The Role of Allium subhirsutum L. in the Attenuation of Dermal Wounds by Modulating Oxidative Stress and Inflammation in Wistar Albino Rats
Abstract
:1. Introduction
2. Results & Discussion
2.1. Phytochemical Analysis
2.2. Antioxidant Potential Analysis
2.3. Wound Closure
2.3.1. Chromatic Study
2.3.2. Effect of Allium Subhirsutum L. Extract and Oil on Percentage Wound Closure
2.3.3. Effect on Inflammatory Marker
2.4. Oxidative Stress Profile
2.4.1. Oxidative Stress Markers of Granulation Tissue
2.4.2. Enzymatic Antioxidant Profile of Granulation Tissue
2.4.3. Correlation Matrix between Phytochemicals of Allium subhirsutum L., Oxidative Stress, Fibrinogen and Wound Reduction
3. Materials and Methods
3.1. Plant Material and Extraction
3.2. Phytochemical Analysis
3.2.1. Total Phenolic Content
3.2.2. Total Flavonoid Content
3.2.3. Total Tannins Content
3.3. Antioxidant Potential Analysis
3.3.1. DPPH Free Radical Scavenging Assay
3.3.2. Ferric Reducing Antioxidant Power
3.3.3. Total Antioxidant Activity Assay by Radical Cation (ABTS+)
3.3.4. Total Antioxidant Capacities (TAC)
3.4. Wound Healing Assay
3.4.1. Animals
3.4.2. Wound Treatment
3.4.3. Percentage of Wound Closure Rate
3.4.4. Collection of Blood and Tissue
3.4.5. Determination of Inflammatory Markers
3.5. Determination of Oxidative Stress Markers of Granulation Tissue
3.5.1. Thiobarbituric Acid Reactive Substances (TBARS)
3.5.2. Conjugated Diene (CD)
3.5.3. Advanced Oxidation of Protein Products Levels (AOPP)
3.5.4. Carbonyl Protein (CP)
3.6. Determination of Enzymatic Antioxidant Profile of the Granulation Tissue
3.6.1. Superoxide Dismutase Activity (SOD)
3.6.2. Glutathione Peroxidase Activity (GPx)
3.6.3. Catalase Activity (CAT)
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pastar, I.; Wong, L.L.; Egger, A.N.; Tomic-Canic, M. Descriptive vs mechanistic scientific approach to study wound healing and its inhibition: Is there a value of translational research involving human subjects? Exp. Dermatol. 2018, 27, 551–562. [Google Scholar] [CrossRef]
- Shetty, S.; Udupa, S.; Udupa, L. Evaluation of antioxidant and wound healing effects of alcoholic and aqueous extract of Ocimum sanctum Linn in rats. Evid. Based Compl. Alt. Med. 2008, 5, 95–101. [Google Scholar] [CrossRef]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Biological properties and therapeutic activities of honey in wound healing: A narrative review and meta-analysis. J. Tissue Viability 2016, 25, 98–118. [Google Scholar] [CrossRef] [PubMed]
- Djemaa, F.G.B.; Bellassoued, K.; Zouari, S.; El Feki, A.; Ammar, E. Antioxidant and wound healing activity of Lavandula aspic L. ointment. J. Tissue Viability 2016, 25, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xu, T.; Yan, J.; Li, X.; Xie, Y.; Chen, H. Fabrication and characterization of matrine-loaded konjacglucomannan/fish gelatin composite hydrogel as antimicrobial wound dressing. Food Hydrocoll. 2020, 104, 105–702. [Google Scholar] [CrossRef]
- Yadav, A.; Verma, S.; Keshri, G.K.; Gupta, A. Role of 904 nm superpulsed laser-mediated photobiomodulation on nitroxidative stress and redox homeostasis in burn wound healing. Photodermatol. Photoimmunol. Photomed. 2020, 36, 208–218. [Google Scholar] [CrossRef]
