Straightforward Synthesis of Mn3O4/ZnO/Eu2O3-Based Ternary Heterostructure Nano-Photocatalyst and Its Application for the Photodegradation of Methyl Orange and Methylene Blue Dyes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photocatalyst Characterization
2.2. Photocatalytic Efficiency Studies of MB and MO Photodegradation Using Mn3O4/ZnO/Eu2O3 Heterostructures
2.2.1. Impact of Light Source on Dye Photodegradation
2.2.2. Influence of Dye Concentration on Dye Photodegradation
2.2.3. Impact of Photocatalyst Dose on Dye Degradation
2.2.4. Impact of Solution pH on Dye Degradation
3. Experimental
3.1. Materials
3.2. Preparation of Mn3O4/ZnO/Eu2O3 Photocatalyst
3.3. Photocatalyst Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Maurya, P.K.; Malik, D. Bioaccumulation of xenobiotics compound of pesticides in riverine system and its control technique: A critical review. J. Ind. Pollut. Control 2016, 32, 580–594. [Google Scholar]
- Bienfang, P.K.; Trapido-Rosenthal, H.; Laws, E.A. Bioaccumulation/Biomagnifications in food chains. In Environmental Toxicology; Springer: Boston, MA, USA, 2013; pp. 35–69. [Google Scholar]
- Zollinger, H. Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- El-Zomrawy, A. Kinetic studies of photoelectrocatalytic degradation of Ponceau 6R dye with ammonium persulfate. J. Saudi Chem. Soc. 2013, 17, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Karimi, L.; Zohoori, S.; Yazdanshenas, M.E. Photocatalytic degradation of azo dyes in aqueous solutions under UV irradiation using nano-strontium titanate as the nanophotocatalyst. J. Saudi Chem. Soc. 2014, 18, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Josephine, G.S.; Ramachandran, S.; Sivasamy, A. Nanocrystalline ZnO doped lanthanide oxide: An efficient photocatalyst for the degradation of malachite green dye under visible light irradiation. J. Saudi Chem. Soc. 2015, 19, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Pirkarami, A.; Olya, M.E. Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism. J. Saudi Chem. Soc. 2017, 21, S179–S186. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Kalal, S.; Ameta, C.; Ameta, R.; Kumar, S.; Punjabi, P.B. Synthesis, characterization and application of naïve and nano-sized titanium dioxide as a photocatalyst for degradation of methylene blue. J. Saudi Chem. Soc. 2015, 19, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; Chen, Y.; Zhao, X.; Tan, F.; Wang, Y.; Cao, Y.; Cai, W. Effective removal of cation dyes from aqueous solution using robust cellulose sponge. J. Saudi Chem. Soc. 2020, 24, 915–924. [Google Scholar] [CrossRef]
- Vassalini, I.; Gjipalaj, J.; Crespi, S.; Gianoncelli, A.; Mella, M.; Ferroni, M.; Alessandri, I. Alginate-Derived Active Blend Enhances Adsorption and Photocatalytic Removal of Organic Pollutants in Water. Adv. Sustain. Syst. 2020, 4, 1900112. [Google Scholar] [CrossRef]
- Vassalini, I.; Ribaudo, G.; Gianoncelli, A.; Casula, M.F.; Alessandri, I. Plasmonic hydrogels for capture, detection and removal of organic pollutants. Environ. Sci. Nano 2020, 7, 3888–3900. [Google Scholar] [CrossRef]
