Antimicrobial Peptide Modifications against Clinically Isolated Antibiotic-Resistant Salmonella
Abstract
:1. Introduction
2. Materials and Methods
2.1. Peptides
2.1.1. Selection of a Peptide-Template
2.1.2. Redesign of Peptides by Template Modifications
2.2. Prediction of Peptide Physicochemical Properties
2.3. Salmonella Isolates and Culture Condition
2.4. Antibacterial Assays
2.4.1. Determination of Minimal Inhibitory Concentration (MIC)
2.4.2. Determination of Minimal Bactericidal Concentration (MBC)
2.4.3. Mode of Action
2.5. Antibiofilm Assays
2.5.1. Inhibition of Initial Cell Attachment
2.5.2. Inhibition of Preformed Biofilm
2.5.3. Measurement of Biofilm Biomass
2.6. Hemolytic Activity Assay
2.7. Evaluation of Selectivity Index (SI)
2.8. Statistical Analysis and Data Visualization
3. Results and Discussion
3.1. Peptides and Their Characteristics
3.2. The Peptide BmKn-2 (Kn2) Demonstrated the Most Potent Anti-Salmonella and Selected as a Template
3.3. All Kn2 Variants Exhibited Increased Anti-Salmonella through Bactericidal Activity
3.4. All Kn2 Variants Exerted Antibiofilm Properties
3.5. Each Kn2 Variant Showed Different Hemolytic Activity and Cell Selectivity toward Salmonella
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Antibiotic Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 4 August 2020).
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available online: https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/ (accessed on 4 August 2020).
- Antimicrobial Peptide Database. Available online: https://wangapd3.com/main.php (accessed on 23 November 2020).
- Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 2020, 20, e216–e230. [Google Scholar] [CrossRef]
- Hancock, R.E.; Scott, M.G. The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. USA 2000, 97, 8856–8861. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Baeder, D.Y.; Regoes, R.R.; Rolff, J. Predicting drug resistance evolution: Insights from antimicrobial peptides and antibiotics. Proc. Biol. Sci. 2018, 285, 20172687. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.-j.; Gallo, R.L. Antimicrobial peptides. Curr. Biol. 2016, 26, R14–R19. [Google Scholar] [CrossRef]
- Matsuzaki, K. Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta 2009, 1788, 1687–1692. [Google Scholar] [CrossRef] [Green Version]
- Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55, 27–55. [Google Scholar] [CrossRef] [Green Version]
- Zelezetsky, I.; Tossi, A. Alpha-helical antimicrobial peptides--Using a sequence template to guide structure-activity relationship studies. Biochim. Biophys. Acta 2006, 1758, 1436–1449. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Separovic, F.; O’Brien-Simpson, N.M.; Wade, J.D. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem. Soc. Rev. 2021, 50, 4932–4973. [Google Scholar] [CrossRef]
- Alvarez-Bravo, J.; Kurata, S.; Natori, S. Novel synthetic antimicrobial peptides effective against methicillin-resistant Staphylococcus. Aureus. Biochem. J. 1994, 302 Pt 2, 535–538. [Google Scholar] [CrossRef] [Green Version]
- Jantaruk, P.; Roytrakul, S.; Sitthisak, S.; Kunthalert, D. Potential role of an antimicrobial peptide, KLK in inhibiting lipopolysaccharide-induced macrophage inflammation. PLoS ONE 2017, 12, e0183852. [Google Scholar] [CrossRef] [Green Version]