- Firat, E.T.; Dağ, A.; Günay, A.; Kaya, B.; Karadede, M.İ.; Kanay, B.E.; Ketani, A.; Evliyaoglu, O.; Uysal, E. The effects of low-level laser therapy on palatal mucoperiosteal wound healing and oxidative stress status in experimental diabetic rats. Photomed. Laser Surg. 2013, 31, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Serarslan, G.; Altuğ, E.; Kontas, T.; Atik, E.; Avci, G. Caffeic acid phenetyl ester accelerates cutaneous wound healing in a rat model and decreases oxidative stress. Clin. Exp. Dermatol. 2007, 32, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Badraoui, R.; Sahnoun, Z.; Abdelmoula, N.B.; Hakim, A.; Fki, M.; Rebaï, T. May antioxidant status depletion by Tetradifon induce secondary genotoxicity in female Wistar rats via oxidative stress? Pestic. Biochem. Physiol. 2007, 88, 149–155. [Google Scholar] [CrossRef]
- Badraoui, R.; Alrashedi, M.M.; El-May, M.V.; Bardakci, F. Acute respiratory distress syndrome: A life threatening associated complication of SARS-CoV-2 infection induced COVID-19. J. Biomol. Struct. Dyn. 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zammel, N.; Saeed, M.; Bouali, N.; Elkahoui, S.; Alam, J.M.; Rebai, T.; Kausar, M.A.; Adnan, M.; Siddiqui, A.J.; Badraoui, R. Antioxidant and anti-inflammatory effects of Zingiberofficinaleroscoe and Allium subhirsutum: In Silico, biochemical and histological study. Foods 2021, 10, 1383. [Google Scholar] [CrossRef]
- Bai, Q.; Han, K.; Dong, K.; Zheng, C.; Zhang, Y.; Long, Q.; Lu, T. Potential Applications of Nanomaterials and Technology for Diabetic Wound Healing. Int. J. Nanomed. 2020, 15, 9717. [Google Scholar] [CrossRef]
- Akacha, A.; Badraoui, R.; Rebai, T.; Zourgui, L. Effect of Opuntiaficusindica extract on methotrexate-induced testicular injury: A biochemical, docking and histological study. J. Biomol. Struct. Dyn. 2020, 1–11. [Google Scholar] [CrossRef]
- Mzid, M.; Badraoui, R.; Khedir, S.B.; Sahnoun, Z.; Rebai, T. Protective effect of ethanolic extract of Urticaurens L. against the toxicity of imidacloprid on bone remodeling in rats and antioxidant activities. Biomed. Pharmacother. 2017, 91, 1022–1041. [Google Scholar] [CrossRef] [PubMed]
- Sharif, A.; Asif, H.; Younis, W.; Riaz, H.; Bukhari, I.A.; Assiri, A.M. Indigenous medicinal plants of Pakistan used to treat skin diseases: A review. Chin. Med. 2018, 13, 1–26. [Google Scholar]
- Rekik, D.M.; Khedir, S.B.; Daoud, A.; Moalla, K.K.; Rebai, T.; Sahnoun, Z. Wound Healing Effect of Lawsoniainermis. Skin Pharmacol. Physiol. 2019, 32, 295–306. [Google Scholar] [CrossRef]
- Badraoui, R.; Rebai, T.; Elkahoui, S.; Alreshidi, M.; Veettil, V.N.; Noumi, E.; Al-Motair, A.K.; Aouadi, K.; Kadri, A.; De Feo, V.; et al. Allium subhirsutum L. as a Potential Source of Antioxidant and Anticancer Bioactive Molecules: HR-LCMS Phytochemical Profiling, In Vitro and In Vivo Pharmacological Study. Antioxidants 2020, 9, 1003. [Google Scholar] [CrossRef]
- Saoudi, M.; Badraoui, R.; Rahmouni, F.; Jamoussi, K.; El Feki, A. Antioxidant and protective effects of Artemisia campestris essential oil against chlorpyrifos-induced kidney and liver injuries in rats. Front. Physiol. 2021, 12, 194. [Google Scholar] [CrossRef] [PubMed]
- Rahmouni, F.; Saoudi, M.; Amri, N.; El-Feki, A.; Rebai, T.; Badraoui, R. Protective effect of Teucriumpolium on carbon tetrachloride induced genotoxicity and oxidative stress in rats. Arch. Physiol. Biochem. 2018, 124, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Edwards, Q.T.; Colquist, S.; Maradiegue, A. What’s cooking with garlic: Is this complementary and alternative medicine for hypertension? J. Am. Assoc. Nurse Pract. 2005, 17, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Sut, S.; Maggi, F.; Bruno, S.; Badalamenti, N.; Quassinti, L.; Bramucci, M.; Beghelli, D.; Lupidi, G.; Dall’Acqua, S. Hairy garlic (Allium subhirsutum) from Sicily (Italy): LC-DAD-MSn analysis of secondary metabolites and in vitro biological properties. Molecules 2020, 25, 2837. [Google Scholar] [CrossRef]