- Poornaprakash, B.; Chalapathi, U.; Subramanyam, K.; Vattikuti, S.V.P.; Park, S.-H. Wurtzite phase Co-doped ZnO nanorods: Morphological, structural, optical, magnetic, and enhanced photocatalytic characteristics. Ceram. Int. 2020, 46, 2931–2939. [Google Scholar] [CrossRef]
- Manjunath, K.; Souza, V.; Ramakrishnappa, T.; Nagaraju, G.; Scholten, J.; Dupont, J. Heterojunction CuO-TiO2 nanocomposite synthesis for significant photocatalytic hydrogen production. Mater. Res. Express 2016, 3, 115904. [Google Scholar] [CrossRef]
- Manjunath, K.; Ravishankar, T.; Kumar, D.; Priyanka, K.; Varghese, T.; Naika, H.R.; Nagabhushana, H.; Sharma, S.; Dupont, J.; Ramakrishnappa, T. Facile combustion synthesis of ZnO nanoparticles using Cajanus cajan (L.) and its multidisciplinary applications. Mater. Res. Bull. 2014, 57, 325–334. [Google Scholar] [CrossRef]
- Nagaraju, G.; Nagabhushana, H.; Suresh, D.; Anupama, C.; Raghu, G.; Sharma, S. Vitis labruska skin extract assisted green synthesis of ZnO super structures for multifunctional applications. Ceram. Int. 2017, 43, 11656–11667. [Google Scholar]
- Devarayapalli, K.C.; Vattikuti, S.V.P.; Yoo, K.S.; Nagajyothi, P.C.; Shim, J. Rapid microwave-assisted construction of ZIF-8 derived ZnO and ZnO@Ta2O5 nanocomposite as an efficient electrode for methanol and urea electro-oxidation. J. Electroanal. Chem. 2020, 878, 114634. [Google Scholar] [CrossRef]
- Abdel-Monem, Y.K. Efficient nanophotocatalyt of hydrothermally synthesized Anatase TiO2 nanoparticles from its analogue metal coordinated precursor. J. Mater. Sci. Mater. Electron. 2016, 27, 5723–5728. [Google Scholar] [CrossRef]
- Channei, D.; Inceesungvorn, B.; Wetchakun, N.; Ukritnukun, S.; Nattestad, A.; Chen, J.; Phanichphant, S. Photocatalytic degradation of methyl orange by CeO2 and Fe–doped CeO2 films under visible light irradiation. Sci. Rep. 2014, 4, 5757. [Google Scholar] [CrossRef] [PubMed]
- Sane, P.K.; Tambat, S.; Sontakke, S.; Nemade, P. Visible light removal of reactive dyes using CeO2 synthesized by precipitation. J. Environ. Chem. Eng. 2018, 6, 4476–4489. [Google Scholar] [CrossRef]
- Reis, M.C.; Barros, S.D.; Lachter, E.R.; San Gil, R.A.; Flores, J.H.; da Silva, M.I.P.; Onfroy, T. Synthesis, characterization and catalytic activity of meso-niobium phosphate in the oxidation of benzyl alcohols. Catal. Today 2012, 192, 117–122. [Google Scholar] [CrossRef]
- Poornaprakash, B.; Chalapathi, U.; Sekhar, M.C.; Rajendar, V.; Vattikuti, S.V.P.; Pratap Reddy, M.S.; Suh, Y.; Park, S.-H. Effect of Eu3+ on the morphology, structural, optical, magnetic, and photocatalytic properties of ZnO nanoparticles. Superlattices Microstruct. 2018, 123, 154–163. [Google Scholar] [CrossRef]
- Poornaprakash, B.; Chalapathi, U.; Reddy, B.P.; Vattikuti, S.V.P.; Reddy, M.S.P.; Park, S.-H. Elemental, morphological, structural, optical, and magnetic properties of erbium doped ZnO nanoparticles. Mater. Res. Express 2018, 5, 035018. [Google Scholar] [CrossRef]
