Nutritional and Functional Evaluation of Inula crithmoides and Mesembryanthemum nodiflorum Grown in Different Salinities for Human Consumption
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Salinity on Productivity
2.2. Proximate Composition and Firmness
2.3. Minerals
2.4. Vitamins and Carotenoids Content
2.5. Antioxidant Activity
2.6. Sensory Properties
2.7. Multivariate Analysis
3. Materials and Methods
3.1. Plant Material and Growth Conditions
3.2. Nutritional Characterization
3.2.1. Proximal Composition
3.2.2. Firmness
3.3. Minerals
3.4. Vitamins and Carotenoids
3.5. Antioxidant Capacity
3.5.1. Radical Scavenging Activity (RSA)
3.5.2. Total Phenolics Content (TPC) and Condensed Tannins Content (CTC)
3.5.3. Radical Scavenging Activity (RSA)
3.5.4. Total Phenolic Content (TPC) and Condensed Tannin Content (CTC)
3.6. Sensory Analytical Method
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Jdey, A.; Falleh, H.; Jannet, S.B.; Hammi, K.M.; Dauvergne, X.; Ksouri, R.; Magné, C. South African Journal of Botany Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. S. Afr. J. Bot. 2017, 112, 508–514. [Google Scholar] [CrossRef]
- Hanen, F.; Riadh, K.; Samia, O.; Sylvain, G.; Christian, M.; Chedly, A. Interspecific variability of antioxidant activities and phenolic composition in Mesembryanthemum genus. Food Chem. Toxicol. 2009, 47, 2308–2313. [Google Scholar] [CrossRef] [PubMed]
- Zurayk, R.A.; Baalbaki, R. Inula crithmoides: A candidate plant for saline agriculture. Arid Soil Res. Rehabil. 1996, 10, 213–223. [Google Scholar] [CrossRef]
- Thring, T.S.A.; Weitz, F.M. Medicinal plant use in the Bredasdorp/Elim region of the Southern Overberg in the Western Cape Province of South Africa. J. Ethnopharmacol. 2006, 103, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Al Hassan, M.; Estrelles, E.; Soriano, P.; López-Gresa, M.P.; Bellés, J.M.; Boscaiau, M.; Vicente, O. Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns. Front. Plant Sci. 2017, 8, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Abdel-wahhab, M.A.; Abdel-azim, S.H.; El-nekeety, A.A. Toxicon Inula crithmoides extract protects against ochratoxin A-induced oxidative stress, clastogenic and mutagenic alterations in male rats. Toxicon 2008, 52, 566–573. [Google Scholar] [CrossRef]
- Sassi, A.B.; Bourgougnon, N.; Aouni, M. Natural Product Research: Formerly Natural Product Letters Antiviral activity of some Tunisian medicinal plants against Herpes simplex virus type 1. Nat. Prod. Res. 2008, 22, 37–41. [Google Scholar]
- Castañeda-Loaiza, V.; Oliveira, M.; Santos, T.; Schüler, L.; Lima, A.R.; Gama, F.; Salazar, M.; Neng, N.R.; Nogueira, J.M.F.; Varela, J.; et al. Wild vs cultivated halophytes: Nutritional and functional differences. Food Chem. 2020, 333, 127536. [Google Scholar] [CrossRef]
- Qasim, M.; Abideen, Z.; Adnan, M.Y.; Gulzar, S.; Gul, B.; Rasheed, M.; Khan, M.A. Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. S. Afr. J. Bot. 2017, 110, 240–250. [Google Scholar] [CrossRef]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzer, G.; Mazzetto, F.; Astolfi, S.; et al. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. Front. Plant Sci. 2019, 10, 923. [Google Scholar] [CrossRef]
- Baron, D.; Amaro, A.C.E.; Campos, F.G.; Boaro, C.S.F.; Ferreira, G. Plant Physiological Responses to Nutrient Solution: An Overview. Plant Metab. Regul. Environ. Stress 2018, 415–425. [Google Scholar] [CrossRef]
- Agudelo, A.; Carvajal, M.; del Carment Martinez-Bellesta, M. Halophytes of the Mediterranean Basin—Underutilized Species Climate Change. Foods 2021, 10, 119. [Google Scholar] [CrossRef]
- Ksouri, R.; Megdiche, W.; Debez, A.; Falleh, H. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol. Biochem. 2007, 45, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Ventura, Y.; Sagi, M. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environ. Exp. Bot. 2013, 92, 144–153. [Google Scholar] [CrossRef]
- Loconsole, D.; Cristiano, G.; De Lucia, B. Glassworts: From wild salt marsh species to sustainable edible crops. Agriculture 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Curadi, M.; Graifenberg, A.; Magnani, G.; Giustiniani, L. Growth and element allocation in tissues of Inula viscosa in sodic-saline conditions: A candidate for programs of desertification control. Arid Land Res. Manag. 2005, 19, 257–265. [Google Scholar] [CrossRef]