- Sener, G.; Sakarcan, A.; Yeǧen, B.Ç. Role of garlic in the prevention of ischemia-reperfusion injury. Mol. Nutr. Food Res. 2007, 51, 1345–1352. [Google Scholar] [CrossRef]
- Kothari, D.; Lee, W.D.; Kim, S.K. Allium Flavonols: Health Benefits, Molecular Targets, and Bioavailability. Antioxidants 2020, 9, 888. [Google Scholar] [CrossRef]
- Khan, M.S.; Qureshi, N.A.; Jabeen, F.; Wajid, M.; Sabri, S.; Shakir, M. The role of garlic oil in the amelioration of oxidative stress and tissue damage in rohuLabeorohita treated with silver nanoparticles. Fish. Sci. 2020, 86, 255–269. [Google Scholar] [CrossRef]
- Juan-García, A.; Agahi, F.; Drakonaki, M.; Tedeschi, P.; Font, G.; Juan, C. Cytoprotection assessment against mycotoxins on HepG2 cells by extracts from Allium sativum L. Food Chem. Toxicol. 2021, 151, 112–129. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.S.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygiumaromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef] [PubMed]
- Polerà, N.; Badolato, M.; Perri, F.; Carullo, G.; Aiello, F. Quercetin and its natural sources in wound healing management. Curr. Med. Chem. 2019, 26, 5825–5848. [Google Scholar] [CrossRef]
- Hemmatpor, Z.; Kamali, J.; Mehrabani, M.; Hashemi, S.A.; Marashi, S.M.A.; Pahlevan, S.; Tavakoli-Far, B. Study the Effect of Aqueous Extract of Garlic (Allium sativum) on Healing Procedure of Burn Wound on Rat. Egypt. J. Vet. Sci. 2020, 51, 181–189. [Google Scholar] [CrossRef]
- Nagori, B.P.; Solanki, R. Role of medicinal plants in wound healing. Res. J. Med. Plants 2011, 5, 392–405. [Google Scholar] [CrossRef]
- Majumdar, A.; Sangole, P. Alternative approaches to wound healing. Alexandrescu VA. In Wound Healing: New insights into Ancient Challenges; IntechOpen: London, UK, 2016; p. 459. [Google Scholar]
- Amagase, H.; Petesch, B.L.; Matsuura, H.; Kasuga, S.; Itakura, Y. Intake of garlic and its bioactive components. J. Nutr. 2001, 131, 955S–962S. [Google Scholar] [CrossRef]
- Farhat, Z.; Hershberger, P.A.; Freudenheim, J.L.; Mammen, M.J.; Blair, R.H.; Aga, D.S.; Mu, L. Types of garlic and their anticancer and antioxidant activity: A review of the epidemiologic and experimental evidence. Eur. J. Nutr. 2021, 1–25. [Google Scholar] [CrossRef]
- Jantan, I.; Haque, M.A.; Arshad, L.; Harikrishnan, H.; Septama, A.W.; Mohamed-Hussein, Z.A. Dietary polyphenols suppress chronic inflammation by modulation of multiple inflammation-associated cell signaling pathways. J. Nutr. Biochem. 2021, 93, 108634. [Google Scholar] [CrossRef]
- Yadav, E.; Singh, D.; Yadav, P.; Verma, A. Attenuation of dermal wounds via downregulating oxidative stress and inflammatory markers by protocatechuic acid rich n-butanol fraction of Trianthemaportulacastrum Linn. in wistar albino rats. Biomed. Pharmacother. 2017, 96, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Badraoui, R.; Nasr, H.B.; Louati, R.; Ellouze, F.; Rebai, T. Nephrotoxic effect of tetradifon in rats: A biochemical and histomorphometric study. Exp. Toxicol. Pathol. 2012, 64, 645–650. [Google Scholar] [CrossRef]
- Amri, N.; Rahmouni, F.; Chokri, M.A.; Rebai, T.; Badraoui, R. Histological and biochemical biomarkers analysis reveal strong toxicological impacts of pollution in hybrid sparrow (Passer domesticus × Passerhispaniolensis) in southern Tunisia. Environ. Sci. Pollut. Res. 2017, 24, 17845–17852. [Google Scholar] [CrossRef] [PubMed]
