Effects of Water and Chemical Solutions Ageing on the Physical, Mechanical, Thermal and Flammability Properties of Natural Fibre-Reinforced Thermoplastic Composites
Abstract
:1. Introduction
2. Results
2.1. Water/Chemical Solution Sorption-Desorption Characteristics
2.1.1. Relative Sorption Effects
2.1.2. Effect of Chemical Environment
2.1.3. Relative Desorption Effects
2.2. Effect of Ageing on Mechanical Properties of Composites
2.3. Effect of Ageing on Flammability Properties of Composites
2.3.1. Limiting Oxygen Index (LOI)
2.3.2. Flame Spread
2.4. Effect of Ageing on Thermal Properties of the Composites
3. Discussion and Conclusions
4. Materials and Methods
4.1. Materials
4.2. Production of the Textile Preforms and Composites
4.3. Ageing Studies
4.4. Flexural Testing
4.5. Flammability Analysis
4.6. Thermal Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mayandi, K.; Rajini, N.; Ayrilmis, N.; Indira Devi, M.P.; Siengchin, S.; Mohammad, F.; Al-Lohedan, H.A. An overview of endurance and ageing performance under various environmental conditions of hybrid polymer composites. J. Mater. Res. Technol. 2020, 9, 15962–15988. [Google Scholar] [CrossRef]
- Sergi, C.; Tirillò, J.; Seghini, M.C.; Sarasini, F.; Fiore, V.; Scalici, T. Durability of Basalt/Hemp Hybrid Thermoplastic Composites. Polymers 2019, 11, 603. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Kasal, B.; Huang, L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. Part B 2016, 92, 94–132. [Google Scholar] [CrossRef]
- Pal, P.K. Jute Reinforced Plastic: A Low Cost Composite Material. Plast. Rubber. Process. Appl. 1984, 4, 215–219. [Google Scholar]
- De Carvalho, L.H.; Moraes, G.S.; D’Almeida, J.R.M. Influence of Water Absorption and Pre-drying Conditions on the Tensile Mechanical Properties of Hybrid Lignocellulosic Fiber/Polyester Composites. J. Rein. Plast. Comp. 2009, 28, 1921–1932. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M. Studies on Jute Composites—A Literature Review. Polym. Plast. Technol. Eng. 1995, 34, 729–792. [Google Scholar] [CrossRef]
- Li, Y.; Mai, Y.-W.; Ye, L. Sisal Fibre and its Composites: A Review of Recent Developments. Compos. Sci. Technol. 2000, 60, 2037–2055. [Google Scholar] [CrossRef]
- Väisänen, T.; Das, O.; Tomppo, L. A review on new bio-based constituents for natural fiber-polymer composites. J. Clean. Prod. 2017, 149, 582–596. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Mohammed, L.; Ansari, M.N.M.; Pua, G.; Jawaid, M.; Islam, M.S. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int. J. Polym. Sci. 2015, 2015, 243947. [Google Scholar] [CrossRef] [Green Version]
- Kandola, B.K. Flame retardant natural fibre composites for high performance applications. In Natural Polymers, Volume 1: Composites; John, M.J., Thomas, S., Eds.; Royal Society of Chemistry: Cambridge, UK, 2012; pp. 86–117. [Google Scholar]
- Castillo-Lara, J.F.; Flores-Johnson, E.A.; Valadez-Gonzalez, A.; Herrera-Franco, P.J.; Carrillo, J.G.; Gonzalez-Chi, P.I.; Li, Q.M. Mechanical Properties of Natural Fiber Reinforced Foamed Concrete. Materials 2020, 13, 3060. [Google Scholar] [CrossRef] [PubMed]
