Cytotoxicity of Frutalin on Distinct Cancer Cells Is Independent of Its Glycosylation
Abstract
:1. Introduction
2. Results
2.1. Expression and Purification of Recombinant Frutalin
2.2. Protein Homogeneity Analysis by Dynamic Light Scattering (DLS)
2.3. Hemagglutinating Activity
2.4. Interaction with Methyl-α-Galactose
2.5. Antitumor Activity
3. Discussion
4. Materials and Methods
4.1. Construction of Expression Vector
4.2. Recombinant Protein Production and Purification
4.3. Dynamic Light Scattering (DLS)
4.4. Hemagglutination Assays
4.5. Recombinant Frutalin Three-Dimensional (3D) Model Building
4.6. Fluorescence Studies
4.7. Human Cancer Cell Lines and Growth Conditions
4.8. Sulforhodamine B (SRB) Assay
4.9. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Abdon, A.P.V.; De Souza, G.C.; De Souza, L.N.C.; Vasconcelos, R.P.; Castro, C.A.; Guedes, M.M.; Júnior, R.C.P.L.; Moreira, R.D.A.; Monteiro-Moreira, A.C.; Campos, A.R. Gastroprotective potential of frutalin, a d-galactose binding lectin, against ethanol-induced gastric lesions. Fitoterapia 2012, 83, 604–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Sousa, F.D.; Vasconselos, P.D.; da Silva, A.F.B.; Mota, E.F.; Tomé, A.D.R.; Mendes, F.R.D.S.; Gomes, A.M.M.; Abraham, D.J.; Shiwen, X.; Owen, J.S.; et al. Hydrogel and membrane scaffold formulations of Frutalin (breadfruit lectin) within a polysaccharide galactomannan matrix have potential for wound healing. Int. J. Biol. Macromol. 2019, 121, 429–442. [Google Scholar] [CrossRef]
- Araújo, J.R.C.; Júnior, J.D.M.A.D.M.; Damasceno, M.D.B.M.V.; Santos, S.A.A.R.; Vieira-Neto, A.E.; Lobo, M.D.P.; Campos, A.R.; Moreira, R.D.A.; Monteiro-Moreira, A.C.D.O. Neuropharmacological characterization of frutalin in mice: Evidence of an antidepressant-like effect mediated by the NMDA receptor/NO/cGMP pathway. Int. J. Biol. Macromol. 2018, 112, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Nicolau, A.; Teixeira, J.A.; Domingues, L. Cytotoxic Effects of Native and Recombinant Frutalin, a Plant Galactose-Binding Lectin, on HeLa Cervical Cancer Cells. J. Biomed. Biotechnol. 2011, 2011, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, C.; Teixeira, J.; Domingues, L. Recombinant lectins: An array of tailor-made glycan-interaction biosynthetic tools. Crit. Rev. Biotechnol. 2012, 33, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Costa, S.; Teixeira, J.; Domingues, L. cDNA Cloning and Functional Expression of the α-d-Galactose-Binding Lectin Frutalin in Escherichia coli. Mol. Biotechnol. 2009, 43, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Biswas, H.; Chattopadhyaya, R. Stability ofCurcuma longarhizome lectin: Role of N-linked glycosylation. Glycobiology 2015, 26, 410–426. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.; Felix, W.; Moreira, R.D.A.; Teixeira, J.; Domingues, L. Expression of frutalin, an α-d-galactose-binding jacalin-related lectin, in the yeast Pichia pastoris. Protein Expr. Purif. 2008, 60, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.; Teixeira, J.A.; Schmitt, F.; Domingues, L. A comparative study of recombinant and native frutalin binding to human prostate tissues. BMC Biotechnol. 2009, 9, 78. [Google Scholar] [CrossRef] [Green Version]