- Ben Nasr, H.; Hammami, S.; Chaker, S.; Badraoui, R.; Sahnoun, Z.; Jamoussi, K.; Rebai, T.; Zeghal, K. Some biological effects of scorpion envenomation in late pregnant rats. Exp. Toxicol. Pathol. 2009, 61, 573–580. [Google Scholar] [CrossRef]
- Cano Sanchez, M.; Lancel, S.; Boulanger, E.; Neviere, R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review. Antioxidants 2018, 7, 98. [Google Scholar] [CrossRef] [PubMed]
- Yadav, E.; Singh, D.; Yadav, P.; Verma, A. Antioxidant and anti-inflammatory properties of Prosopis cineraria based phenolic rich ointment in wound healing. Biomed. Pharmacother. 2018, 108, 1572–1583. [Google Scholar] [CrossRef] [PubMed]
- Ansary, J.; Forbes-Hernández, T.Y.; Gil, E.; Cianciosi, D.; Zhang, J.; Elexpuru-Zabaleta, M.; Simal-Gandara, J.; Giampieri, F.; Battino, M. Potential health benefit of garlic based on human intervention studies: A brief overview. Antioxidants 2020, 9, 619. [Google Scholar] [CrossRef]
- Li, B.; Cheng, Z.; Sun, X.; Si, X.; Gong, E.; Wang, Y.; Tian, J.; Shu, C.; Ma, F.; Li, D.; et al. Lonicera caerulea L. polyphenols alleviate oxidative stress-induced intestinal environment imbalance and lipopolysaccharide-induced liver injury in HFD-fed rats by regulating the Nrf2/HO-1/NQO1 and MAPK pathways. Mol. Nutr. Food Res. 2020, 64, 1901315. [Google Scholar] [CrossRef]
- Arişanu, A.O.; Rus, F. Current techniques and processes for vegetable oil extraction from oilseed crops. Bull. Transilv. Univ. Bras. 2017, 10, 65–70. [Google Scholar]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant activity of apple peals. J. Agric. Food Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Broadhurst, R.B.; Jones, W.T. Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric. 1978, 29, 788–794. [Google Scholar] [CrossRef]
- Kirby, A.J.; Schmidt, R.J. The antioxidant activity of Chinese herbs for eczema and of placebo herbs. J. Ethnopharmacol. 1997, 56, 103–108. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Suguna, L.; Singh, S.; Sivakumar, P.; Sampath, P.; Chandrakasan, G. Influence of Terminalia chebula on dermal wound healing in rats. Phytother. Res. 2002, 16, 227–231. [Google Scholar] [CrossRef]
- Jridi, M.; Sellimi, S.; Lassoued, K.B.; Beltaief, S.; Souissi, N.; Mora, L.; Toldra, F.; Elfeki, A.; Nasri, M.; Nasri, R. Wound healing activity of cuttlefish gelatin gels and films enriched by henna (Lawsoniainermis) extract. Colloid Surf. A Physicochem. Eng. Asp. 2017, 512, 71–79. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1972, 51, 302–310. [Google Scholar]
- Halliwell, B.; Gutteridge, J.C. Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet (Br. Ed.) 1984, 8391, 1396–1397. [Google Scholar] [CrossRef]
- Witko-Sarsat, V.; Friedlander, M.; Capeillère-Blandin, C.; Nguyen- Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef]
- Reznick, A.Z.; Packer, L. Oxidative damage to proteins: Spectrophotometric method for carbonyl assay. Methods Enzymol. 1994, 233, 357–363. [Google Scholar] [PubMed]
- Beyer, W.F.; Fridovich, I. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef]
- Floche, L.; Gunzler, W.A. Analysis of glutathione peroxidase. Methods Enzymol. 1984, 105, 114–121. [Google Scholar]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1974, 105, 121–126. [Google Scholar]
Samples and Parameters | Total Polyphenols a (mg GAE/g) b | Flavonoids a (mg EQ/g) c | Tannins a (mg EQ/g) | DPPH a IC50 (mg/mL) | FRAP a IC50 (mg/mL) | ABTS a IC50 (mg/mL) | Total Antioxidant Capacity a (mg VitC/g) d |
---|---|---|---|---|---|---|---|
A. subhirsutum L. extract | 63.8 ± 2.36 | 41.7 ± 3.4 | 387.5 ± 17.2 | 0.20 ± 0.004 | 0.05 ± 0.004 | 0.54 ± 0.04 | 0.45 ± 0.09 |