- Atzori, G.; de Vos, A.C.; van Rijsselberghe, M.; Vignolini, P.; Rozema, J.; Mancuso, S.; van Bodegom, P.M. Effects of increased seawater salinity irrigation on growth and quality of the edible halophyte Mesembryanthemum crystallinum L. under field conditions. Agric. Water Manag. 2017, 187, 37–46. [Google Scholar] [CrossRef]
- Aghaleh, M.; Niknam, V.; Ebrahimzadeh, H.; Razavi, K. Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biol. Plant. 2009, 53, 243–248. [Google Scholar] [CrossRef]
- Lima, A.R.; Castañeda-Loaiza, V.; Salazar, M.; Nunes, C.; Quintas, C.; Gama, F.; Pestana, M.; Correia, P.J.; Santos, T.; Varela, J.; et al. Influence of cultivation salinity in the nutritional composition, antioxidant capacity and microbial quality of Salicornia ramosissima commercially produced in soilless systems. Food Chem. 2020, 333, 127525. [Google Scholar] [CrossRef]
- Attia-ismail, S.A. Feeding to Ruminants. In Trace Elements as Contaminants and Nutrients: Consequences in Ecosystems and Human Health; Prasad, M.N.V., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 701–720. ISBN 9780470180952. [Google Scholar]
- Ventura, Y.; Eshel, A.; Pasternak, D.; Sagi, M. The development of halophyte-based agriculture: Past and present. Ann. Bot. 2015, 115, 529–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, A.; Das, P.; Parida, A.K.; Agarwal, P.K. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci. 2015, 6, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Meng, Y.; Li, B.; Ma, X.; Lai, Y.; Si, E.; Yang, K.; Xu, X.; Shang, X.; Wang, H.; et al. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus. Plant Cell Environ. 2015, 38, 655–669. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Zhou, J.; Sui, N. Mechanisms of salt tolerance in halophytes: Current understanding and recent advances. Open Life Sci. 2018, 13, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. Res. 2015, 22, 4056–4075. [Google Scholar] [CrossRef]
- Maciel, E.; Domingues, P.; Domingues, M.R.M.; Calado, R.; Lillebø, A. Halophyte plants from sustainable marine aquaponics are a valuable source of omega-3 polar lipids. Food Chem. 2020, 320, 126560. [Google Scholar] [CrossRef] [PubMed]
- Mccleary, B.V. Total dietary fiber (codex definition) in foods and food ingredients by a rapid enzymatic-gravimetric method and liquid chromatography: Collaborative study, first Action 2017.16. J. AOAC Int. 2019, 102, 196–207. [Google Scholar] [CrossRef] [Green Version]
- Pastell, H.; Putkonen, T.; Rita, H. Dietary fibre in legumes, seeds, vegetables, fruits and mushrooms: Comparing traditional and semi-automated filtration techniques. J. Food Compos. Anal. 2019, 75, 1–7. [Google Scholar] [CrossRef]
- El Shaer, H.M. Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Rumin. Res. 2010, 91, 3–12. [Google Scholar] [CrossRef]
- Katschnig, D.; Broekman, R. Salt tolerance in the halophyte Salicornia dolichostachya Moss: Growth, morphology and physiology. Environ. Exp. Bot. 2013, 92, 32–42. [Google Scholar] [CrossRef]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Gil, R.; Lull, C.; Boscaiu, M.; Bautista, I.; Lidón, A.; Vicente, O. Soluble carbohydrates as osmolytes in several halophytes from a mediterranean salt marsh. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 9–17. [Google Scholar] [CrossRef] [Green Version]
- USDA. FoodData Central Search results. Pork 2019, 9, 1. [Google Scholar]
- Balafrej, H.; Bogusz, D.; Triqui, Z.-E.A.; Guedira, A.; Bendaou, N.; Smouni, A.; Fahr, M. Zinc hyperaccumulation in plants: A review. Plants 2020, 9, 562. [Google Scholar] [CrossRef] [PubMed]
- Beltrao, J.; Neves, A.; De Brito, J.C.; Seita, J. Salt removal potential of turfgrass in golf courses in the mediterranean Basin. WSEAS Trans. Environ. Dev. 2009, 5, 394–403. [Google Scholar]
- Commission, E. Commission Regulation (EU) 2015/1005 of 25 June 2015 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Lead in Certain Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32015R1005 (accessed on 13 June 2021).