- Okeola, A.A.; Abuodha, S.O.; Mwero, J. Experimental Investigation of the Physical and Mechanical Properties of Sisal Fiber-Reinforced Concrete. Fibers 2018, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Latif, R.; Wakeel, S.; Khan, N.Z.; Siddiquee, A.N.; Verma, S.L.; Khan, Z.A. Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: A review. J. Reinf. Plast. Comp. 2019, 38, 15–30. [Google Scholar] [CrossRef]
- Fung, K.L.; Li, R.K.Y.; Tjong, S.C. Interface modification on the properties of sisal fiber-reinforced polypropylene composites. J. Appl. Polym. Sci. 2002, 85, 169–176. [Google Scholar] [CrossRef]
- Pornwannachai, W.; Ebdon, J.R.; Kandola, B.K. Fire-resistant natural fibre-reinforced composites from flame retarded textiles. Polym. Deg. Stab. 2018, 154, 115–123. [Google Scholar] [CrossRef]
- Kandola, B.K.; Mistik, S.I.; Pornwannachai, W.; Anand, S.C. Natural Fibre-Reinforced Thermoplastic Composites from Woven-Nonwoven Textile Preforms: Mechanical and Fire Performance Study. Compos. Part B 2018, 153, 456–464. [Google Scholar] [CrossRef]
- Chow, C.P.L.; Xing, X.S.; Li, R.K.Y. Moisture absorption studies of sisal fibre reinforced polypropylene composites. Compos. Sci. Tech. 2007, 67, 306–313. [Google Scholar] [CrossRef]
- Zamri, M.H.; Akil, H.M.; Abu Bakar, A.; Mohd Ishak, Z.A.; Cheng, L.W. Effect of water absorption on pultruded jute/glass fiber-reinforced unsaturated polyester hybrid composites. J. Compos. Mater. 2011, 46, 51–61. [Google Scholar] [CrossRef]
- Le Duigou, A.; Davies, P.; Baley, C. Seawater ageing of flax/poly(lactic acid) biocomposites. Polym. Deg. Stab. 2009, 94, 1151–1162. [Google Scholar] [CrossRef] [Green Version]
- Sreekumar, P.A.; Joseph, K.; Unnikrishnan, G.; Thomas, S. A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Compos. Sci. Technol. 2007, 67, 453–461. [Google Scholar] [CrossRef]
- Thwe, M.M.; Liao, K. Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Compos. Part A Appl. Sci. Manuf. 2002, 33, 43–52. [Google Scholar] [CrossRef]
- Ma, G.; Yan, L.; Shen, W.; Zhu, D.; Huang, L.; Kasal, B. Effects of water, alkali solution and temperature ageing on water absorption, morphology and mechanical properties of natural FRP composites: Plant based jute vs. mineral-based basalt. Compos. Part B 2018, 153, 398–412. [Google Scholar] [CrossRef]
- Sindhu, K.; Joseph, K. Degradation Studies of Coir Fiber/Polyester and Glass Fiber/Polyester Composites under Different Conditions. J. Reinf. Plast. Compos. 2007, 26, 1571–1585. [Google Scholar] [CrossRef]
- Polypropylene Handbook; Pasquini, N.; Addeo, A. (Eds.) Hanser: München, Germany, 2005; ISBN 9783446229785. [Google Scholar]
- Wiggins, J.S.; Hassan, M.K.; Mauritz, K.A.; Storey, R.F. Hydrolytic degradation of poly(d,l-lactide) as a function of end group: Carboxylic acid vs. hydroxyl. Polymer 2006, 47, 1960–1969. [Google Scholar] [CrossRef]
- Kim, N.K.; Lin, R.J.T.; Bhattacharyya, D. Extruded short wool fibre composites: Mechanical and fire retardant Properties. Compos. Part B 2014, 67, 472–480. [Google Scholar] [CrossRef]
- Hutchinson, M.H.; Dorgan, J.R.; Knauss, D.M.; Hait, S.B. Optical Properties of Polylactides. J. Polym. Environ. 2006, 14, 119–124. [Google Scholar] [CrossRef]