- Luque-Ortega, J.R.; Saugar, J.M.; Chiva, C.; Andreu, D.; Rivas, L. Identification of new leishmanicidal peptide lead structures by automated real-time monitoring of changes in intracellular ATP. Biochem. J. 2003, 375, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Manabe, T.; Kawasaki, K. D-form KLKLLLLLKLK-NH2 peptide exerts higher antimicrobial properties than its L-form counterpart via an association with bacterial cell wall components. Sci. Rep. 2017, 7, 43384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naidoo, V.B.; Rautenbach, M. Self-assembling organo-peptide bolaphiles with KLK tripeptide head groups display selective antibacterial activity. J. Pept. Sci. 2013, 19, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Rautenbach, M.; Gerstner, G.D.; Vlok, N.M.; Kulenkampff, J.; Westerhoff, H.V. Analyses of dose-response curves to compare the antimicrobial activity of model cationic alpha-helical peptides highlights the necessity for a minimum of two activity parameters. Anal. Biochem. 2006, 350, 81–90. [Google Scholar] [CrossRef]
- Arpornsuwan, T.; Buasakul, B.; Jaresitthikunchai, J.; Roytrakul, S. Potent and rapid antigonococcal activity of the venom peptide BmKn2 and its derivatives against different Maldi biotype of multidrug-resistant Neisseria gonorrhoeae. Peptides 2014, 53, 315–320. [Google Scholar] [CrossRef]
- Cao, L.; Dai, C.; Li, Z.; Fan, Z.; Song, Y.; Wu, Y.; Cao, Z.; Li, W. Antibacterial activity and mechanism of a scorpion venom peptide derivative in vitro and in vivo. PLoS ONE 2012, 7, e40135. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Yang, F.; Li, F.; Li, Z.; Lang, Y.; Shen, B.; Wu, Y.; Li, W.; Harrison, P.L.; Strong, P.N.; et al. Therapeutic potential of a scorpion venom-derived antimicrobial peptide and its homologs against antibiotic-resistant Gram-positive bacteria. Front. Microbiol. 2018, 9, 1159. [Google Scholar] [CrossRef]
- Teerapo, K.; Roytrakul, S.; Sistayanarain, A.; Kunthalert, D. A scorpion venom peptide derivative BmKn22 with potent antibiofilm activity against Pseudomonas aeruginosa. PLoS ONE 2019, 14, e0218479. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.C.; Wang, S.X.; Zhu, Y.; Zhu, S.Y.; Li, W.X. Identification and functional characterization of novel scorpion venom peptides with no disulfide bridge from Buthus martensii Karsch. Peptides 2004, 25, 143–150. [Google Scholar] [CrossRef]
- Kokilakanit, P.; Koontongkaew, S.; Roytrakul, S.; Utispan, K. A novel non-cytotoxic synthetic peptide, Pug-1, exhibited an antibiofilm effect on Streptococcus. Mutans. adhesion. Lett. Appl. Microbiol. 2020, 70, 151–158. [Google Scholar] [CrossRef]
- Cutrona, K.J.; Kaufman, B.A.; Figueroa, D.M.; Elmore, D.E. Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides. FEBS Lett. 2015, 589, 3915–3920. [Google Scholar] [CrossRef] [Green Version]
- Pasupuleti, M.; Schmidtchen, A.; Chalupka, A.; Ringstad, L.; Malmsten, M. End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing. PLoS ONE 2009, 4, e5285. [Google Scholar] [CrossRef] [Green Version]
- Shahmiri, M.; Cornell, B.; Mechler, A. Phenylalanine residues act as membrane anchors in the antimicrobial action of Aurein 1.2. Biointerphases 2017, 12, 05G605. [Google Scholar] [CrossRef]
- Yang, C.H.; Chen, Y.C.; Peng, S.Y.; Tsai, A.P.; Lee, T.J.; Yen, J.H.; Liou, J.W. An engineered arginine-rich alpha-helical antimicrobial peptide exhibits broad-spectrum bactericidal activity against pathogenic bacteria and reduces bacterial infections in mice. Sci. Rep. 2018, 8, 14602. [Google Scholar] [CrossRef] [Green Version]
- Wang, G. Post-translational modifications of natural antimicrobial peptides and strategies for peptide engineering. Curr. Biotechnol. 2012, 1, 72–79. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, M.; Qiu, S.; Wang, J.; Peng, J.; Zhao, P.; Zhu, R.; Wang, H.; Li, Y.; Wang, K.; et al. Antimicrobial activity and stability of the D-amino acid substituted derivatives of antimicrobial peptide polybia-MPI. AMB Express 2016, 6, 122. [Google Scholar] [CrossRef] [Green Version]
- Hancock, R.E.W. Hancock Laboratory Methods; Department of Microbiology and Immunology, University of British Columbia: Vancouver, BC, Canada; Available online: http://cmdr.ubc.ca/bobh/method/modified-mic-method-for-cationic-antimicrobial-peptides/ (accessed on 20 August 2020).
