1–6. [Google Scholar] [CrossRef]
- Mwaniki, L.M.; Mose, J.M.; Mutwiri, T.; Mbithi, J.M. Evaluation of Trypanocidal Activity of Bidens pilosa and Physalis peruviana Against Trypanosoma brucei rhodesiense. Am. J. Lab. Med. 2017, 2, 69. [Google Scholar] [CrossRef] [Green Version]
- Dofuor, A.K.; Djameh, G.I.; Ayertey, F.; Bolah, P.; Amoa-Bosompem, M.; Kyeremeh, K.; Okine, L.K.; Gwira, T.M.; Ohashi, M. Antitrypano-somal effects of Zanthoxylum zanthoxyloides (Lam.) Zepern. & Timler extracts on African trypanosomes. Evid. Based Complement. Altern. Med. 2019, 2019, 1730452. [Google Scholar]
- Dofuor, A.K.; Kwain, S.; Osei, E.; Tetevi, G.M.; Okine, L.K.; Ohashi, M.; Gwira, T.M.; Kyeremeh, K. N-(Isobutyl)-3,4-methylenedioxy Cin-namoyl Amide. Molbank 2019, 2019, M1070. [Google Scholar] [CrossRef] [Green Version]
- Dofuor, A.K.; Ayertey, F.; Bolah, P.; Djameh, G.I.; Kyeremeh, K.; Ohashi, M.; Okine, L.K.; Gwira, T.M. Isolation and Antitrypanosomal Characterization of Furoquinoline and Oxylipin from Zanthoxylum zanthoxyloides. Biomolecules 2020, 10, 1670. [Google Scholar] [CrossRef]
- Chen, J.; Li, W.; Yao, H.; Xu, J. Insights into drug discovery from natural products through structural modification. Fitoterapia 2015, 103, 231–241. [Google Scholar] [CrossRef]
- Boonen, J.; Bronselaer, A.; Nielandt, J.; Veryser, L.; De Tré, G.; De Spiegeleer, B. Alkamid database: Chemistry, occurrence and functionality of plant N-alkylamides. J. Ethnopharmacol. 2012, 142, 563–590. [Google Scholar] [CrossRef] [Green Version]
- Verysera, L.; Wynendaelea, E.; Taeverniera, L.; Verbeke, F.; Joshi, T.; Takte, P.; De Spiegeleera, B. N-alkylamides: From plant to brain. Funct Food Health Dis. 2014, 4, 264–275. [Google Scholar] [CrossRef]
- Karl, F. Nicotine: Pharmacology, Toxicity and Therapeutic use. J. Smok. Cessat. 2014, 9, 53–59. [Google Scholar]
- Kaizaki, A.; Tanaka, S.; Numazawa, S. New recreational drug 1-phenyl-2-(1-pyrrolidinyl)-1-pentanone (alpha-PVP) activates central nervous system via dopaminergic neuron. J. Toxicol. Sci. 2014, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Vatansever, E.C.; Yang, K.S.; Drelich, A.K.; Kratch, K.C.; Cho, C.C.; Kempaiah, K.R.; Hsu, J.C.; Mellott, D.M.; Xu, S.; Tseng, C.T.K.; et al. Bepridil is potent against SARS-CoV-2 In Vitro. Proc. Natl. Acad. Sci. USA 2021, 118, e2012201118. [Google Scholar] [CrossRef]
- Fairlamb, A.H. Chemotherapy of human African trypanosomiasis: Current and future prospects. Trends Parasitol. 2003, 19, 488–494. [Google Scholar] [CrossRef]
- Peregrine, A.S.; Mamman, M. Pharmacology of diminazene: A review. Acta Trop. 1993, 54, 185–203. [Google Scholar] [CrossRef]
- Pérez-Cruz, F.; Serra, S.; Delogu, G.; Lapier, M.; Maya, J.D.; Olea-Azar, C.; Santana, L.; Uriarte, E. Antitrypanosomal and antioxidant properties of 4-hydroxycoumarins derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 5569–5573. [Google Scholar] [CrossRef] [PubMed]
- Robledo-O’Ryan, N.J.; Matos, M.; Vazquez-Rodriguez, S.; Santana, L.; Uriarte, E.; Moncada-Basualto, M.; Mura, F.; Lapier, M.; Maya, J.D.; Olea-Azar, C. Synthesis, antioxidant and antichagasic properties of a selected series of hydroxy-3-arylcoumarins. Bioorg. Med. Chem. 2017, 25, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Villamil, J.P.; Bautista-Niño, P.K.; Serrano, N.C.; Rincon, M.Y.; Garg, N.J. Potential Role of Antioxidants as Adjunctive Therapy in Chagas Disease. Oxid. Med. Cell. Longev. 2020, 2020, 9081813. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, E.T.; Maudlin, I.; Darby, A.C.; Welburn, S.C. Antioxidants promote establishment of trypanosome infections in tsetse. Parasitology 2007, 134, 827–831. [Google Scholar] [CrossRef] [PubMed]
Name | Molecular Weight (g/mol) | Chemical Structure |
---|---|---|
Tortozanthoxylamide (Compound 1) | 247.29 | |
Tortodofuordioxamide (Compound 2) | 311.29 | |
Tortodofuorpyramide (Compound 3) | 245.27 | |
Benzodioxole | 122.12 | |
Pyrrolidine | 71.12 |
COMPOUNDS Mean EC50 ± SEM (μM) | SI | ||
---|---|---|---|
T. brucei | RAW 264.7 | ||
Compound 1 | 7.3 ± 0.08 | 215.6 ± 0.9 | 29.5 |
Compound 2 | 3.2 ± 0.09 | 292.1 ± 1.5 | 91.3 |
Compound 3 | 4.5 ± 0.05 | 314.6 ± 1.9 | 69.9 |
DA | 1.7 ± 0.07 | 138.7 ± 2.0 | 81.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dofuor, A.K.; Ademolue, T.S.; Amisigo, C.M.; Kyeremeh, K.; Gwira, T.M. Chemical Derivatization and Characterization of Novel Antitrypanosomals for African Trypanosomiasis. Molecules 2021, 26, 4488. https://doi.org/10.3390/molecules26154488
Dofuor AK, Ademolue TS, Amisigo CM, Kyeremeh K, Gwira TM. Chemical Derivatization and Characterization of Novel Antitrypanosomals for African Trypanosomiasis. Molecules. 2021; 26(15):4488. https://doi.org/10.3390/molecules26154488
Chicago/Turabian StyleDofuor, Aboagye Kwarteng, Temitayo Samson Ademolue, Cynthia Mmalebna Amisigo, Kwaku Kyeremeh, and Theresa Manful Gwira. 2021. "Chemical Derivatization and Characterization of Novel Antitrypanosomals for African Trypanosomiasis" Molecules 26, no. 15: 4488. https://doi.org/10.3390/molecules26154488
APA StyleDofuor, A. K., Ademolue, T. S., Amisigo, C. M., Kyeremeh, K., & Gwira, T. M. (2021). Chemical Derivatization and Characterization of Novel Antitrypanosomals for African Trypanosomiasis. Molecules, 26(15), 4488. https://doi.org/10.3390/molecules26154488