- Poojitha, P.; Smitha, V.; Babu, S.; Kumar, M.; Vattikuti, S. Influence of Fe3+ and Eu3+ doping on structural, optical and magnetic properties of ZnO nanoparticles. J. Ovonic Res. 2017, 13, 155–160. [Google Scholar]
- Qin, H.; Wei, Q.; Wu, J.; Yang, F.; Zhou, B.; Wang, Y.; Tian, S. Effects of Ag nanoparticles on the visible-light-driven photocatalytic properties of Cu2O nanocubes. Mater. Chem. Phys. 2019, 232, 240–245. [Google Scholar] [CrossRef]
- Pathak, T.K.; Kroon, R.; Swart, H. Photocatalytic and biological applications of Ag and Au doped ZnO nanomaterial synthesized by combustion. Vacuum 2018, 157, 508–513. [Google Scholar] [CrossRef]
- Kalita, A.; Kalita, M.P. Microstructural, optical, magnetic and photocatalytic properties of Mn doped ZnO nanocrystals of different sizes. Phys. B Condens. Matter. 2019, 552, 30–46. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Muthuraj, V.; Vadivel, S. Constructing novel Ag nanoparticles anchored on MnO2 nanowires as an efficient visible light driven photocatalyst. RSC Adv. 2016, 6, 61357–61366. [Google Scholar] [CrossRef]
- Bharathi, P.; Harish, S.; Archana, J.; Navaneethan, M.; Ponnusamy, S.; Muthamizhchelvan, C.; Shimomura, M.; Hayakawa, Y. Enhanced charge transfer and separation of hierarchical CuO/ZnO composites: The synergistic effect of photocatalysis for the mineralization of organic pollutant in water. Appl. Surf. Sci. 2019, 484, 884–891. [Google Scholar] [CrossRef]
- Li, J.; Zhao, F.; Zhang, L.; Zhang, M.; Jiang, H.; Li, S.; Li, J. Electrospun hollow ZnO/NiO heterostructures with enhanced photocatalytic activity. RSC Adv. 2015, 5, 67610–67616. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G.; Mi, R.; Deng, C.; Gao, P. An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis. Sens. Actuator B Chem. 2014, 191, 537–544. [Google Scholar] [CrossRef]
- Martínez-Vargas, B.L.; Cruz-Ramírez, M.; Díaz-Real, J.A.; Rodríguez-López, J.; Bacame-Valenzuela, F.J.; Ortega-Borges, R.; Reyes-Vidal, Y.; Ortiz-Frade, L. Synthesis and characterization of n-ZnO/p-MnO nanocomposites for the photocatalytic degradation of anthracene. J. Photochem. Photobiol. A 2019, 369, 85–96. [Google Scholar] [CrossRef]
- Poornaprakash, B.; Chalapathi, U.; Subramanyam, K.; Vattikuti, S.V.P.; Suh, Y.; Park, S.-H. Effects of Ce incorporation on the structural, morphological, optical, magnetic, and photocatalytic characteristics of ZnO nanoparticles. Mater. Res. Express 2019, 6, 125075. [Google Scholar] [CrossRef]
- Atla, S.B.; Lin, W.-R.; Chien, T.-C.; Tseng, M.-J.; Shu, J.-C.; Chen, C.-C.; Chen, C.-Y. Fabrication of Fe3O4/ZnO magnetite core shell and its application in photocatalysis using sunlight. Mater. Chem. Phys. 2018, 216, 380–386. [Google Scholar] [CrossRef]
- Wang, L.; Liu, S.; Wang, Z.; Zhou, Y.; Qin, Y.; Wang, Z.L. Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano 2016, 10, 2636–2643. [Google Scholar] [CrossRef]
- Lingampalli, S.R.; Gautam, U.K.; Rao, C.N.R. Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures. Energy Environ. Sci. 2013, 6, 3589–3594. [Google Scholar] [CrossRef]
