Ecotoxicity of the Adipate Plasticizers: Influence of the Structure of the Alcohol Substituent
Abstract
:1. Introduction
2. Results
2.1. Synthesis of Butoxyethanol
2.2. The Synthesis of Esters of Adipic Acid and Butoxyethanol
2.3. IR Spectra
2.4. Determination of Glass Transition Temperatures
2.5. Study of the Environmental Safety of Plasticizers by the Phytotesting Method
2.6. Study of the Fungal Resistance of Alkyl Butoxyethyl Adipates
2.7. Biodegradation of Alkyl Butoxyethyl Adipates in Soil
3. Discussions
4. Materials and Methods
4.1. Materials
4.2. Synthesis Methods
4.2.1. Synthesis of Ethoxylated Butanol
4.2.2. The Synthesis of Esters of Adipic Acid and Ethoxylated Butanol
4.3. Methods of Analysis
4.3.1. Analysis of Physicochemical Parameters of Plasticizer
4.3.2. Characterization of Esters of Adipic Acid
4.3.3. Determination of Glass Transition Temperature
4.3.4. Study of the Environmental Safety of Plasticizers by the Phytotesting Method
4.3.5. Study of Fungal Resistance of Adipates
4.3.6. Study of Biodegradation of Adipates in Soil
4.3.7. High Performance Liquid Chromatography
4.4. Preparation of Film Samples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- McLaughlin, D. Fooling with Nature: Silent Spring Revisited. 2010. Available online: https://www.pbs.org/wgbh/pages/frontline/shows/nature/disrupt/sspring.html (accessed on 8 July 2021).
- Paull, J. The Rachel Carson Letters and the Making of Silent Spring. Sage Open 2013, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Luís, Â.; Ramos, A.; Domingues, F. Pullulan–Apple Fiber Biocomposite Films: Optical, Mechanical, Barrier, Antioxidant and Antibacterial Properties. Polymers 2021, 13, 870. [Google Scholar] [CrossRef] [PubMed]
- Ryberg, M.W.; Laurent, A.; Hauschild, M. UN Environment. Mapping of Global Plastics Value Chain and Plastics Losses to the Environment (with a Particular Focus on Marine Environment). 2018. Available online: https://backend.orbit.dtu.dk/ws/portalfiles/portal/163092267/UN_2018_Mapping_of208_global_plastics_value_chain_and_hotspots_final_version.pdf/ (accessed on 2 May 2020).
- Malizia, A.; Monmany-Garzia, A.C. Terrestrial ecologists should stop ignoring plastic pollution in the Anthropocene time. Sci. Total Environ. 2019, 668, 1025–1029. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Rocher, V.; Mohamed, S.; Tassin, B. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar] [CrossRef]
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaei, M.; Riksen, M.J.; Sirjani, E.; Sameni, A.; Geissen, V. Wind erosion as a driver for transport of light density microplastics. Sci. Total Environ. 2019, 669, 273–281. [Google Scholar] [CrossRef]
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. Trends Anal. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- Ali, M.I.; Ahmed, S.; Robson, G.; Javed, I.; Ali, N.; Atiq, N.; Hameed, A. Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. J. Basic Microbiol. 2014, 54, 18–27. [Google Scholar] [CrossRef]
- Cosgrove, L.; McGeechan, P.L.; Robson, G.D.; Handley, P.S. Fungal communities associated with degradation of polyester polyurethane in soil. Appl. Environ. Microbiol. 2007, 73, 5817–5824. [Google Scholar] [CrossRef] [Green Version]
- Crabbe, J.R.; Campbell, J.R.; Thompson, L.; Walz, S.L.; Schultz, W.W. Biodegradation of a colloidal ester-based polyurethane by soil fungi. Int. Biodeter. Biodegr. 1994, 33, 103–113. [Google Scholar] [CrossRef]