- Clinical and Laboratory Standards Institute. Methods for determining bactericidal activity of antimicrobial agents; approved guideline. In CLSI Document M26-A; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 1999. [Google Scholar]
- Hossan, M.S.; Jindal, H.; Maisha, S.; Samudi Raju, C.; Devi Sekaran, S.; Nissapatorn, V.; Kaharudin, F.; Su Yi, L.; Khoo, T.J.; Rahmatullah, M.; et al. Antibacterial effects of 18 medicinal plants used by the Khyang tribe in Bangladesh. Pharm. Biol. 2018, 56, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Pankey, G.A.; Sabath, L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004, 38, 864–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandasi, M.; Leonard, C.M.; Viljoen, A.M. The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett. Appl. Microbiol. 2010, 50, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, D.; Wiedmann, M.; McLandsborough, L.A. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl. Environ. Microbiol. 2002, 68, 2950–2958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stark, M.; Liu, L.P.; Deber, C.M. Cationic hydrophobic peptides with antimicrobial activity. Antimicrob. Agents Chemother. 2002, 46, 3585–3590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilić, N.; Novković, M.; Guida, F.; Xhindoli, D.; Benincasa, M.; Tossi, A.; Juretić, D. Selective antimicrobial activity and mode of action of adepantins, glycine-rich peptide antibiotics based on anuran antimicrobial peptide sequences. Biochim. Biophys. Acta 2013, 1828, 1004–1012. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, D.; Weiss, R.M.; Terwilliger, T.C. The helical hydrophobic moment: A measure of the amphiphilicity of a helix. Nature 1982, 299, 371–374. [Google Scholar] [CrossRef]
- Klubthawee, N.; Adisakwattana, P.; Hanpithakpong, W.; Somsri, S.; Aunpad, R. A novel, rationally designed, hybrid antimicrobial peptide, inspired by cathelicidin and aurein, exhibits membrane-active mechanisms against Pseudomonas aeruginosa. Sci. Rep. 2020, 10, 9117. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Hall, K.N.; Aguilar, M.I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Curr. Top. Med. Chem. 2016, 16, 25–39. [Google Scholar] [CrossRef]
- Yasir, M.; Dutta, D.; Willcox, M.D.P. Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa. Sci. Rep. 2019, 9, 7063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dathe, M.; Wieprecht, T. Structural features of helical antimicrobial peptides: Their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta 1999, 1462, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Ye, X.; Sun, P.; Xu, P.; Wang, L.; Liu, Z.; Huang, X.; Bai, Z.; Zhou, C. Antimicrobial and antibiofilm activity of the EeCentrocin 1 derived peptide EC1-17KV via membrane disruption. EBioMedicine 2020, 55, 102775. [Google Scholar] [CrossRef]
- Postma, T.M.; Liskamp, R.M.J. Highly potent antimicrobial peptide derivatives of bovine cateslytin. RSC Adv. 2016, 6, 94840–94844. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, E.; Tiltak, D.; Ieronimo, M.; Kanithasen, N.; Wadhwani, P.; Ulrich, A.S. Influence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic α-helical peptides. Pure Appl. Chem. 2007, 79, 717–728. [Google Scholar] [CrossRef]
