All-Fiber Tunable Pulsed 1.7 μm Fiber Lasers Based on Stimulated Raman Scattering of Hydrogen Molecules in Hollow-Core Fibers
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results and Discussion
3.1. Spectrum Characteristics
3.2. Measured Pulse Shapes
3.3. Output Laser Power
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kawagoe, H.; Ishida, S.; Aramaki, M.; Sakakibara, Y.; Omoda, E.; Kataura, H.; Nishizawa, N. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography. Biomed. Opt. Express 2014, 5, 932–943. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Shi, J.; Gong, X.; Kong, C.; Luo, Z.; Song, L.; Wong, K.K.Y. 17 μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging. Opt. Lett. 2018, 43, 5849–5852. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Ultrafast lasers—Reliable tools for advanced materials processing. Light. Sci. Appl. 2014, 3, e149. [Google Scholar] [CrossRef]
- Yin, T.; Qi, Z.; Chen, F.; Song, Y.; He, S. High peak-power and narrow-linewidth all-fiber Raman nanosecond laser in 1.65 µm waveband. Opt. Express 2020, 28, 7175–7181. [Google Scholar] [CrossRef]
- Li, C.; Shi, J.; Wang, X.; Wang, B.; Gong, X.; Song, L.; Wong, K.K.-Y. High-energy all-fiber gain-switched thulium-doped fiber laser for volumetric photoacoustic imaging of lipids. Photon Res. 2020, 8, 160. [Google Scholar] [CrossRef]
- Liu, J.; Shen, D.; Huang, H.; Zhao, C.; Zhang, X.; Fan, D. High-power and highly efficient operation of wavelength-tunable Raman fiber lasers based on volume Bragg gratings. Opt. Express 2014, 22, 6605–6612. [Google Scholar] [CrossRef] [PubMed]
- Firstov, S.V.; Alyshev, S.V.; Riumkin, K.E.; Melkumov, M.; Medvedkov, O.I.; Dianov, E.M. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 17 μm. Opt. Lett. 2015, 40, 4360–4363. [Google Scholar] [CrossRef] [PubMed]
- Khegai, A.; Melkumov, M.; Riumkin, K.; Khopin, V.; Firstov, S.; Dianov, E. NALM-based bismuth-doped fiber laser at 17 μm. Opt. Lett. 2018, 43, 1127–1130. [Google Scholar] [CrossRef] [PubMed]
- Noronen, T.; Okhotnikov, O.; Gumenyuk, R. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700–1800 nm wavelength band. Opt. Express 2016, 24, 14703–14708. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.; Zhang, B.; Yin, K.; Yang, W.; Hou, J. All-fiber wavelength-tunable Tm/Ho-codoped laser between 1727 nm and 2030 nm. In Proceedings of the XX International Symposium on High Power Laser Systems and Applications, Chengdu, China, 3 February 2015; Volume 9255, p. 92550. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Ye, J.; Ma, X.; Song, J.; Yao, T.; Zhou, P.; Jiangming, X. Cascaded telecom fiber enabled high-order random fiber laser beyond zero-dispersion wavelength. Opt. Lett. 2020, 45, 4180–4183. [Google Scholar] [CrossRef] [PubMed]
- Grimes, A.; Hariharan, A.; Sun, Y.; Ovtar, S.; Kristensen, P.; Westergaard, P.G.; Rako, S.; Baumgarten, C.; Stoneman, R.C.; Nicholson, J.W. Hundred-Watt CW and Joule Level Pulsed Output from Raman Fiber Laser in 1.7-μm Band; SPIE: Bellingham, DC, USA, 2020; Volume 11260, p. 112601S. [Google Scholar]
- Zeng, J.; Akosman, A.E.; Sander, M.Y. Supercontinuum Generation from a Thulium Ultrafast Fiber Laser in a High NA Silica Fiber. IEEE Photon. Technol. Lett. 2019, 31, 1787–1790. [Google Scholar] [CrossRef]
- Chung, H.-Y.; Liu, W.; Cao, Q.; Kärtner, F.X.; Chang, G. Er-fiber laser enabled, energy scalable femtosecond source tunable from 13 to 17 µm. Opt. Express 2017, 25, 15760–15771. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Xu, C. Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy. Appl. Phys. Lett. 2011, 99, 071112. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Kieu, K.; Churin, D.; Ota, T.; Miyawaki, M.; Peyghambarian, N. High Power Soliton Self-Frequency Shift With Improved Flatness Ranging From 1.6 to 1.78 μm. IEEE Photon Technol. Lett. 2013, 25, 1893–1896. [Google Scholar] [CrossRef]
- Qin, Y.; Batjargal, O.; Cromey, B.; Kieu, K. All-fiber high-power 1700 nm femtosecond laser based on optical parametric chirped-pulse amplification. Opt. Express 2020, 28, 2317–2325. [Google Scholar] [CrossRef] [Green Version]
- Becheker, R.; Tang, M.; Hanzard, P.-H.; Tyazhev, A.; Mussot, A.; Kudlinski, A.; Kellou, A.; Oudar, J.-L.; Godin, T.; Hideur, A. High-energy dissipative soliton-driven fiber optical parametric oscillator emitting at 1.7 µm. Laser Phys. Lett. 2018, 15, 115103. [Google Scholar] [CrossRef]