- Fitzpatrick, T.B.; Chapman, L.M. The importance of thiamine (vitamin B1) in plant health: From crop yield to biofortification. J. Biol. Chem. 2020, 295, 12002–12013. [Google Scholar] [CrossRef] [PubMed]
- Tunc-Ozdemir, M.; Miller, G.; Song, L.; Kim, J.; Sodek, A.; Koussevitzky, S.; Misra, A.N.; Mittler, R.; Shintani, D. Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol. 2009, 151, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Chamkouri, N.; Asgari, T.; Ghasemi, M. Research Article Determination multi-element concentrations in Suaeda vera by ICP OES. J. Chem. Pharm. Res. 2015, 7, 191–194. [Google Scholar]
- Nan, M.; Pintea, A.; Bunea, A.; Esianu, S.; Tamas, M. HPLC analysis of carotenoids from Inula helenium L. flowers and leaves. Farmacia 2012, 60, 501–509. [Google Scholar]
- Rabhi, M.; Castagna, A.; Remorini, D.; Scattino, C.; Smaoui, A.; Ranieri, A.; Abdelly, C. Photosynthetic responses to salinity in two obligate halophytes: Sesuvium portulacastrum and Tecticornia indica. S. Afr. J. Bot. 2012, 79, 39–47. [Google Scholar] [CrossRef]
- Reginato, M.A.; Castagna, A.; Furlán, A.; Castro, S.; Ranieri, A.; Luna, V. Physiological responses of a halophytic shrub to salt stress by Na2SO4 and NaCl: Oxidative damage and the role of polyphenols in antioxidant protection. AoB Plants 2014, 6, 1–13. [Google Scholar] [CrossRef]
- Falleh, H.; Trabelsi, N.; Bonenfant-Magné, M.; Le Floch, G.; Abdelly, C.; Magné, C.; Ksouri, R. Polyphenol content and biological activities of Mesembryanthemum edule organs after fractionation. Ind. Crops Prod. 2013, 42, 145–152. [Google Scholar] [CrossRef]
- Alhdad, G.M.; Seal, C.E.; Al-Azzawi, M.J.; Flowers, T.J. The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: The role of antioxidants. Environ. Exp. Bot. 2013, 87, 120–125. [Google Scholar] [CrossRef]
- Bueno, M.; Lendínez, M.L.; Calero, J.; del Pilar Cordovilla, M. Salinity responses of three halophytes from inland saltmarshes of Jaén (southern Spain). Flora Morphol. Distrib. Funct. Ecol. Plants 2020, 266, 151589. [Google Scholar] [CrossRef]
- Adnan, M.Y.; Hussain, T.; Asrar, H.; Hameed, A.; Gul, B.; Nielsen, B.L.; Khan, M.A. Desmostachya bipinnata manages photosynthesis and oxidative stress at moderate salinity. Flora Morphol. Distrib. Funct. Ecol. Plants 2016, 225, 1–9. [Google Scholar] [CrossRef]
- Slama, I.; M’Rabet, R.; Ksouri, R.; Talbi, O.; Debez, A.; Abdelly, C. Effects of salt treatment on growth, lipid membrane peroxidation, polyphenol content, and antioxidant activities in leaves of Sesuvium portulacastrum L. Arid Land Res. Manag. 2017, 31, 404–417. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the folin-Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [Green Version]