- Handbook of Natural Fibres; Kozlowski, R.; Mackiewicz-Talarczy, M. (Eds.) Woodhead Publishing: Cambridge, UK, 2020. [Google Scholar]
- Arbelaiz, A.; Fernandez, B.; Ramos, J.A.; Retegi, A.; Llano-Ponte, R.; Mondragon, I. Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos. Sci. Technol. 2005, 65, 1582–1592. [Google Scholar] [CrossRef]
- Morton, W.E.; Hearle, J.W.S. Physical Propertiess of Textile Fibres, 4th ed.; Woodhead Publishing: Cambridge, UK, 2008; pp. 202–228, 243–273. [Google Scholar]
- Ali, A.; Baheti, V.; Jabbar, A.; Militky, J.; Palanisamy, S.; Siddique, H.F.; Karthik, D. Effect of jute fibre treatment on moisture regain and mechanical performance of composite materials. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 042001. [Google Scholar] [CrossRef] [Green Version]
- Naveen, J.; Jawaid, M.; Amuthakkannan, P.; Chandrasekar, M. Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Jawaid, M., Thariq, M., Saba, N., Eds.; Woodhead Publishing Series; Elsevier Science & Technology: Cambridge, UK, 2019; pp. 427–440. [Google Scholar]
- Zhou, J.; Lucas, J.P. The effects of a water environment on anomalous absorption behavior in graphite/epoxy composites. Compos. Sci. Technol. 1995, 53, 57–64. [Google Scholar] [CrossRef]
- Peters, R.H. Textile Chemistry, Volume 1. The Chemistry of Fibres, 1st ed.; Elsevier Publishing Co.: Amsterdam, The Netherlands, 1963. [Google Scholar]
- Oriez, V.; Peydecastaing, J.; Pontalier, P.-Y. Lignocellulosic Biomass Mild Alkaline Fractionation and Resulting Extract Purification Processes: Conditions, Yields, and Purities. Clean Technol. 2020, 2, 91–115. [Google Scholar] [CrossRef] [Green Version]
- Speakman, J.B.; Stott, E. The titration curve of wool. Trans. Faraday Soc. 1934, 30, 539–548. [Google Scholar] [CrossRef]
- Tsai, S.W.; Hahn, H.T. Introduction to Composite Materials; Technomic Publishing Co., Inc.: Lancaster, PA, USA, 1980; Chapter 5; pp. 167–216. [Google Scholar]
- Bajpai, P.K.; Singh, I.; Madaan, J. Comparative studies of mechanical and morphological properties of polylactic acid and polypropylene based natural fiber composites. J. Reinf. Plast. Compos. 2012, 31, 1712–1724. [Google Scholar] [CrossRef]
- Galaska, M.L.; Horrocks, A.R.; Morgan, A.B. Flammability of natural plant and animal fibers: A heat release survey. Fire Mater. 2017, 41, 275–288. [Google Scholar] [CrossRef]
- Mohit, M.; Arul Mozhi Selvan, V. Thermo-mechanical properties of sodium chloride and alkali-treated sugarcane bagasse fibre. Indian J. Fibre Text. Res. 2019, 44, 286–293. [Google Scholar]
- Zhen, L.; Ning, Y.; Yang, Z.; Hailing, Z.; Junmin, W.; Bing, W.; Zhiqin, P.; Zhiwen, H. The aging effect of CaCl2 and NaCl on wool fabrics with hydrothermal treatment. Text Res. J. 2016, 87, 399–408. [Google Scholar] [CrossRef]
- Islam, M.S.; Pickering, K.L.; Foreman, N.J. Influence of accelerated ageing on the physico-mechanical properties of alkali-treated industrial hemp fibre reinforcedpoly(lactic acid) (PLA) composites. Polym. Deg. Stab. 2010, 95, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Deroiné, M.; Le Duigou, A.; Corre, Y.-M.; Le Gac, P.-Y.; Davies, P.; César, G.; Bruzaud, S. Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polym. Deg. Stab. 2014, 108, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, M.; Silvestre, F.; Nava-Saucedo, J.-E. Polymer biodegradation: Mechanisms and estimation techniques—A review. Chemosphere 2008, 73, 429–442. [Google Scholar] [CrossRef]