- Benabid, F.; Knight, J.; Antonopoulos, G.; Russell, P. Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber. Science 2002, 298, 399–402. [Google Scholar] [CrossRef]
- Couny, F.; Benabid, F.; Light, P. Subwatt Threshold cw Raman Fiber-Gas Laser Based onH2-Filled Hollow-Core Photonic Crystal Fiber. Phys. Rev. Lett. 2007, 99, 143903. [Google Scholar] [CrossRef]
- Trabold, B.M.; Abdolvand, A.; Euser, T.G.; Walser, A.M.; Russell, P.S. Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber. Opt. Lett. 2013, 38, 600–602. [Google Scholar] [CrossRef] [PubMed]
- Benoît, A.; Ilinova, E.; Beaudou, B.; Debord, B.; Gérôme, F.; Benabid, F. Spectral–temporal dynamics of high power Raman picosecond pulse using H_2-filled Kagome HC-PCF. Opt. Lett. 2017, 42, 3896–3899. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Li, Z.; Huang, W.; Xi, X.; Lu, Q. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 15 μm. Opt. Express 2017, 25, 20944–20949. [Google Scholar] [CrossRef]
- Cao, L.; Gao, S.; Peng, Z.; Wang, X.; Wang, Y.; Wang, P. High Peak Power 2.8 μm Raman Laser in a Methane-Filled Nega-tive-Curvature Fiber. Opt. Express 2018, 26, 5609–5615. [Google Scholar] [CrossRef]
- Astapovich, M.S.; Gladyshev, A.V.; Khudyakov, M.M.; Kosolapov, A.F.; Likhachev, M.E.; Bufetov, I.A. Watt-Level Nano-second 4.42-μm Raman Laser Based on Silica Fiber. IEEE Photon. Technol. Lett. 2019, 31, 78–81. [Google Scholar] [CrossRef]
- Edelstein, S.; Ishaaya, A.A. High-efficiency Raman conversion in SF6 and CF4 filled hollow-core photonic bandgap fibers. Opt. Lett. 2019, 44, 5856–5859. [Google Scholar] [CrossRef]
- Russell, P.; Hoelzer, P.; Chang, W.; Abdolvand, A.; Travers, J. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photon 2014, 8, 278–286. [Google Scholar] [CrossRef]
- Huang, W.; Li, Z.; Cui, Y.; Zhou, Z.; Wang, Z. Efficient, Watt-Level, Tunable 1.7 μm Fiber Raman Laser in H2 -Filled Hol-low-Core Fibers. Opt. Lett. 2020, 45, 475–478. [Google Scholar] [CrossRef]
- Li, H.; Huang, W.; Chui, Y.; Zhou, Z.; Wang, Z. Pure rotational stimulated Raman scattering in H2-filled hollow-core photonic crystal fibers. Opt. Express 2020, 28, 23881. [Google Scholar] [CrossRef]
- Li, H.; Pei, W.; Huang, W.; Wang, M.; Wang, Z. Highly Efficient Nanosecond 1.7 μm Fiber Gas Raman Laser by H2-filled Hollow-Core Photonic Crystal Fibers. Crystals 2020, 11, 32. [Google Scholar] [CrossRef]
- Sun, Q.; Mao, Q.; Liu, E.; Rao, R.; Ming, H. Hollow-Core Photonic Crystal Fiber High-Pressure Gas Cell. In Proceedings of the 19th International Conference on Optical Fibre Sensors, Perth, WA, Australia, 14 April 2008; SPIE: Bellingham, DC, USA; Volume 7004, p. 700455. [Google Scholar]
- Hanson, F.; Poirier, P. Stimulated rotational Raman conversion in H/sub 2/, D/sub 2/, and HD. IEEE J. Quantum Electron. 1993, 29, 2342–2345. [Google Scholar] [CrossRef]
- Li, Z.; Huang, W.; Cui, Y.; Wang, Z. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 28 μm. Opt. Lett. 2018, 43, 4671–4674. [Google Scholar] [CrossRef]
- Yu, R.; Wang, C.; Benabid, F.; Chiang, K.S.; Xiao, L. Robust Mode Matching between Structurally Dissimilar Optical Fiber Waveguides. ACS Photon 2021, 8, 857–863. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, W.; Li, H.; Huang, W.; Wang, M.; Wang, Z. All-Fiber Tunable Pulsed 1.7 μm Fiber Lasers Based on Stimulated Raman Scattering of Hydrogen Molecules in Hollow-Core Fibers. Molecules 2021, 26, 4561. https://doi.org/10.3390/molecules26154561
Pei W, Li H, Huang W, Wang M, Wang Z. All-Fiber Tunable Pulsed 1.7 μm Fiber Lasers Based on Stimulated Raman Scattering of Hydrogen Molecules in Hollow-Core Fibers. Molecules. 2021; 26(15):4561. https://doi.org/10.3390/molecules26154561
Chicago/Turabian StylePei, Wenxi, Hao Li, Wei Huang, Meng Wang, and Zefeng Wang. 2021. "All-Fiber Tunable Pulsed 1.7 μm Fiber Lasers Based on Stimulated Raman Scattering of Hydrogen Molecules in Hollow-Core Fibers" Molecules 26, no. 15: 4561. https://doi.org/10.3390/molecules26154561
APA StylePei, W., Li, H., Huang, W., Wang, M., & Wang, Z. (2021). All-Fiber Tunable Pulsed 1.7 μm Fiber Lasers Based on Stimulated Raman Scattering of Hydrogen Molecules in Hollow-Core Fibers. Molecules, 26(15), 4561. https://doi.org/10.3390/molecules26154561