- Cristofoli, N.L.; Lima, C.A.R.; Vieira, M.M.C.; Andrade, K.S.; Ferreira, S.R.S. Antioxidant and antimicrobial potential of cajazeira leaves (Spondias mombin) extracts. Sep. Sci. Technol. 2019, 54, 580–590. [Google Scholar] [CrossRef]
- Doudach, L.; Meddah, B.; Benbacer, L.; Hammani, K.; El, M.; Verité, P. Ethnopharmacological studies of Mesembryanthemum nodiflorum. Phytopharmacology 2013, 4, 246–258. [Google Scholar]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; da Silva, M.M.; Varela, J.; Custódio, L. Halophytes: Gourmet food with nutritional health benefits? J. Food Compos. Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Leshem, M. Biobehavior of the human love of salt. Neurosci. Biobehav. Rev. 2009, 33, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Liem, D.G.; Miremadi, F.; Keast, R.S.J. Reducing Sodium in Foods: The Effect on Flavor. Nutrients 2011, 694–711. [Google Scholar] [CrossRef] [Green Version]
- Gaudette, N.J.; Pietrasik, Z. The impact of sodium reduction strategies on the sensory and processing characteristics of meat products. MESC 2013, 96, 123. [Google Scholar] [CrossRef]
- Pravdova, V.; Boucon, C.; De Jong, S.; Walczak, B.; Massart, D.L. Three-way principal component analysis applied to food analysis: An example. Anal. Chim. Acta 2002, 462, 133–148. [Google Scholar] [CrossRef]
- Hoather, R.C.; Rackham, R.F. Oxidised nitrogen in waters and sewage effluents observed by ultra-violet spectrophotometry. Analyst 1959, 84, 548–551. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. Canadian Journal of Biochemistry and Physiology. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- McCleary, B.V.; Mills, C.; Draga, A. Development and evaluation of an integrated method for the measurement of total dietaryfibre. Qual. Assur. Saf. Crop. Foods 2009, 1, 213–224. [Google Scholar] [CrossRef]
- Taniwaki, M.; Takahashi, M.; Sakurai, N.; Takada, A.; Nagata, M. Effects of harvest time and low temperature storage on the texture of cabbage leaves. Postharvest Biol. Technol. 2009, 54, 106–110. [Google Scholar] [CrossRef]
- Santos, J.; Mendiola, J.A.; Oliveira, M.B.P.P.; Ibáñez, E.; Herrero, M. Sequential determination of fat- and water-soluble vitamins in green leafy vegetables during storage. J. Chromatogr. A 2012, 1261, 179–188. [Google Scholar] [CrossRef]
- Klejdus, B.; Petrlová, J.; Potěšil, D.; Adam, V.; Mikelová, R.; Vacek, J.; Kizek, R.; Kubáň, V. Simultaneous determination of water- and fat-soluble vitamins in pharmaceutical preparations by high-performance liquid chromatography coupled with diode array detection. Anal. Chim. Acta 2004, 520, 57–67. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Moreno, S.; Scheyer, T.; Romano, C.S.; Vojnov, A.A. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic. Res. 2006, 40, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Li, Y.G.; Tanner, G.; Larkin, P. The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J. Sci. Food Agric. 1996, 70, 89–101. [Google Scholar] [CrossRef]