- Kemmitt, S.J.; Lanyon, C.V.; Waite, I.S.; Wen, Q.; Addiscott, T.M.; Bird, N.R.A.; O’Donnell, A.G.; Brookes, P.C. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—A new perspective. Soil Biol. Biochem. 2008, 40, 61–73. [Google Scholar] [CrossRef]
- Swift, M.J.; Heal, O.W.; Anderson, J.M. Decomposition in terrestrial ecosystems. Oxf. Blackwell Sci. Publ. 1979, 5, 372. [Google Scholar]
- Filser, J.; Faber, J.H.; Tiunov, A.V.; Brussaard, L.; Frouz, J.; De Deyn, G.; Uvarov, A.V.; Berg, M.P.; Lavelle, P.; Loreau, M.; et al. Soil fauna: Key to new carbon models. Soil 2016, 2, 565–582. [Google Scholar] [CrossRef] [Green Version]
- Byzov, B.A. Zoomicrobial Interactions in Soil; GEOS: Moscow, Russia, 2005. [Google Scholar]
- Striganova, B.R. Locomotor and trophic activity of invertebrates as a factor of soil structure formation. Soil Sci. 2000, 10, 1247–1254. [Google Scholar]
- Striganova, B.R. Nutrition of Soil Saprophages; Nauka: Moscow, Russia, 1980. [Google Scholar]
- Galloway, T.S.; Cole, M.; Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 2017, 1, 0116. [Google Scholar] [CrossRef]
- Chae, Y.; An, Y.-J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environ. Pollut. 2018, 240, 387–395. [Google Scholar] [CrossRef]
- Yvonne, S. Conservation of Plastics: Materials Science, Degradation and Preservation; Butterworth Heinemann: Oxford, UK, 2008; p. 286. [Google Scholar]
- Babić, S.; Barišić, J.; Bielen, A.; Bošnjak, I.; Klobučar, R.S.; Ujević, I.; Strunjak-perović, I.; Popović, N.T.; Čož-rakovac, R. Multilevel ecotoxicity assessment of environmentally relevant bisphenol A concentrations using the soil invertebrate Eisenia fetida. J. Hazard. Mater. 2016, 318, 477–486. [Google Scholar] [CrossRef]
- Gaylor, M.O.; Harvey, E.; Hale, R.C. Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and penta-BDE-amended soils. Environ. Sci. Technol. 2013, 47, 13831–13839. [Google Scholar] [CrossRef]
- Avio, C.G.; Gorbi, S.; Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 2017, 128, 2–11. [Google Scholar] [CrossRef]
- Staples, C.A.; Peterson, D.R.; Parkerton, T.F.; Adams, W.J. The environmental fate of phthalate esters: A literature review. Chemosphere 1997, 35, 667. [Google Scholar] [CrossRef]
- Fromme, H.; Kücher, T.; Otto, T.; Pilz, K.; Müller, J.; Wenzel, A. Occurrence of phthalates and bisphenol A and F in the environment. Water Res. 2002, 36, 1429. [Google Scholar] [CrossRef]
- Fernandez, M.P.; Ikonomou, M.G.; Buchanan, I. An assessment of estrogenic organic contaminants in Canadian wastewaters. Sci. Total Environ. 2007, 373, 250. [Google Scholar] [CrossRef]
- Zeng, F.; Cui, K.; Xie, Z.; Wu, L.; Luo, D.; Chen, L.; Lin, Y.; Liu, M.; Sun, G. Distribution of phthalate esters in urban soils of subtropical city, Guangzhou (China). J. Hazard. Mater. 2009, 164, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Lazarev, N.; Levina, E. Harmful Substances in Industry: Handbook for Chemists, Engineers and Doctors; Chemistry Publ.: Leningrad, Russia, 1976. [Google Scholar]
- Harris, C.A.; Henttu, P.; Parker, M.G. The estrogenic activity of phthalate esters in vitro. Environ. Health Perspect. 1997, 105, 802. [Google Scholar] [CrossRef] [PubMed]
- Paganeto, G.O.; Campi, F.; Varani, K. Endocrinedisrupting agents on health human tissues. Pharm. Toxicol. 2000, 86, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrovic, M.; Barceló, D. Determination of anionic and non ionic surfactants, their degradation products, and endocrine-disrupting compounds on sewage sludge by liquid chromatography/mass spectrometry. Anal. Chem. 2000, 72, 4560. [Google Scholar] [CrossRef]