- Prajapati, R.C. Synthesis of mixed metal oxide nanoparticles of SnO2 with SrO via sol–gel technology: Their structural, optical, and electrical properties. J. Sol-Gel Sci. Technol. 2018, 87, 41–49. [Google Scholar]
- Ma, L.; Pei, X.-Y.; Mo, D.-C.; Heng, Y.; Lyu, S.-S.; Fu, Y.-X. Facile fabrication of NiO flakes and reduced graphene oxide (NiO/RGO) composite as anode material for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 2019, 30, 5874–5880. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, Y.; Bu, X.; Wu, Q.; Hang, Z.; Dong, Z.; Wu, X. Facile one-step synthesis of TiO2/Ag/SnO2 ternary heterostructures with enhanced visible light photocatalytic activity. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharazi, P.; Rahimi, R.; Rabbani, M. Study on porphyrin/ZnFe2O4@ polythiophene nanocomposite as a novel adsorbent and visible light driven photocatalyst for the removal of methylene blue and methyl orange. Mater. Res. Bull. 2018, 103, 133–141. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Fu, C.-C.; Juang, R.-S. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean. Prod. 2018, 202, 413–427. [Google Scholar] [CrossRef]
- Farzana, M.H.; Meenakshi, S. Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique. Ind. Eng. Chem. Res. 2014, 53, 55–63. [Google Scholar] [CrossRef]
- Thambidurai, S.; Gowthaman, P.; Venkatachalam, M.; Suresh, S. Natural sunlight assisted photocatalytic degradation of methylene blue by spherical zinc oxide nanoparticles prepared by facile chemical co-precipitation method. Optik 2020, 207, 163865. [Google Scholar] [CrossRef]
- Youssef, A.; Yakout, S. Superior sunlight photocatalytic of N/La codoped ZnO nanostructures synthesized using different chelating agents. Opt. Mater. 2020, 107, 110072. [Google Scholar] [CrossRef]
- Stanley, R. Enhanced sunlight photocatalytic degradation of methylene blue by rod-like ZnO-SiO2 nanocomposite. Optik 2019, 180, 134–143. [Google Scholar]
- Mahana, A.; Guliy, O.I.; Momin, S.C.; Lalmuanzeli, R.; Mehta, S.K. Sunlight-driven photocatalytic degradation of methylene blue using ZnO nanowires prepared through ultrasonication-assisted biological process using aqueous extract of Anabaena doliolum. Opt. Mater. 2020, 108, 110205. [Google Scholar] [CrossRef]
- Heshmatpour, F.; Abdikhani, M.S. Ce-Ag-ZnO/Fe3O4 nanocomposites: A novel magnetically separable photocatalyst for highly efficient photodegradation of contaminants. Phys. B Condens. Matter. 2019, 570, 312–319. [Google Scholar] [CrossRef]
- Chaudhary, K.; Shaheen, N.; Zulfiqar, S.; Sarwar, M.I.; Suleman, M.; Agboola, P.O.; Shakir, I.; Warsi, M.F. Binary WO3-ZnO nanostructures supported rGO ternary nanocomposite for visible light driven photocatalytic degradation of methylene blue. Synth. Met. 2020, 269, 116526. [Google Scholar] [CrossRef]
- Tran Thi, V.H.; Pham, T.N.; Pham, T.T.; Le, M.C. Synergistic Adsorption and Photocatalytic Activity under Visible Irradiation Using Ag-ZnO/GO Nanoparticles Derived at Low Temperature. J. Chem. 2019, 2019, 2979517. [Google Scholar] [CrossRef] [Green Version]
- Raghavan, N.; Thangavel, S.; Venugopal, G. Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites. Mater. Sci. Semicond. Process. 2015, 30, 321–329. [Google Scholar] [CrossRef]