- Zou, Y.; Chang, S.K.C.; Gu, Y.; Qian, S.Y. Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions. J. Agric. Food Chem. 2011, 59, 2268–2276. [Google Scholar] [CrossRef] [Green Version]
- Stone, H.; Bleibaum, R.N.; Thomas, H.A. Descriptive Analysis. In Sensory Evaluation Practices; Academic Press: Cambridge, UK, 2012; pp. 233–289. ISBN 9780123820860. [Google Scholar]
- Stone, H.; Sidel, J.; Oliver, S.; Woolsey, A.; Singleton, R.C. Qauntitative Descriptive Analysis. In Descriptive Sensory Analysis in Practice; Gacula, M.C., Jr., Ed.; Food & Nutrition Press, Inc: Scottsdale, AZ, USA, 2004; pp. 24–32. ISBN 9780470385036. [Google Scholar]
Salinity (mmol L−1) | 35 | 110 | 200 | 275 | 350 | 465 |
---|---|---|---|---|---|---|
Relative productivity (%) | ||||||
I. crithmoides | 100 ± 10 a | 42.9 ± 2.7 bc | 29.2 ± 3.3 c | 33.1 ± 2.2 bc | 36.5 ± 3.5 bc | 33.3 ± 3.9 bc |
M. nodiflorum | 100 ± 1 a | 102 ± 9 a | 67 ± 19.6 ab | 67.5 ± 10.9 ab | 42.2 ± 5.9 bc | 58.2 ± 3.2 bc |
Conductivity (dS m−1) | ||||||
I. crithmoides | 3.15 ± 0.14 f | 4.17 ± 0.03 e | 5.29 ± 0.09 d | 5.17 ± 0.09 d | 5.52 ± 0.02 d | 5.73 ± 0.37 cd |
M. nodiflorum | 5.76 ± 0.24 cd | 6.40 ± 0.09 c | 7.40 ± 0.19 b | 8.17 ± 0.05 a | 8.37 ± 0.28 a | 8.60 ± 0.08 a |
Firmness (g) | ||||||
I. crithmoides | 181 ± 19 cd | 170 ± 17 cdef | 174 ± 20 cde | 148 ± 15 ef | 144 ± 14 f | 154 ± 10 def |
M. nodiflorum | 258 ± 16 b | 301 ± 27 a | 258 ± 19 b | 248 ± 26 b | na | 186 ± 32 c |
Moisture (%) | ||||||
I. crithmoides | 88.1 ± 0.6 ab | 86.6 ± 0.5 bc | 86.1 ± 0.4 c | 85.1 ± 0.2 c | 85.3 ± 0.4 c | 85.0 ± 0.6 c |
M. nodiflorum | 89.3 ± 0.3 a | 88.1 ± 0.1 ab | 89.8 ± 0.9 a | 88.0 ± 0.5 ab | 88.6 ± 0.3 a | 86.8 ± 0.6 bc |
Ash (g 100 g−1 ww) | ||||||
I. crithmoides | 4.26 ± 0.15 de | 4.95 ± 0.16 bc | 4.61 ± 0.13 cd | 4.94 ± 0.01 bc | 5.36 ± 0.05 ab | 5.70 ± 0.06 a |
M. nodiflorum | 4.09 ± 0.18 de | 4.65 ± 0.15 cd | 4.06 ± 0.09 de | 3.95 ± 0.46 e | 3.89 ± 0.06 e | 5.04 ± 0.12 bc |
Protein (g 100 g−1 ww) | ||||||
I. crithmoides | 2.76 ± 0.15 b | 3.01 ± 0.08 b | 3.18 ± 0.34 b | 3.29 ± 0.33 ab | 3.13 ± 0.09 b | 3.17 ± 0.03 a |
M. nodiflorum | 1.55 ± 0.13 c | 1.95 ± 0.02 c | 1.49 ± 0.24 c | 1.40 ± 0.16 c | 1.42 ± 0.06 c | 1.71 ± 0.14 c |
Fat (g 100 g−1 ww) | ||||||
I. crithmoides | 0.59 ± 0.09 bc | 0.91 ± 0.06 a | 0.57 ± 0.08 bc | 0.49 ± 0.06 bcd | 0.43 ± 0.02 cd | 0.41 ± 0.03 cd |
M. nodiflorum | 0.55 ± 0.06 bcd | 0.67 ± 0.07 b | 0.48 ± 0.02 cd | 0.47 ± 0.02 d | 0.36 ± 0.02 cd | 0.44 ± 0.02 d |
