Carbon-Coated SiO2 Composites as Promising Anode Material for Li-Ion Batteries
Abstract
:1. Introduction
2. Results and Discussion
2.1. Materials Preparation
2.2. Materials Characterization
2.3. Electrochemical Performance
3. Materials and Methods
3.1. Materials Preparation
3.2. Materials Characterization
3.3. Electrode Preparation
3.4. Electrochemical Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Zhao, X.; Lehto, V.P. Challenges and prospects of nanosized silicon anodes in lithium-ion batteries. Nanotechnology 2021, 32, 042002. [Google Scholar] [CrossRef]
- Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K. High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochem. Energ. Rev. 2018, 1, 35–53. [Google Scholar] [CrossRef]
- Cheng, H.; Shapter, J.G.; Li, Y.; Gao, G. Recent progress of advanced anode materials of lithium-ion batteries. J. Energy Chem. 2021, 57, 451–468. [Google Scholar] [CrossRef]
- Qi, W.; Shapter, J.G.; Wu, Q.; Yin, T.; Gao, G.; Cui, D. Nanostructured anode materials for lithium-ion batteries: Principle, recent progress and future perspectives. J. Mater. Chem. A 2017, 5, 19521–19540. [Google Scholar] [CrossRef] [Green Version]
- Zuo, X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y.J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113–143. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, Q.; Zhao, Y.; He, R.; Xu, M.; Feng, S.; Li, S.; Zhou, L.; Mai, L. Silicon oxides: A promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48, 285–309. [Google Scholar] [CrossRef] [PubMed]
- Jiao, M.; Wang, Y.; Ye, C.; Wang, C.; Zhang, W.; Liang, C. High-capacity SiOx(0 ≤ x ≤ 2) as promising anode materials for next-generation lithium-ion batteries. J. Alloys Compd. 2020, 842, 15574–15595. [Google Scholar] [CrossRef]
- Li, J.; Yang, S.; Zhou, H.; Wang, L.; Yang, Z.; Meng, P.; Hu, L.; Hu, R. Facile synthesis of SiO2/C anode using PVC as carbon source for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 2019, 30, 69–78. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Z.; Zhang, Y.; Mentbayeva, A.; Wang, X.; Maximov, M.Y.; Liu, B.; Bakenov, Z.; Yin, F. Facile synthesis of SiO2@C nanoparticles anchored on MWNT as high-performance anode materials for Li-ion batteries. Nanoscale Res. Lett. 2017, 12, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Liu, X.; Liu, L.; Zhang, Z.; Teng, Y.; Yu, D.; Sui, J.; Wang, X. SiO2/C composite derived from rice husks with enhanced capacity as anode for lithium-ion batteries. ChemistrySelect 2018, 3, 10338–10344. [Google Scholar] [CrossRef]
- Blanco, M.V.; Renman, V.; Zhu, J.; Vullum-Bruer, F.; Svensson, A.M. Optimizing carbon parameters for obtaining SiO2/C anodes with improved electrochemical performance. J. Solid State Electrochem. 2021, 25, 1339–1351. [Google Scholar] [CrossRef]
- Cui, J.; Cheng, F.; Lin, J.; Yang, J.; Jiang, K.; Wen, Z.; Sun, J. High surface area C/SiO2 composites from rice husks as a high-performance anode for lithium ion batteries. Powder Technol. 2017, 311, 1–8. [Google Scholar] [CrossRef]
- Lv, P.; Zhao, H.; Wang, J.; Liu, X.; Zhang, T.; Xia, Q. Facile preparation and electrochemical properties of amorphous SiO2/C composite as anode material for lithium ion batteries. J. Power Sources 2013, 237, 291–294. [Google Scholar] [CrossRef]
- Tian, Q.; Chen, Y.; Chen, F.; Zhang, W.; Chen, J.; Yang, L. Etching-free template synthesis of double-shelled hollow SiO2@Sn@C composite as high performance lithium-ion battery anode. J. Alloys Compd. 2019, 809, 151793–151802. [Google Scholar] [CrossRef]
- Yan, Z.; Li, X.; Jiang, X.; Zhang, L.; Dai, Y.; He, G. Dissolution-regrowth synthesis of SiO2 nanoplates and embedment into two carbon shells for enhanced lithium-ion storage. Chin. J. Chem. Eng. 2018, 26, 1522–1527. [Google Scholar] [CrossRef]