- Yadav, D.K.; Yadav, N.; Yadav, S.; Haque, S.; Tuteja, N. An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Arch. Biochem. Biophys. 2016, 612, 57–77. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Domingues, L. Guidelines to reach high-quality purified recombinant proteins. Appl. Microbiol. Biotechnol. 2017, 102, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Ki, M.-R.; Pack, S.P. Fusion tags to enhance heterologous protein expression. Appl. Microbiol. Biotechnol. 2020, 104, 2411–2425. [Google Scholar] [CrossRef]
- Ramos, R.; Domingues, L.; Gama, M. Escherichia coli expression and purification of LL37 fused to a family III carbohydrate-binding module from Clostridium thermocellum. Protein Expr. Purif. 2010, 71, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Costa, S.J.; Almeida, A.; Castro, A.; Domingues, L.; Besir, H. The novel Fh8 and H fusion partners for soluble protein expression in Escherichia coli: A comparison with the traditional gene fusion technology. Appl. Microbiol. Biotechnol. 2012, 97, 6779–6791. [Google Scholar] [CrossRef] [Green Version]
- Vieira-Neto, A.E.; De Sousa, F.D.; Pereira, H.D.; Moreno, F.B.M.B.; Lourenzoni, M.R.; Grangeiro, T.B.; Monteiro-Moreira, A.C.D.O.; Moreira, R.D.A. New structural insights into anomeric carbohydrate recognition by frutalin: An α-d-galactose-binding lectin from breadfruit seeds. Biochem. J. 2019, 476, 101–113. [Google Scholar] [CrossRef]
- Moreira, R.D.A.; Castelo-Branco, C.; Monteiro, A.C.; Tavares, R.O.; Beltramini, L. Isolation and partial characterization of a lectin from Artocarpus incisa L. seeds. Phytochemistry 1998, 47, 1183–1188. [Google Scholar] [CrossRef]
- Klafke, G.B.; Moreira, G.M.S.G.; Pereira, J.L.; Oliveira, P.D.; Conceição, F.R.; Lund, R.G.; Grassmann, A.A.; Dellagostin, O.A.; Pinto, L.D.S. Lectin I from Bauhinia variegata (BVL-I) expressed by Pichia pastoris inhibits initial adhesion of oral bacteria in vitro. Int. J. Biol. Macromol. 2016, 93, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Sahasrabuddhe, A.A.; Gaikwad, S.M.; Krishnasastry, M.; Khan, M.I. Studies on recombinant single chain Jacalin lectin reveal reduced affinity for saccharides despite normal folding like native Jacalin. Protein Sci. 2009, 13, 3264–3273. [Google Scholar] [CrossRef] [PubMed]
- Sahasrabuddhe, A.; Ahmed, N.; Krishnasastry, M. Stress-induced phosphorylation of caveolin-1 and p38, and down-regulation of EGFr and ERK by the dietary lectin jacalin in two human carcinoma cell lines. Cell Stress Chaperon 2006, 11, 135–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, L.D.S.; Cardoso, G.; Kremer, F.S.; Woloski, R.D.D.S.; Dellagostin, O.A.; Campos, V.F. Heterologous expression and characterization of a new galactose-binding lectin from Bauhinia forficata with antiproliferative activity. Int. J. Biol. Macromol. 2019, 128, 877–884. [Google Scholar] [CrossRef]
- Poiroux, G.; Barre, A.; Van Damme, E.J.M.; Benoist, H.; Rougé, P. Plant Lectins Targeting O-Glycans at the Cell Surface as Tools for Cancer Diagnosis, Prognosis and Therapy. Int. J. Mol. Sci. 2017, 18, 1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhutia, S.K.; Panda, P.K.; Sinha, N.; Praharaj, P.P.; Bhol, C.S.; Panigrahi, D.P.; Mahapatra, K.K.; Saha, S.; Patra, S.; Mishra, S.R.; et al. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacol. Res. 2019, 144, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Zhao, H.; Wang, Y.; Cai, H.; Xiao, Y.; Zeng, Y.; Chen, H. Tumor-associated antigens: Tn antigen, sTn antigen, and T antigen. HLA 2016, 88, 275–286. [Google Scholar] [CrossRef]