- Felder, J.D.; Adams, W.J.; Saege, V.W. Assessment of the safety of dioctyl adipate in freshwater environments. Environ. Toxicol. Chem. 1986, 5, 777–784. [Google Scholar] [CrossRef]
- Webb, J.S.; Nixon, M.; Eastwood, I.M.; Greenhalgh, M.; Robson, G.D.; Handley, A.S. Fungal Colonization and Biodeterioration of Plasticized Polyvinyl Chloride. Appl. Environ. Microbiol. 2000, 66, 3194–3200. [Google Scholar] [CrossRef] [Green Version]
- Yabannavar, A.V.; Barth, R. Methods for Assessment of Biodegradability of Plastic Films in Soil. Appl. Environ. Microbiol. 1994, 60, 3608–3614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.A.; Bann, B.; Thrower, R.D. The reaction between phenol and ethylene oxide. J. Chem. Soc. 1950, 1, 3623–3628. [Google Scholar] [CrossRef]
- Staude, F. The lithium phenoxide Catalyzed Addition of propylene oxide to phenol. Polym. J. 1971, 2, 468–474. [Google Scholar] [CrossRef] [Green Version]
- Mazitova, A.K.; Vikhareva, I.N.; Aminova, G.K.; Savicheva, J.N. Application of Zinc Oxide to Obtain and Modify Properties of Adipate Plasticizer of Polyvinyl Chloride. Polymers 2020, 12, 1728. [Google Scholar] [CrossRef]
- Vikhareva, I.N.; Aminova, G.K.; Buylova, E.A.; Mazitova, A.K. Synthesis and investigation of the properties of a plasticizer based on petrochemical raw materials. Oil Gas Bus. 2020, 4, 57–73. [Google Scholar] [CrossRef]
- Interstate Standard 8728-88. Plasticizers. Specifications; IPK Publishing House of Standards: Moscow, Russia, 2003; p. 11. [Google Scholar]
- Gray, T.J.B.; Gangolli, S.D. Aspects of the testicular toxicity of phthalateesters. Environ. Health Perspect. 1986, 65, 229–235. [Google Scholar]
- Richburg, J.H.; Boekelheide, K. Mono-(2-ethylhexyl) phthalate rapidly alters both sertoli cell vimentin filaments and germ cell apoptosis in young rat testes. Toxicol. Appl. Pharm. 1996, 137, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Lovekamp-Swan, T.; Davis, B.J. Mechanisms of phthalate ester toxicity in the female reproductive system. Environ. Health Perspect. 2003, 111, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Swan, S.H.; Main, K.M.; Liu, F.; Stewart, S.L.; Kruse, R.L.; Calafat, A.M.; Mao, C.S.; Redmon, J.B.; Ternand, C.L.; Sullivan, S.; et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ. Health Perspect. 2005, 113, 1056–1061. [Google Scholar] [CrossRef] [Green Version]
- Pant, N.; Shukla, M.; Patel, D.K.; Shukla, Y.; Mathur, N.; Gupta, Y.K.; Saxena, D.K. Correlation of phthalate exposures with semen quality. Toxicol. Appl. Pharmacol. 2008, 231, 112–116. [Google Scholar] [CrossRef]
- Fan, J.; Traore, K.; Li, W.; Amri, H.; Huang, H.; Wu, C.; Chen, H.; Zirkin, B.; Papadopoulos, V. Molecular mechanisms mediating the effect of mono-(2-ethylhexyl) phthalate on hormone-stimulated steroidogenesis in MA-10 mouse tumor leydig cells. Endocrinology 2010, 151, 3348–3362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayachkina, N.V.; Chugunova, M.V. Features of soil biotesting for the purpose of their ecotoxicological assessment. Bull. Lobachevsky Univ. Nizhny Novgorod 2009, 1, 84–93. [Google Scholar]
- Bubnov, A.G.; Buymova, S.A.; Gushchin, A.A.; Izvekova, T.V. Biotest Analysis-an Integral Method for Assessing the Quality of Environmental Objects; ISCTU: Ivanovo, Russia, 2007. [Google Scholar]