- Dora, J.K.; Nayak, D.; Ghosh, S.; Adyam, V.; Yedlac, N.; Kundu, T.K. Facile and green synthesis approach to derive highly stable SiOx-Hard carbon based nanocomposites as anode for lithium-ion batteries. Sustain. Energy Fuels 2020, 4, 6054–6065. [Google Scholar] [CrossRef]
- Wu, W.; Wang, M.; Wang, J.; Wang, C.; Deng, Y. Green design of Si/SiO2/C composites as high-performance anodes for lithium-ion batteries. ACS Appl. Energy Mater. 2020, 3, 3884–3892. [Google Scholar] [CrossRef]
- Dirican, M.; Lu, Y.; Fu, K.; Kizil, H.; Zhang, X. SiO2-confined silicon/carbon nanofiber composites as anode for lithium-ion batteries. RSC Adv. 2015, 5, 34744–34751. [Google Scholar] [CrossRef]
- Li, W.; Feng, X.; Chen, Y. High performance lithium battery anode material by coating SiO2 nanowire arrays with PEO. New J. Chem. 2019, 43, 14609–14615. [Google Scholar] [CrossRef]
- Pang, H.; Zhang, W.; Yu, P.; Pan, N.; Hu, H.; Zheng, M.; Xiao, Y.; Liu, Y.; Liang, Y. Facile synthesis of core-shell structured SiO2@carbon composite nanorods for high-performance lithium-ion batteries. Nanomaterials 2020, 10, 513. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Chen, S.; Mu, D.; Zhao, Z.; Li, C.; Ding, Z.; Xie, C.; Wu, F. Flexible TiO2/SiO2/C film anodes for lithium-ion batteries. ChemSusChem 2018, 11, 2040–2044. [Google Scholar] [CrossRef] [PubMed]
- Lener, G.; Garcia-Blanco, A.A.; Furlong, O.; Nazzarro, M.; Sapag, K.; Barraco, D.E.; Leiva, E.P.M. A silica/carbon composite as anode for lithium-ion batteries with a large rate capability: Experiment and theoretical considerations. Electrochim. Acta 2018, 279, 289–300. [Google Scholar] [CrossRef]
- Dai, X.; Liu, H.; Liu, X.; Liu, Z.; Liu, Y.; Cao, Y.; Tao, J.; Shan, Z. Silicon nanoparticles encapsulated in multifunctional crosslinked nano-silica/carbon hybrid matrix as a high-performance anode for Li-ion batteries. Chem. Eng. J. 2021, 418, 129468–129476. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, J.; Yu, Z.; Chen, H.; Pan, F. Novel hybrid Si nanocrystals embedded in a conductive SiOx@C matrix from one single precursor as a high performance anode material for lithium-ion batteries. J. Mater. Chem. A 2017, 5, 7026–7034. [Google Scholar] [CrossRef]
- Cao, L.; Huang, J.; Lin, Z. Amorphous SiO2/C composite as anode material for lithium-ion batteries. J. Mater. Res. 2017, 33, 1219–1225. [Google Scholar] [CrossRef]
- Nita, C.; Fullenwarth, J.; Monconduit, L.; Le Meins, J.M.; Fioux, P.; Parmentier, J.; Ghimbeu, C.M. Eco-friendly synthesis of SiO2 nanoparticles confined in hard carbon: A promising material with unexpected mechanism for Li-ion batteries. Carbon 2019, 143, 598–609. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Liu, H.; Liu, Z.Q. SiO2@C hollow sphere anodes for lithium-ion batteries. J. Mater. Sci. Technol. 2017, 33, 239–245. [Google Scholar] [CrossRef]
- Xia, H.; Yin, Z.; Zheng, F.; Zhang, Y. Facile synthesis of SiO2/C composite as anode materials for lithium-ion batteries. Mater. Lett. 2017, 205, 83–86. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, J.; Xue, L.X.; Huang, T.; Yu, A. Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries. J. Power Sources 2011, 196, 10240–10243. [Google Scholar] [CrossRef]
- Huang, S.; Yang, D.; Zhang, W.; Qiu, X.; Li, Q.; Li, Q. Dual-templated synthesis of mesoporous lignin-derived honeycomb-like porous carbon/SiO2 composites for high-performance Li-ion battery. Microporous Mesoporous Mater. 2021, 317, 111004. [Google Scholar] [CrossRef]
- Chen, Q.; Tan, L.; Wang, S.; Liu, B.; Peng, Q.; Luo, H.; Jiang, P.; Tang, H.; Sun, R. A facile synthesis of phosphorus doped Si/SiO2/C with high coulombic efficiency and good stability as an anode material for lithium ion batteries. Electrochim. Acta 2021, 385, 138385. [Google Scholar] [CrossRef]