- Krause, E.; Bienert, M.; Schmieder, P.; Wenschuh, H. The helix-destabilizing propensity scale of D-amino acids: The influence of side chain steric effects. J. Am. Chem. Soc. 2000, 122, 4865–4870. [Google Scholar] [CrossRef]
- Mihajlovic, M.; Lazaridis, T. Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides. Biochim. Biophys. Acta 2012, 1818, 1274–1283. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.K.; Song, J.W.; Gong, F.; Li, S.B.; Chang, H.Y.; Xie, H.M.; Gao, H.W.; Tan, Y.X.; Ji, S.P. Design of an alpha-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci. Rep. 2016, 6, 27394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raheem, N.; Straus, S.K. Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Front. Microbiol. 2019, 10, 2866. [Google Scholar] [CrossRef] [Green Version]
- Nishihara, S.; Kawasaki, K. Enhanced cellular uptake of CpG DNA by α-helical antimicrobial peptide Kn2-7: Effects on macrophage responsiveness to CpG DNA. Biochem. Biophys. Res. Commun. 2020, 530, 100–106. [Google Scholar] [CrossRef]
- Greco, I.; Molchanova, N.; Holmedal, E.; Jenssen, H.; Hummel, B.D.; Watts, J.L.; Hakansson, J.; Hansen, P.R.; Svenson, J. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci. Rep. 2020, 10, 13206. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Villegas, E.; Montoya-Rosales, A.; Rivas-Santiago, B.; Corzo, G. Characterization of antibacterial and hemolytic activity of synthetic pandinin 2 variants and their inhibition against Mycobacterium tuberculosis. PLoS ONE 2014, 9, e101742. [Google Scholar] [CrossRef]
- Ruiz, J.; Calderon, J.; Rondón-Villarreal, P.; Torres, R. Analysis of structure and hemolytic activity relationships of antimicrobial peptides (AMPs). In Advances in Computational Biology; Springer: Cham, Switzerland, 2014; pp. 253–258. [Google Scholar]
Isolate Code. | Month/Year | Specimen | Serogroup | Serovar | Antibiotic Resistance Profile |
---|---|---|---|---|---|
5 | June 2002 | Blood | D | Enteritidis | AMP, SXT, KZ |
7 | July 2002 | Blood | B | Typhimurium | AMP, CN, TE, NA, SXT |
11 | September 2002 | Blood | B | I 1,4:i:- | AMP, TE, NA, SXT, C |
18 | August 2002 | Urine | B | Stanley | TE, SXT, C |
26 | June 2002 | Urine | B | Typhimurium | TZP, TE, NA, |
27 | June 2002 | Stool | B | Typhimurium | AMP, TE, NA, SXT, CIP, |
55 | June 2002 | Blood | B | Typhimurium | AMP, SXT, C, TE |
61 | June 2002 | Blood | D | Enteritidis | AMP, TE, NA, SXT |
69 | June 2002 | Stool | B | Typhimurium | AMP |
76 | June 2002 | CSF | D | Enteritidis | NA |
78 | July 2002 | Blood | D | Enteritidis | TE, CIP, NA, SXT |
107 | July 2002 | Stool | B | Typhimurium | Susceptible |
Name. | Sequence | Length | Theoretical MW | Measured MW * | pI | z | HR (%) | ACN (%) | Consensus Structure | α-Helix Content (%) | µH |
---|---|---|---|---|---|---|---|---|---|---|---|
KLK | KLKLLLLLKLK | 11 | 1322.81 | 1323.06 | 11.15 | +4 | 63.0 | nd | cchhhhhhhcc | 63.6 | 0.095 |