- Kandola, B.K.; Pornwannachai, W.; Ebon, J.R. Flax/PP and Flax/PLA Thermoplastic Composites: Influence of Fire Retardants on the Individual Components. Polymers 2020, 12, 2452. [Google Scholar] [CrossRef]
- Davies, P.J.; Horrocks, A.R.; Miraftab, M. Scanning electron microscopic studies of wool/intumescent char formation. Polym. Int. 2000, 49, 1125–1132. [Google Scholar] [CrossRef]
- Muthuraj, R.; Hajee, M.; Horrocks, A.R.; Kandola, B.K. Biopolymer blends from hardwood lignin and bio-polyamides: Compatibility and miscibility. Int. J. Biol. Macromol. 2019, 132, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Horrocks, A.R.; Davies, P. Char formation in flame-retarded wool fibres. Part 1 Effect of intumescent on thermogravimetric behavior. J. Fire Mater. 2000, 24, 151–157. [Google Scholar] [CrossRef]
- Kandola, B.K.; Horrocks, A.R.; Price, D.; Coleman, G.V. Flame-Retardant Treatments of Cellulose and Their Influence on the Mechanism of Cellulose Pyrolysis. J. Macromol. Sci. Part C 1996, 36, 721–794. [Google Scholar] [CrossRef]
Sample | Area Density of Reinforcing Fabric (g/m2) | Mass Fraction Fibre/Polymer (%) | Fibre Vol. Fraction (%) | Thickness (mm) |
---|---|---|---|---|
Jute/PP | 174 | 42/58 | 31 | 3.2 |
Sisal/PP | 62 | 41/59 | 30 | 1.3 |
Wool/PP | 172 | 39/61 | 46 | 3.6 |
Jute/PLA | 174 | 39/61 | 36 | 3.0 |
Sisal/PLA | 62 | 34/66 | 31 | 1.3 |
Composite | WG(Max) (%) | D (mm2 s−1) | ||||||
---|---|---|---|---|---|---|---|---|
Water | Salt Water | Acidic | Alkaline | Water | Salt Water | Acidic | Alkaline | |
Jute/PP | 6.3 ± 0.4 | 7.0 ± 0.2 | 7.2 ± 0.4 | 6.9 ± 0.1 | 4.3 × 10−6 | 7.9 × 10−6 | 5.7 × 10−6 | 5.1 × 10−6 |
Sisal/PP | 8.0 ± 1.2 | 9.7 ± 0.8 | 6.2 ± 1.2 | 6.7 ± 1.0 | 1.3 × 10−6 | 2.1 × 10−6 | 7.8 × 10−7 | 1.0 × 10−6 |
Jute/PLA | 6.0 ± 0.6 | 6.1 ± 0.6 | 5.4 ± 0.1 | 6.0 ± 0.1 | 4.6 × 10−6 | 1.5 × 10−6 | 1.7 × 10−6 | 4.6 × 10−6 |
Sisal/PLA | 4.2 ± 2.4 | 5.7 ± 0.2 | 6.2 ± 0.8 | 12.2 ± 0.6 | 2.1 × 10−6 | 7.4 × 10−7 | 9.8 × 10−7 | 9.7 × 10−7 |
Wool/PP | 6.5 ± 0.6 | 6.0 ± 0.6 | 6.0 ± 0.3 | 6.1 ± 0.2 | 1.1 × 10−6 | 2.5 × 10−6 | 1.2 × 10−6 | 2.5 × 10−6 |
Composites | Ageing Conditions | Mechanical | Flammability | ||||
---|---|---|---|---|---|---|---|
Flexural Modulus (GPa) | LOI (%) | Horizontal Burn | |||||
T1 (s) | T2 (s) | Rate (mm/s) | No. of Drips | ||||
Jute/PP | - | 2.6 ± 0.4 | 18.7 | 115 ± 1 | 224 ± 3 | 0.44 ± 0.01 | - |
Water | 1.8 ± 0.2 | 18.9 | 122 ± 8 | 241 ± 11 | 0.42 ± 0.04 | - | |
Salt water | 1.8 ± 0.1 | 19.3 | 115 ± 3 | 215 ± 5 | 0.45 ± 0.03 | - | |
Acidic | 1.8 ± 0.1 | 18.9 | 103 ± 2 | 220 ± 1 | 0.47 ± 0.02 | - | |
Alkali | 1.8 ± 0.3 | 19.1 | 96 ± 5 | 210 ± 15 | 0.50 ± 0.05 | - | |
Jute/PLA | - | 6.0 ± 0.4 | 19.8 | 80 ± 1 | 173 ± 1 | 0.62 ± 0.04 | - |
Water | 4.6 ± 0.2 | 19.9 | 84 ± 1 | 183 ± 2 | 0.57 ± 0.03 | - | |
Salt water | 4.5 ± 0.6 | 20.1 | 80 ± 0 | 164 ± 5 | 0.62 ± 0.01 | - | |
Acidic | 4.4 ± 0.2 | 19.9 | 87 ± 1 | 177 ± 1 | 0.57 ± 0.01 | - | |
Alkali | 3.9 ± 0.1 | 19.9 | 78 ± 1 | 164 ± 1 | 0.63 ± 0.02 | - | |