- Barick, K.; Singh, S.; Aslam, M.; Bahadur, D. Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Microporous Mesoporous Mater. 2010, 134, 195–202. [Google Scholar] [CrossRef]
- Akhtar, J.; Tahir, M.; Sagir, M.; Bamufleh, H.S. Improved photocatalytic performance of Gd and Nd co-doped ZnO nanorods for the degradation of methylene blue. Ceram. Int. 2020, 46, 11955–11961. [Google Scholar] [CrossRef]
- Ferreira, W.H.; Silva, L.G.; Pereira, B.C.; Gouvêa, R.F.; Andrade, C.T. Adsorption and visible-light photocatalytic performance of a graphene derivative for methylene blue degradation. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100373. [Google Scholar] [CrossRef]
- Saravanan, R.; Shankar, H.; Prakash, T.; Narayanan, V.; Stephen, A. ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater. Chem. Phys. 2011, 125, 277–280. [Google Scholar] [CrossRef]
- Soto-Robles, C.; Nava, O.; Cornejo, L.; Lugo-Medina, E.; Vilchis-Nestor, A.; Castro-Beltrán, A.; Luque, P. Biosynthesis, characterization and photocatalytic activity of ZnO nanoparticles using extracts of Justicia spicigera for the degradation of methylene blue. J. Mol. Struct. 2021, 1225, 129101. [Google Scholar] [CrossRef]
- Messih, M.A.; Ahmed, M.; Soltan, A.; Anis, S.S. Synthesis and characterization of novel Ag/ZnO nanoparticles for photocatalytic degradation of methylene blue under UV and solar irradiation. J. Phys. Chem. Solids 2019, 135, 109086. [Google Scholar] [CrossRef]
- Mydeen, S.S.; Kumar, R.R.; Sambathkumar, S.; Kottaisamy, M.; Vasantha, V. Facile Synthesis of ZnO/AC Nanocomposites using Prosopis Juliflora for Enhanced Photocatalytic Degradation of Methylene Blue and Antibacterial Activity. Optik 2020, 224, 165426. [Google Scholar] [CrossRef]
- Gonçalves, M.G.; da Silva Veiga, P.A.; Fornari, M.R.; Peralta-Zamora, P.; Mangrich, A.S.; Silvestri, S. Relationship of the physicochemical properties of novel ZnO/biochar composites to their efficiencies in the degradation of sulfamethoxazole and methyl orange. Sci. Total Environ. 2020, 748, 141381. [Google Scholar] [CrossRef]
- Dhir, R. Photocatalytic degradation of methyl orange dye under UV irradiation in the presence of synthesized PVP capped pure and gadolinium doped ZnO nanoparticles. Chem. Phys. Lett. 2020, 746, 137302. [Google Scholar] [CrossRef]
- Gerawork, M. Photodegradation of methyl orange dye by using Zinc Oxide—Copper Oxide nanocomposite. Optik 2020, 216, 164864. [Google Scholar] [CrossRef]
- Stanley, R.; Jebasingh, J.A.; Stanley, P.K.; Ponmani, P.; Shekinah, M.; Vasanthi, J. Excellent Photocatalytic degradation of Methylene Blue, Rhodamine B and Methyl Orange dyes by Ag-ZnO nanocomposite under natural sunlight irradiation. Optik 2021, 231, 166518. [Google Scholar]
- Intachai, S.; Nakato, T.; Khaorapapong, N. ZnO decorated on low carbonate NiAl-layered double hydroxide as efficient photocatalyst for methyl orange degradation. Appl. Clay Sci. 2020, 201, 105927. [Google Scholar] [CrossRef]