- Melekhova, O.P.; Egorova, E.I.; Evseeva, T.I. Biological Control of the Environment. Bioindication and Biotesting; Moscow Academy: Moscow, Russia, 2007. [Google Scholar]
- Interstate Standard 18329-2014. Liquid Resins and Plasticizers. Methods for Determination of Density; FSA STANDARTINFORM: Мoscow, Russia, 2015; p. 8. [Google Scholar]
- Interstate Standard 12038-84. Agricultural Seeds. Methods for Determination of Germination; IPK Publishing House of Standards: Мoscow, Russia, 2004; p. 24. [Google Scholar]
- Volkova, I.I. Ecological Soil Science; YarSU: Yaroslavl, Russia, 2013. [Google Scholar]
- Bagdasaryan, A.S. The effectiveness of the use of test systems in assessing the toxicity of natural environments. Ecol. Ind. Russ. 2007, 1, 44–48. [Google Scholar]
- Kabirov, R.R.; Sagitova, A.R.; Suhanova, N.V. Development and use of a multi-component test system for assessing the toxicity of the soil roof of an urban area. Ecology 1997, 6, 408–411. [Google Scholar]
Ester | Indicators | |||
---|---|---|---|---|
Molecular Weight | Acid Number mg KOH/g | Ester Number mg KOH/g | d204 | |
BBEA | 302 | 0.1 | 369 | 1.0452 |
HBEA | 330 | 0.1 | 337 | 1.0636 |
OBEA | 358 | 0.1 | 311 | 1.0819 |
DBEA | 386 | 0.1 | 288 | 1.1003 |
PVC Composition | Glass Transition Temperature, °C | ∆T, °C |
---|---|---|
PVC | 87.5 | – |
DOP | −37.0 | 124.5 |
BBEA | −48.7 | 136.2 |
HBEA | −49.2 | 136.7 |
OBEA | −49.7 | 137.2 |
DBEA | −50.2 | 137.7 |
Sample | Indicators | ||||||
---|---|---|---|---|---|---|---|
Average Root Length, cm | Average Length of the Ground Part, cm | Seed Germination, % | Germination Energy for 5 Days, % | ITF | Average Soil Toxicity | ||
Control | watercress | 1.96 | 0.51 | 93 | 81 | 1.22 | 1.29 |
radish | 14.36 | 8.32 | 91 | 77 | 1.35 | ||
BBEA | watercress | 2.01 | 0.56 | 90 | 76 | 1.02 | 1.01 |
radish | 14.42 | 8.64 | 91 | 77 | 1.00 | ||
HBEA | watercress | 1.95 | 0.50 | 87 | 72 | 0.99 | 1.00 |
radish | 14.30 | 8.90 | 90 | 73 | 1.00 | ||
OBEA | watercress | 1.80 | 0.38 | 73 | 69 | 0.92 | 0.95 |
radish | 13.90 | 8.01 | 75 | 64 | 0.97 | ||
DBEA | watercress | 1.62 | 0.24 | 65 | 60 | 0.83 | 0.84 |
radish | 12.21 | 7.19 | 62 | 61 | 0.85 |
Ester | The Degree of Fouling in Points | ||
---|---|---|---|
Aspergillus niger | Pénicillium funiculosum | Trichoderma lignorum | |
BBEA | 4 | 4 | 4 |
HBEA | 4 | 4 | 4 |
OBEA | 3 | 3 | 3 |
DBEA | 3 | 3 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vikhareva, I.N.; Aminova, G.K.; Mazitova, A.K. Ecotoxicity of the Adipate Plasticizers: Influence of the Structure of the Alcohol Substituent. Molecules 2021, 26, 4833. https://doi.org/10.3390/molecules26164833
Vikhareva IN, Aminova GK, Mazitova AK. Ecotoxicity of the Adipate Plasticizers: Influence of the Structure of the Alcohol Substituent. Molecules. 2021; 26(16):4833. https://doi.org/10.3390/molecules26164833
Chicago/Turabian StyleVikhareva, Irina Nikolaevna, Guliya Karamovna Aminova, and Aliya Karamovna Mazitova. 2021. "Ecotoxicity of the Adipate Plasticizers: Influence of the Structure of the Alcohol Substituent" Molecules 26, no. 16: 4833. https://doi.org/10.3390/molecules26164833
APA StyleVikhareva, I. N., Aminova, G. K., & Mazitova, A. K. (2021). Ecotoxicity of the Adipate Plasticizers: Influence of the Structure of the Alcohol Substituent. Molecules, 26(16), 4833. https://doi.org/10.3390/molecules26164833