- Jeyaprakash, A.; Rani, P.G.; Reddy, G.B.; Banumathi, S.; Betzel, C.; Sekar, K.; Surolia, A.; Vijayan, M. Crystal Structure of the Jacalin–T-antigen Complex and a Comparative Study of Lectin–T-antigen Complexes. J. Mol. Biol. 2002, 321, 637–645. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Celis, U.; López-Martínez, F.J.; Cervantes-Jiménez, R.; Ferríz-Martínez, R.A.; Blanco-Labra, A.; García-Gasca, T. Tepary Bean (Phaseolus acutifolius) Lectins Induce Apoptosis and Cell Arrest in G0/G1 by P53(Ser46) Phosphorylation in Colon Cancer Cells. Molecules 2020, 25, 1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T.G.; Bertoni, M.; Bordoli, L.; et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014, 42, W252–W258. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Soares, J.; Raimundo, L.; Pereira, N.A.; dos Santos, D.; Pérez, M.; Queiroz, G.; Leão, M.; Santos, M.; Saraiva, L. A tryptophanol-derived oxazolopiperidone lactam is cytotoxic against tumors via inhibition of p53 interaction with murine double minute proteins. Pharmacol. Res. 2015, 95–96, 42–52. [Google Scholar] [CrossRef] [Green Version]
Frutalin Version | Amino Acid Sequence | Theoretical pI/Mw | Reference |
---|---|---|---|
Frutalin produced in P. pastoris | EFNQQSGKSQTVIVGPWGAKVSTSSNGKAFDDGAFTGIREIN LSYNKETAIGDFQVVYDLNGSPYVGQNHKSFITGFTPVKISLD FPSEYIMEVSGYTGNVSGYVVVRSLTFKTNKKTYGPYGVTSGT PFNLPIENGLIVGFKGSIGYWLDYFSMYLSL * | 6.87/17381.52 | [8] |
Frutalin produced in E. coli in fusion with TrxA (TrxFTL) | MSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPCKMIAP ILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKN GEVAATKVGALSKGQLKEFLDANLAGSGSGHMHHHHHHS SGENLYFQGAMGNQQSGKSQTVIVGPWGAKVSTSSNGKAF DDGAFTGIREINLSYNKETAIGDFQVVYDLNGSPYVGQNHKS FITGFTPVKISLDFPSEYIMEVSGYTGNVSGYVVVRSLTFKTNK KTYGPYGVTSGTPFNLPIENGLIVGFKGSIGYWLDYFSMYLSL * | 5.97/31672.78 | This work |
Frutalin produced in E. coli cleaved from TrxFTL (cFTL) | GAMGNQQSGKSQTVIVGPWGAKVSTSSNGKAFDDGAFTGI REINLSYNKETAIGDFQVVYDLNGSPYVGQNHKSFITGFTPV KISLDFPSEYIMEVSGYTGNVSGYVVVRSLTFKTNKKTYGPYG VTSGTPFNLPIENGLIVGFKGSIGYWLDYFSMYLSL * | 8.05/17421.61 | This work |
Frutalin Version | Cancer Cell Lines | GI50 (μM) |
---|---|---|
Frutalin produced in P. pastoris | HCT116 p53+/+ | 8.5 ± 0.6 |
Frutalin produced in E. coli in fusion with TrxA (TrxFTL) | HCT116 p53+/+ | 8.7 ± 2.6 |
HCT116 p53−/− | 25.0 ± 3.0 ** | |
A375 | 8.5 ± 0.8 | |
IGROV-1 | 10.3 ± 0.7 | |
MDA-MB-231 | 11.8 ± 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, C.; Freitas, A.I.; Campos, N.; Saraiva, L.; Domingues, L. Cytotoxicity of Frutalin on Distinct Cancer Cells Is Independent of Its Glycosylation. Molecules 2021, 26, 4712. https://doi.org/10.3390/molecules26164712
Oliveira C, Freitas AI, Campos N, Saraiva L, Domingues L. Cytotoxicity of Frutalin on Distinct Cancer Cells Is Independent of Its Glycosylation. Molecules. 2021; 26(16):4712. https://doi.org/10.3390/molecules26164712
Chicago/Turabian StyleOliveira, Carla, Ana Isabel Freitas, Nair Campos, Lucília Saraiva, and Lucília Domingues. 2021. "Cytotoxicity of Frutalin on Distinct Cancer Cells Is Independent of Its Glycosylation" Molecules 26, no. 16: 4712. https://doi.org/10.3390/molecules26164712
APA StyleOliveira, C., Freitas, A. I., Campos, N., Saraiva, L., & Domingues, L. (2021). Cytotoxicity of Frutalin on Distinct Cancer Cells Is Independent of Its Glycosylation. Molecules, 26(16), 4712. https://doi.org/10.3390/molecules26164712