A. subhirsutum L. oil | 215 ± 3.5 | 172.4 ± 3.1 | ND | 0.136 ± 0.07 | 0.013 ± 0.006 | 0.52 ± 0.03 | 0.34 ± 0.06 |
Ascorbic acid | — | — | — | 0.118 ± 0.006 | 0.08 ± 0.004 | 0.09 ± 0.09 | 0.124 ± 0.002 |
Treatment & Parameters | TBARS (nmol MDA/mg Protein) | CD (µmol/mg Protein) | AOPP (µmol/mg Protein) | CP (µmol/mg Protein) |
---|---|---|---|---|
Control | 1.38 ± 0.138 | 0.69 ± 0.04 | 0.25 ± 0.01 | 61.37 ± 0.37 |
ASE | 1.08 ± 0.09 * | 0.58 ± 0.13 * | 0.23 ± 0.003 | 50.73 ± 1.28 ** |
ASO | 0.91 ± 0.37 * | 0.48 ± 0.11 ** | 0.21 ± 0.003 * | 47.63 ± 1.09 ** |
Ref | 0.82 ± 0.014 ** | 0.45 ± 0.01 *** | 0.20 ± 0.006 ** | 41.80 ± 1.14 *** |
Treatment & Parameters | SOD (Units/mg Protein) | CAT (µmol H2O2/mg Protein) | GPx (µmol GSH/min/mg Protein) |
---|---|---|---|
Control | 18.47 ± 0.29 | 50.50 ± 1.18 | 0.009 ± 0.0006 |
ASE | 21.24 ± 2.71 * | 53.07 ± 0.54 * | 0.014 ± 0.0081 ** |
ASO | 22.30 ± 3.81 * | 57.50 ± 1.85 ** | 0.028 ± 0.012 *** |
Ref | 23.61 ± 0.99 ** | 69.61 ± 1.40 *** | 0.037 ± 0.0003 *** |
TBARS | CD | AOPP | CP | SOD | CAT | GPx | Fibrinogen | Wound Reduction | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters & Groups | ASE | ASO | ASE | ASO | ASE | ASO | ASE | ASE | ASO | ASO | ASE | ASO | ASE | ASO | ASE | ASO | ASE | ASO | |
Extract of AS | Polyphenols | −0.940 | −0.140 | 0.824 | 0.037 | 0.544 | −0.323 | −0.762 | −0.762 | 0.144 | 0.999 * | −0.762 | 0.144 | −0.961 | 0.999 * | 0.16 | −0.55 | −0.28 | −0.87 |
Flavonoids | 0.630 | 0.981 | −0.806 | 0.932 | 0.615 | 1.000 * | −0.362 | −0.362 | −0.982 | −0.296 | −0.362 | −0.982 | 0.053 | −0.296 | −0.98 | −0.60 | −0.82 | 0.76 | |
Tannins | −0.174 | 0.787 | −0.079 | 0.884 | 0.999 * | 0.658 | −0.942 | −0.942 | −0.785 | 0.528 | −0.942 | −0.785 | −0.720 | 0.528 | −0.78 | −0.99 * | −0.97 | 0.00 | |
Oil of AS | Polyphenols | −0.859 | 0.049 | 0.702 | 0.225 | 0.693 | −0.138 | −0.871 | −0.871 | −0.045 | 0.988 | −0.871 | −0.045 | −0.996 | 0.988 | −0.03 | −0.70 | −0.45 | −0.76 |
Flavonoids | −0.940 | −0.140 | 0.824 | 0.037 | 0.544 | −0.323 | −0.762 | −0.762 | 0.144 | 0.999 * | −0.762 | 0.144 | −0.961 | 0.999 * | 0.16 | −0.55 | −0.28 | −0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saoudi, M.; Badraoui, R.; Chira, A.; Saeed, M.; Bouali, N.; Elkahoui, S.; Alam, J.M.; Kallel, C.; El Feki, A. The Role of Allium subhirsutum L. in the Attenuation of Dermal Wounds by Modulating Oxidative Stress and Inflammation in Wistar Albino Rats. Molecules 2021, 26, 4875. https://doi.org/10.3390/molecules26164875
Saoudi M, Badraoui R, Chira A, Saeed M, Bouali N, Elkahoui S, Alam JM, Kallel C, El Feki A. The Role of Allium subhirsutum L. in the Attenuation of Dermal Wounds by Modulating Oxidative Stress and Inflammation in Wistar Albino Rats. Molecules. 2021; 26(16):4875. https://doi.org/10.3390/molecules26164875
Chicago/Turabian StyleSaoudi, Mongi, Riadh Badraoui, Ahlem Chira, Mohd Saeed, Nouha Bouali, Salem Elkahoui, Jahoor M. Alam, Choumous Kallel, and Abdelfattah El Feki. 2021. "The Role of Allium subhirsutum L. in the Attenuation of Dermal Wounds by Modulating Oxidative Stress and Inflammation in Wistar Albino Rats" Molecules 26, no. 16: 4875. https://doi.org/10.3390/molecules26164875
APA StyleSaoudi, M., Badraoui, R., Chira, A., Saeed, M., Bouali, N., Elkahoui, S., Alam, J. M., Kallel, C., & El Feki, A. (2021). The Role of Allium subhirsutum L. in the Attenuation of Dermal Wounds by Modulating Oxidative Stress and Inflammation in Wistar Albino Rats. Molecules, 26(16), 4875. https://doi.org/10.3390/molecules26164875