- Nipane, S.; Korake, P.; Gokavi, G. Graphene-zinc oxide nanorod nanocomposite as photocatalyst for enhanced degradation of dyes under UV light irradiation. Ceram. Int. 2015, 41, 4549–4557. [Google Scholar] [CrossRef]
- Bhatti, M.A.; Shah, A.A.; Almani, K.F.; Tahira, A.; Chalangar, S.E.; dad Chandio, A.; Nur, O.; Willander, M.; Ibupoto, Z.H. Efficient photo catalysts based on silver doped ZnO nanorods for the photo degradation of methyl orange. Ceram. Int. 2019, 45, 23289–23297. [Google Scholar] [CrossRef]
- Shah, A.A.; Bhatti, M.A.; Tahira, A.; Chandio, A.D.; Channa, I.A.; Sahito, A.G.; Chalangar, E.; Willander, M.; Nur, O.; Ibupoto, Z.H. Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange. Ceram. Int. 2020, 46, 9997–10005. [Google Scholar] [CrossRef]
- Vargas, M.A.; Rivera, E.M.; Diosa, J.E.; Mosquera, E.E.; Rodríguez-Páez, J.E. Nanoparticles of ZnO and Mg-doped ZnO: Synthesis, characterization and efficient removal of methyl orange (MO) from aqueous solution. Ceram. Int. 2021, 47, 15668–15681. [Google Scholar] [CrossRef]
- Alatawi, N.; Saad, L.B.; Soltane, L.; Moulahi, A.; Mjejri, I.; Sediri, F. Enhanced solar photocatalytic performance of Cu-doped nanosized ZnO. Polyhedron 2021, 197, 115022. [Google Scholar] [CrossRef]
- Feng, Q.; Li, S.; Ma, W.; Fan, H.-J.; Wan, X.; Lei, Y.; Chen, Z.; Yang, J.; Qin, B. Synthesis and characterization of Fe3O4/ZnO-GO nanocomposites with improved photocatalytic degradation methyl orange under visible light irradiation. J. Alloys Compd. 2018, 737, 197–206. [Google Scholar] [CrossRef]
- Vaez, Z.; Javanbakht, V. Synthesis, characterization and photocatalytic activity of ZSM-5/ZnO nanocomposite modified by Ag nanoparticles for methyl orange degradation. J. Photochem. Photobiol. A 2020, 388, 112064. [Google Scholar] [CrossRef]
- Tripathy, N.; Ahmad, R.; Kuk, H.; Lee, D.H.; Hahn, Y.-B.; Khang, G. Rapid methyl orange degradation using porous ZnO spheres photocatalyst. J. Photochem. Photobiol. B 2016, 161, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Dhiman, P.; Vo, D.-V.N.; Stadler, F.J. Fe3O4/ZnO/Si3N4 nanocomposite based photocatalyst for the degradation of dyes from aqueous solution. Mater. Lett. 2020, 278, 128359. [Google Scholar] [CrossRef]
- Fu, M.; Li, Y.; Lu, P.; Liu, J.; Dong, F. Sol–gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl. Surf. Sci. 2011, 258, 1587–1591. [Google Scholar] [CrossRef]
Degradation of MB Dye | ||||||
Catalyst | Dye Concentration | Irradiation Source | Photocatalyst Dose | Time (min) | Degradation (%) | Ref. |
Mn3O4/ZnO/Eu2O3 | 5 ppm | Sunlight | 15 mg | 150 | 98 | Herein |
S-ZnO NPs | 20 μM | Sunlight | 30 mg | 45 | 61.5 | [42] |
N/La-ZnO | 15 ppm | Sunlight | 50 mg | 60 | 97 | [43] |
ZnO-SiO2 | 9 ppm | Sunlight | 10 mg | 90 | 97.8 | [44] |
ZnO NWs | 10 ppm | Sunlight | 100 mg/L | 4320 | 100 | [45] |
Ce-Ag-ZnO/Fe3O4 | 10 ppm | UV lamp 15 W | 30 mg | 100 | 99 | [46] |
WO3/ZnO-rGO | 5 ppm | Vis. 200 W | 10 mg | 90 | 94.1 | [47] |
Ag-ZnO/GO | 15 ppm | Xe lamp 20 W | 20 mg | 180 | 85 | [48] |
TiO2/ZnO/rGO | 0.3 ppm | Xe lamp 300 W | 0.1 g/L | 120 | 92 | [49] |
Mn-ZnO | 10 ppm | UV Lamp | 24 mg | 90 | 60 | [50] |