TDF (g 100 g−1 ww) | ||||||
I. crithmoides | 1.85 ± 0.01 c | 1.93 ± 0.01 b | 1.84 ± 0.01 d | 2.07 ± 0.01 a | 1.82 ± 0.01 e | 1.81 ± 0.01 f |
M. nodiflorum | 1.35 ± 0.01 k | 1.45 ± 0.01 j | 1.18 ± 0.01 l | 1.74 ± 0.01 g | 1.58 ± 0.01 h | 1.52 ± 0.01 i |
Salinity (mmol L−1) | 35 | 110 | 200 | 275 | 350 | 465 |
---|---|---|---|---|---|---|
Inula crithmoides | ||||||
Na (mg g−1) | 7.01 ± 0.7 d | 8.95 ± 0.2 c | 12.0 ± 0.1 b | 13.5 ± 0.4 a | 13.7 ± 0.1 a | 14.4 ± 0.2 a |
K (mg g−1) | 3.10 ± 0.33 a | 3.13 ± 0.02 ab | 2.55 ± 0.04 bc | 2.78 ± 0.13 c | 2.67 ± 0.01 c | 2.68 ± 0.08 c |
Ca (mg g−1) | 1.58 ± 0.13 a | 1.46 ± 0.01 ab | 1.33 ± 0.01 b | 1.41 ± 0.10 ab | 1.22 ± 0.10 b | 1.28 ± 0.01 b |
Mg (mg g−1) | 0.96 ± 0.08 a | 0.96 ± 0.01 ab | 0.86 ± 0.01 ab | 0.90 ± 0.09 ab | 0.74 ± 0.14 ab | 0.75 ± 0.04 b |
Fe (µg g−1) | 8.78 ± 1.05 c | 10.5 ± 0.15 bc | 11.7 ± 0.13 ab | 11.8 ± 0.84 a | 10.8 ± 0.29 ab | 12.3 ± 0.12 a |
Cu (µg g−1) | 0.87 ± 0.13 a | 0.63 ± 0.03 bc | 0.74 ± 0.06 abc | 0.77 ± 0.03 ab | 0.57 ± 0.05 c | 0.79 ± 0.02 ab |
Mn (µg g−1) | 5.51 ± 0.48 c | 6.00 ± 0.06 bc | 7.01 ± 0.03 a | 6.82 ± 0.04 a | 5.61 ± 0.01 c | 6.54 ± 0.07 ab |
Zn (µg g−1) | 2.51 ± 0.14 a | 2.70 ± 0.29 a | 1.40 ± 0.15 bc | 1.56 ± 0.17 bc | 1.36 ± 0.04 c | 1.86 ± 0.02 b |
Ni (µg g−1) | 0.22 ± 0.05 a | 0.23 ± 0.03 a | 0.26 ± 0.05 a | 0.18 ± 0.01 b | nd | nd |
Cr (µg g−1) | 0.07 ± 0.02 a | 0.05 ± 0.01 a | 0.06 ± 0.01 a | 0.06 ± 0.01 a | nd | 0.05 ± 0.01 a |
Mesembryanthemum nodiflorum | ||||||
Na (mg g−1) | 6.46 ± 2.13 b | 7.92 ± 3.30 ab | 8.67 ± 1.70 ab | 9.81 ± 0.23 ab | 9.95 ± 1.80 ab | 13.4 ± 1.3 a |
K (mg g−1) | 1.42 ± 0.12 c | 2.93 ± 1.70 a | 1.93 ± 0.9 ab | 2.03 ± 0.17 b | 0.97 ± 0.07 c | 2.00 ± 0.46 ab |
Ca (mg g−1) | 0.16 ± 0.01 a | 0.27 ± 0.25 a | 0.34 ± 0.04 a | 0.41 ± 0.12 a | 0.27 ± 0.24 a | 0.33 ± 0.4 a |
Mg (mg g−1) | 0.15 ± 0.02 c | 0.14 ± 0.01 c | 0.24 ± 0.02 a | 0.20 ± 0.01 b | 0.16 ± 0.01 c | 0.16 ± 0.01 c |
Fe (µg g−1) | 1.08 ± 0.03 b | 1.44 ± 0.50 ab | 1.82 ± 0.11 ab | 1.75 ± 0.22 ab | 1.10 ± 0.26 b | 1.96 ± 0.32 a |
Cu (µg g−1) | 1.89 ± 0.03 a | 0.88 ± 0.02 c | 0.94 ± 0.01 c | 0.85 ± 0.04 c | 1.25 ±0.20 b | 1.03 ± 0.12 bc |
Mn (µg g−1) | 5.30 ± 0.52 c | 7.50 ± 1.19 b | 8.90 ± 0.41 ab | 8.12 ± 0.42 b | 5.19 ± 0.34 c | 10.1 ± 1.1 a |
Zn (µg g−1) | 5.61 ± 0.02 f | 8.87 ± 0.37 e | 19.4 ± 0.1 c | 58.4 ± 0.1 a | 10.8 ± 0.3 d | 43.0 ± 1.1 b |
Ni (µg g−1) | 0.31 ± 0.02 ab | 0.37 ± 0.04 a | 0.15 ± 0.01 c | 0.16 ± 0.1 c | 0.15 ± 0.05 c | 0.29 ± 0.03 b |
Cr (µg g−1) | 1.63 ± 0.53 a | 1.06 ± 0.36 ab | 0.13 ± 0.04 c | 0.17 ± 0.02 c | 0.60 ± 0.22 bc | 0.69 ± 0.25 bc |
Pb (µg g−1) | 0.12 ± 0.01 b | 0.11 ± 0.01 b | 0.20 ± 0.02 a | 0.21 ± 0.02 a | 0.12 ± 0.01 b | 0.20 ± 0.01 a |