Sisal/PP | - | 3.2 ± 0.3 | 18.7 | 64 ± 2 | 128 ± 1 | 0.78 ± 0.02 | - |
Water | 1.8 ± 0.1 | 18.8 | 63 ± 2 | 119 ± 2 | 0.82 ± 0.05 | - | |
Salt water | 1.8 ± 0.1 | 19.2 | 58 ± 1 | 115 ± 1 | 0.87 ± 0.01 | - | |
Acidic | 1.8 ± 0.2 | 18.8 | 60 ± 1 | 120 ± 1 | 0.84 ± 0.02 | - | |
Alkali | 2.0 ± 0.1 | 19.0 | 57 ± 3 | 115 ± 1 | 0.88 ± 0.05 | - | |
Sisal/PLA | - | 5.9 ± 0.4 | 19.4 | 66 ± 3 | 126 ± 2 | 0.78 ± 0.02 | - |
Water | 3.9 ± 0.2 | 19.5 | 69 ± 3 | 121 ± 5 | 0.75 ± 0.09 | - | |
Salt water | 3.8 ± 0.2 | 19.9 | 58 ± 1 | 115 ± 1 | 0.88 ± 0.01 | - | |
Acidic | 3.8 ± 0.2 | 19.5 | 61 ± 1 | 119 ± 1 | 0.84 ± 0.02 | - | |
Alkali | 2.9 ± 0.1 | 19.5 | 52 ± 2 | 107 ± 3 | 0.96 ± 0.03 | - | |
Wool/PP | - | 2.2 ± 0.3 | 20.7 | 144 ± 8 | 310 ± 15 | 0.34 ± 0.03 | 206 ± 15 |
Water | 2.1 ± 0.1 | 20.8 | 159 ± 3 | 390 ± 3 | 0.28 ± 0.02 | 216 ± 9 | |
Salt water | 2.1 ± 0.2 | 20.8 | 150 ± 2 | 351 ± 5 | 0.31 ± 0.03 | 245 ± 12 | |
Acidic | 1.9 ± 0.1 | 20.8 | 161 ± 8 | 400 ± 10 | 0.28 ± 0.08 | 196 ± 15 | |
Alkali | 2.1 ± 0.1 | 20.8 | 160 ± 4 | 345 ± 6 | 0.30 ± 0.04 | 244 ± 10 |
Sample | DTA Analysis | TGA Analysis | ||||
---|---|---|---|---|---|---|
Melting Endotherm (°C) | Decomposition Peaks * (°C) | DTG Peak Maxima (°C) | T10 (°C) | T50 (°C) | Char at 500 °C (%) | |
PP | 169 | 382, 423 | 381, 418 | 299 | 353 | 0.2 |
PLA | 58, 169 | 342 (En), 376, 455 | 363, 453 | 332 | 360 | 0.4 |
Jute fibre | - | 344, 433 | 285, 333, 438 | 262 | 332 | 0 |
Sisal fibre | 316 (b), 396, 432(s) | 328; 398, 437(d) | 262 | 320 | 1.0 | |
Wool fibre | 295(b), 512 | 276, 521 | 237 | 401 | 26.1 | |
Jute/PP | 168 | 380, 439 | 352, 442 | 273 | 336 | 0.3 |
Jute/PLA | 58, 169 | 360 (En), 392, 440 | 358, 453 | 325 | 360 | 0.2 |
Sisal/PP | 167 | 387, 280(b), 387, 429 | 339, 427 | 273 | 334 | 0.2 |
Sisal/PLA | 169 | 340(En), 369, 415 | 345, 432 | 310 | 343 | 0.4 |
Wool/PP | 168 | 271(b), 426, 542 | 380,546 | 276 | 399 | 10.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandola, B.K.; Mistik, S.I.; Pornwannachai, W.; Horrocks, A.R. Effects of Water and Chemical Solutions Ageing on the Physical, Mechanical, Thermal and Flammability Properties of Natural Fibre-Reinforced Thermoplastic Composites. Molecules 2021, 26, 4581. https://doi.org/10.3390/molecules26154581
Kandola BK, Mistik SI, Pornwannachai W, Horrocks AR. Effects of Water and Chemical Solutions Ageing on the Physical, Mechanical, Thermal and Flammability Properties of Natural Fibre-Reinforced Thermoplastic Composites. Molecules. 2021; 26(15):4581. https://doi.org/10.3390/molecules26154581
Chicago/Turabian StyleKandola, Baljinder K., S. Ilker Mistik, Wiwat Pornwannachai, and A. Richard Horrocks. 2021. "Effects of Water and Chemical Solutions Ageing on the Physical, Mechanical, Thermal and Flammability Properties of Natural Fibre-Reinforced Thermoplastic Composites" Molecules 26, no. 15: 4581. https://doi.org/10.3390/molecules26154581
APA StyleKandola, B. K., Mistik, S. I., Pornwannachai, W., & Horrocks, A. R. (2021). Effects of Water and Chemical Solutions Ageing on the Physical, Mechanical, Thermal and Flammability Properties of Natural Fibre-Reinforced Thermoplastic Composites. Molecules, 26(15), 4581. https://doi.org/10.3390/molecules26154581