KLK1 | KLKLLLLLKL | 10 | 1194.64 | 1194.91 | 10.98 | +3 | 70.0 | nd | cchhhhhhcc | 60.0 | 0.070 |
BmKn-2 | FIGAIARLLSKIF | 13 | 1448.79 | 1449.11 | 11.39 | +2 | 69.0 | nd | chhhhhhhhhh?c | 76.9 | 0.760 |
BmKn-22 | FIGAIARLLSK | 11 | 1188.46 | 1188.86 | 11.39 | +2 | 63.0 | nd | chhhhhhhhcc | 72.7 | 0.699 |
Pug-1 | LLKLFFPFLETGE | 13 | 1553.84 | 1553.96 | 4.15 | -1 | 53.0 | nd | c??ecc??ccccc | 0.0 | nd |
Pug-4 | FPSFLVGR | 8 | 922.08 | 922.66 | 10.59 | +1 | 50.0 | nd | cc?ee?cc | 0.0 | nd |
Kn2-5R | FIRRIARLLRRIF | 13 | 1730.16 | 1730.47 | 12.70 | +5 | 61.0 | 38.9 | chhhhhhhhhhhc | 84.6 | 0.911 |
Kn2-5R-NH2 | FIRRIARLLRRIF-NH2 | 13 | 1729.17 | 1729.46 | 14.00 | +6 | 61.0 | 42.1 | chhhhhhhhhhhc | 84.6 | 0.911 |
dKn2-5R-NH2 | firriarllrrif-NH2 | 13 | 1729.17 | 1729.49 | 14.00 | +6 | 61.0 | 41.6 | chhhhhhhhhhhc | 84.6 | 0.911 |
2F-Kn2-5R-NH2 | FFFIRRIARLLRRIF-NH2 | 15 | 2023.52 | 2023.75 | 14.00 | +6 | 66.0 | 53.1 | ?hhhhhhhhhhhhhc | 86.7 | 0.651 |
Isolate Code | Kn2-5R | Kn2-5R-NH2 | dKn2-5R-NH2 | 2F-Kn2-5R-NH2 |
---|---|---|---|---|
5 | 8 (8) | 4 (4) | 8 (8) | 4 (4) |
7 | 8 (8) | 4 (4) | 8 (8) | 4 (4) |
11 | 8 (8) | 4 (4) | 8 (8) | 4 (4) |
18 | 8 (8) | 4 (4) | 8 (8) | 8 (8) |
26 | 8 (8) | 4 (4) | 8 (8) | 8 (8) |
27 | 8 (8) | 4 (4) | 4 (4) | 8 (8) |
55 | 8 (8) | 4 (4) | 4 (4) | 8 (8) |
61 | 8 (8) | 4 (4) | 4 (4) | 4 (4) |
69 | 8 (8) | 4 (4) | 4 (4) | 4 (4) |
76 | 8 (8) | 4 (4) | 8 (8) | 8 (8) |
78 | 8 (8) | 4 (4) | 8 (8) | 8 (8) |
107 | 8 (8) | 4 (4) | 4 (4) | 4 (4) |
GM | 8 (8) | 4 (4) | 5.99 (5.99) | 5.66 (5.66) |
MBC/MIC ratio | 1 | 1 | 1 | 1 |
Peptide Concentration (µM) | Kn2-5R | Kn2-5R-NH2 | dKn2-5R-NH2 | 2F-Kn2-5R-NH2 |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
1 | 0 | 0.1 | 0 | 6.1 |
2 | 0 | 0.3 | 0 | 15 |
4 | 0.4 | 2 * | 0.4 * | 33.7 * |
8 | 0.7 * | 2.5 | 0.5 * | 61.6 * |
16 | 1.4 | 5.4 | 0.9 | 96.2 |
32 | 1.5 | 16.9 | 2.5 | 97.6 |
64 | 1.8 | 40.3 | 8.7 | 97.9 |
128 | 2.4 | 99.3 | 23.6 | 99.8 |
256 | 10.6 | 99.5 | 65.6 | 100 |
HC50 | 886.50 | 67.09 | 199.20 | 5.60 |
SI | 110.81 | 16.77 | 33.26 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangmee, S.; Reamtong, O.; Kalambaheti, T.; Roytrakul, S.; Sonthayanon, P. Antimicrobial Peptide Modifications against Clinically Isolated Antibiotic-Resistant Salmonella. Molecules 2021, 26, 4654. https://doi.org/10.3390/molecules26154654
Mangmee S, Reamtong O, Kalambaheti T, Roytrakul S, Sonthayanon P. Antimicrobial Peptide Modifications against Clinically Isolated Antibiotic-Resistant Salmonella. Molecules. 2021; 26(15):4654. https://doi.org/10.3390/molecules26154654
Chicago/Turabian StyleMangmee, Suthee, Onrapak Reamtong, Thareerat Kalambaheti, Sittiruk Roytrakul, and Piengchan Sonthayanon. 2021. "Antimicrobial Peptide Modifications against Clinically Isolated Antibiotic-Resistant Salmonella" Molecules 26, no. 15: 4654. https://doi.org/10.3390/molecules26154654
APA StyleMangmee, S., Reamtong, O., Kalambaheti, T., Roytrakul, S., & Sonthayanon, P. (2021). Antimicrobial Peptide Modifications against Clinically Isolated Antibiotic-Resistant Salmonella. Molecules, 26(15), 4654. https://doi.org/10.3390/molecules26154654