Na:K ratio | ||||||
I. crithmoides | 2.26 | 2.85 | 4.70 | 4.85 | 5.13 | 5.37 |
M. nodiflorum | 4.54 | 2.70 | 4.49 | 4.83 | 10.2 | 6.7 |
Salinity (mmol L−1) | 35 | 110 | 200 | 275 | 350 | 465 |
---|---|---|---|---|---|---|
Inula crithmoides | ||||||
TPC | 16.5 ± 3.3 a | 10.5 ± 1.9 b | 7.04 ± 0.50 b | 7.85 ± 0.84 b | 7.39 ± 0.90 b | 9.06 ± 0.77 b |
CTC | 42.5 ± 1.8 ab | 45.8 ± 2.5 a | 28.6 ± 2.0 d | 33.5 ± 2.6 cd | 34.8 ± 0.8 c | 37.2 ± 0.5 bc |
Radical Scavenging Activity | ||||||
ABTS | 9.20 ± 0.09 a | 6.12 ± 0.28 b | 8.18 ± 0.98 a | >10 | 9.10 ± 0.59 a | >10 |
DPPH | 5.04 ± 0.43 a | 3.89 ± 0.37 b | 3.96 ± 0.29 b | 3.88 ± 0.13 b | 3.59 ± 0.27 b | 3.40 ± 0.48 b |
Mesembryanthemum nodiflorum | ||||||
TPC | 2.90 ± 0.77 bc | 2.24 ± 1.15 c | 3.77 ± 1.73 ab | 4.39 ± 1.35 a | 2.09 ± 0.2 c | 2.16 ± 0.12 c |
CTC | 18.6 ± 1.1 b | 17.3 ± 0.6 c | 22.6 ± 0.8 a | 18.0 ± 0.7 bc | 18.1 ± 1.2 bc | 14.2 ± 0.6 d |
Radical Scavenging Activity | ||||||
ABTS | 6.65 ± 0.01 a | 6.58 ± 0.01 a | 3.46 ± 0.16 c | 2.02 ± 0.05 d | 4.19 ± 0.31 b | 3.18 ± 0.02 c |
DPPH | 4.56 ± 0.50 a | 4.81 ± 1.74 a | 3.73 ± 0.53 ab | 2.75 ± 0.58 b | 3.77 ± 0.83 ab | 3.54 ± 0.09 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, A.R.; Gama, F.; Castañeda-Loaiza, V.; Costa, C.; Schüler, L.M.; Santos, T.; Salazar, M.; Nunes, C.; Cruz, R.M.S.; Varela, J.; et al. Nutritional and Functional Evaluation of Inula crithmoides and Mesembryanthemum nodiflorum Grown in Different Salinities for Human Consumption. Molecules 2021, 26, 4543. https://doi.org/10.3390/molecules26154543
Lima AR, Gama F, Castañeda-Loaiza V, Costa C, Schüler LM, Santos T, Salazar M, Nunes C, Cruz RMS, Varela J, et al. Nutritional and Functional Evaluation of Inula crithmoides and Mesembryanthemum nodiflorum Grown in Different Salinities for Human Consumption. Molecules. 2021; 26(15):4543. https://doi.org/10.3390/molecules26154543
Chicago/Turabian StyleLima, Alexandre R., Florinda Gama, Viana Castañeda-Loaiza, Camila Costa, Lisa M. Schüler, Tamára Santos, Miguel Salazar, Carla Nunes, Rui M. S. Cruz, João Varela, and et al. 2021. "Nutritional and Functional Evaluation of Inula crithmoides and Mesembryanthemum nodiflorum Grown in Different Salinities for Human Consumption" Molecules 26, no. 15: 4543. https://doi.org/10.3390/molecules26154543
APA StyleLima, A. R., Gama, F., Castañeda-Loaiza, V., Costa, C., Schüler, L. M., Santos, T., Salazar, M., Nunes, C., Cruz, R. M. S., Varela, J., & Barreira, L. (2021). Nutritional and Functional Evaluation of Inula crithmoides and Mesembryanthemum nodiflorum Grown in Different Salinities for Human Consumption. Molecules, 26(15), 4543. https://doi.org/10.3390/molecules26154543