- Zheng, C.H.; Zhang, G.P.; Wang, S.S.; Mao, A.Q.; Fang, D.L. Efficient transformation of rice husk to a high-performance Si@SiO2@C anode material by a mechanical milling and molten salt coactivated magnesiothermic reduction. J. Alloys Compd. 2021, 875, 159974. [Google Scholar] [CrossRef]
- Gu, Z.; Xia, X.; Liu, C.; Hu, X.; Chen, Y.; Wang, Z. Yolk structure of porous C/SiO2/C composites as anode for lithium-ion batteries with quickly activated SiO2. J. Alloys Compd. 2018, 757, 265–272. [Google Scholar] [CrossRef]
- Jumari, A.; Yudha, C.S.; Widiyandari, H.; Lestari, A.P.; Rosada, R.A.; Santosa, S.P.; Purwanto, A. SiO2/C composite as a high capacity anode material of LiNi0.8Co0.15Al0.15O2 battery derived from coal combustion fly ash. Appl. Sci. 2020, 10, 8428. [Google Scholar] [CrossRef]
- Petrescu, S.; Avramescu, S.; Musuc, A.M.; Neatu, F.; Florea, M.; Ionita, P. Crown-ether functionalized graphene oxide for metal ions sequestration. Mater. Res. Bull. 2020, 122, 110643. [Google Scholar] [CrossRef]
- Pargoletti, E.; Hossain, U.H.; Di Bernardo, I.; Chen, H.; Tran-Phu, T.; Chiarello, G.L.; Lipton-Duffin, J.; Pifferi, V.; Tricoli, A.; Cappelletti, G. Engineering of SnO2–Graphene Oxide Nanoheterojunctions for Selective Room-Temperature Chemical Sensing and Optoelectronic Devices. ACS Appl. Mater. Interfaces 2020, 12, 39549–39560. [Google Scholar] [CrossRef]
- Pargoletti, E.; Verga, S.; Chiarello, G.L.; Longhi, M.; Cerrato, G.; Giordana, A.; Cappelletti, G. Exploring SnxTi1−xO2 Solid Solutions Grown onto Graphene Oxide (GO) as Selective Toluene Gas Sensors. Nanomaterials 2020, 10, 761. [Google Scholar] [CrossRef] [Green Version]
- Middlemiss, L.A.; Rennie, A.J.R.; Sayers, R.; West, A.R. Characterisation of batteries by electrochemical impedance spectroscopy. Energy Rep. 2020, 6, 232–241. [Google Scholar] [CrossRef]
Component | Binding Energy (eV) | SiO2 (%) | C/SiO2-0.04 M (%) | C/SiO2-0.055 M (%) | C/SiO2-0.07 M (%) | C/SiO2-0.085 M (%) |
---|---|---|---|---|---|---|
C 1s | ||||||
total | 5 | 51 | 59 | 63 | 65 | |
sp2 | 284.6 | 74 | 54 | 54 | 54 | 55 |
sp3 | 285.5 | - | 16 | 15 | 15 | 15 |
-C-OH | 286.5 | 18 | 17 | 17 | 17 | 18 |
-O-C=O | 288.8 | 8 | 8 | 9 | 9 | 8 |
CO2 adv | 290.7 | - | 4 | 6 | 6 | 5 |
O 1s | ||||||
total | 66 | 33 | 28 | 26 | 24 | |
SiO | 533.2 | 100 | 100 | 100 | 100 | 92 |
SiOH | 534.4 | - | - | - | - | 8 |
Si 2p | ||||||
Si-O | 103.7 | 29 | 16 | 13 | 11 | 11 |
Sample | SiO2 (wt %) | C (wt %) |
---|---|---|
SiO2 | 100.0 | 0.0 |
C/SiO2-0.040 M | 77.2 | 22.8 |
C/SiO2-0.055 M | 71.3 | 28.7 |
C/SiO2-0.070 M | 64.7 | 35.3 |
C/SiO2-0.085 M | 58.6 | 41.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buga, M.-R.; Spinu-Zaulet, A.A.; Ungureanu, C.G.; Mitran, R.-A.; Vasile, E.; Florea, M.; Neatu, F. Carbon-Coated SiO2 Composites as Promising Anode Material for Li-Ion Batteries. Molecules 2021, 26, 4531. https://doi.org/10.3390/molecules26154531
Buga M-R, Spinu-Zaulet AA, Ungureanu CG, Mitran R-A, Vasile E, Florea M, Neatu F. Carbon-Coated SiO2 Composites as Promising Anode Material for Li-Ion Batteries. Molecules. 2021; 26(15):4531. https://doi.org/10.3390/molecules26154531
Chicago/Turabian StyleBuga, Mihaela-Ramona, Adnana Alina Spinu-Zaulet, Cosmin Giorgian Ungureanu, Raul-Augustin Mitran, Eugeniu Vasile, Mihaela Florea, and Florentina Neatu. 2021. "Carbon-Coated SiO2 Composites as Promising Anode Material for Li-Ion Batteries" Molecules 26, no. 15: 4531. https://doi.org/10.3390/molecules26154531
APA StyleBuga, M. -R., Spinu-Zaulet, A. A., Ungureanu, C. G., Mitran, R. -A., Vasile, E., Florea, M., & Neatu, F. (2021). Carbon-Coated SiO2 Composites as Promising Anode Material for Li-Ion Batteries. Molecules, 26(15), 4531. https://doi.org/10.3390/molecules26154531