1.5%Nd-Gd-ZnO | 20 mg/L | Vis. 300 W | 100 mg/L | 120 | 93 | [51] |
rGO-ZnO | 5 × 10−4 mol/L | Vis. light | 100 mg/L | 120 | 90 | [52] |
ZnO-CdO | 3 × 10−5 mol/L | Xe lamp 250 W | - | 360 | 97.8 | [53] |
ZnO NPs | 15 ppm | Hg lamp 10 W | 100 mg | 120 | 90 | [54] |
Ag/ZnO | 2 × 10−5 M | Xe lamp 100 W | 100 mg | 120 | 76 | [55] |
ZnO/AC | 2 × 10−5 M | Hg lamp 30 W | 25 mg | 45 | 92.2 | [56] |
Degradation of MO Dye | ||||||
Catalyst | Dye Concentration | Irradiation Source | Photocatalyst Dose | Time (min) | Degradation (%) | Ref. |
Mn3O4/ZnO/Eu2O3 | 5 ppm | Sunlight | 15 mg | 150 | 96 | Herein |
ZnO/biochar | 25 ppm | UV Lamp 125 W | 1 g/L | 120 | 90.8 | [57] |
Gd-doped ZnO | 16 ppm | UV Lamp 160 W | 100 mg | 90 | 85.3 | [58] |
ZnO-CuO | - | UV Lamp | 30 mg | 120 | 92.18 | [59] |
Ag-ZnO | 10 ppm | Sunlight | 120 mg | 50 | 92.9 | [60] |
ZnO/NiAl-LDH | 100 ppm | Hg lamp 100 W | 100 mg | 540 | 100 | [61] |
ZnONR-RGO | 10 ppm | Hg lamp 250 W | 45 mg | 90 | 83 | [62] |
Ag-ZnONR | 0.05 mM | UV Lamp 10 W | 10 mg | 120 | 88 | [63] |
ZnONR-Cu | 0.03 mM | UV Lamp 10 W | 5 mg | 180 | 57.5 | [64] |
Mg-doped ZnO | 20 ppm | Hg lamp 20 W | 100 mg | 120 | 73 | [65] |
Cu-doped ZnO | 2 × 10−6 M | UV Lamp | 10 mg | 160 | 60 | [66] |
Fe3O4/ZnO-GO | 1 × 10−5 M | Xe lamp 300 W | 20 mg | 150 | 92.8 | [67] |
ZSM-5/ZnO/Ag | 5 ppm | UV Lamp 15 W | 70 mg | 180 | 90 | [68] |
Porous ZnO spheres | 20 ppm | UV Lamp | 0.2 g | 120 | 96.3 | [69] |
Fe3O4/ZnO/Si3N4 | 50 ppm | Xe lamp | 20 mg | 90 | 96 | [70] |
Cu-ZnO NPs | 20 ppm | UV Lamp 15 W | 0.1 g | 240 | 88 | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shubha, J.P.; Savitha, H.S.; Adil, S.F.; Khan, M.; Hatshan, M.R.; Kavalli, K.; Shaik, B. Straightforward Synthesis of Mn3O4/ZnO/Eu2O3-Based Ternary Heterostructure Nano-Photocatalyst and Its Application for the Photodegradation of Methyl Orange and Methylene Blue Dyes. Molecules 2021, 26, 4661. https://doi.org/10.3390/molecules26154661
Shubha JP, Savitha HS, Adil SF, Khan M, Hatshan MR, Kavalli K, Shaik B. Straightforward Synthesis of Mn3O4/ZnO/Eu2O3-Based Ternary Heterostructure Nano-Photocatalyst and Its Application for the Photodegradation of Methyl Orange and Methylene Blue Dyes. Molecules. 2021; 26(15):4661. https://doi.org/10.3390/molecules26154661
Chicago/Turabian StyleShubha, Jayachamarajapura Pranesh, Haralahalli Shivappa Savitha, Syed Farooq Adil, Mujeeb Khan, Mohammad Rafe Hatshan, Kiran Kavalli, and Baji Shaik. 2021. "Straightforward Synthesis of Mn3O4/ZnO/Eu2O3-Based Ternary Heterostructure Nano-Photocatalyst and Its Application for the Photodegradation of Methyl Orange and Methylene Blue Dyes" Molecules 26, no. 15: 4661. https://doi.org/10.3390/molecules26154661
APA StyleShubha, J. P., Savitha, H. S., Adil, S. F., Khan, M., Hatshan, M. R., Kavalli, K., & Shaik, B. (2021). Straightforward Synthesis of Mn3O4/ZnO/Eu2O3-Based Ternary Heterostructure Nano-Photocatalyst and Its Application for the Photodegradation of Methyl Orange and Methylene Blue Dyes. Molecules, 26(15), 4661. https://doi.org/10.3390/molecules26154661