Re-Evaluations of Zr-DFO Complex Coordination Chemistry for the Estimation of Radiochemical Yields and Chelator-to-Antibody Ratios of 89Zr Immune-PET Tracers
Abstract
:1. Introduction
2. Results
2.1. Mass Spectrometry
2.2. Potentiometric Titration
2.3. Competition Studies
2.4. Estimation of RCYs and CARs
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Mass Spectrometry
4.3. Potentiometric Titration
4.4. Production of 89Zr
4.5. Competition Titration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boswell, C.A.; Brechbiel, M.W. Development of Radioimmunotherapeutic and Diagnostic Antibodies: An inside-out View. Nucl. Med. Biol. 2007, 34, 757–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dongen, G.A.M.S.; Visser, G.W.M.; Hooge, M.N.L.; de Vries, E.G.; Perk, L.R. Immuno-PET: A Navigator in Monoclonal Antibody Development and Applications. Oncologist 2007, 12, 1379–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, T.K.; Brechbiel, M.W. Radioimmunoimaging with Longer-Lived Positron-Emitting Radionuclides: Potentials and Challenges. Bioconjugate Chem. 2009, 20, 825–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, A.M. Antibodies and Antimatter: The Resurgence of Immuno-PET. J. Nucl. Med. 2009, 50, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Jauw, Y.W.S.; van Oordt, C.W.M.-v.d.H.; Hoekstra, O.S.; Hendrikse, N.H.; Vugts, D.J.; Zijlstra, J.M.; Huisman, M.C.; van Dongen, G.A.M.S. Immuno-Positron Emission Tomography with Zirconium-89-Labeled Monoclonal Antibodies in Oncology: What Can We Learn from Initial Clinical Trials? Front. Pharmacol. 2016, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Meijs, W.E.; Herscheid, J.D.M.; Haisma, H.J.; Pinedo, H.M. International journal of radiation applications and instrumentation. Part A. Applied radiation and isotopes Evaluation of Desferal as a Bifunctional Chelating Agent for Labeling Antibodies with Zr-89. Int. J. Radiat. Appl. instrumentation. Part A Appl. Radiat. Isot. 1992, 43, 1443–1447. [Google Scholar] [CrossRef]
- Popov, K.; Rönkkömäki, H.; Lajunen, L.H.J. Critical Evaluation of Stability Constants of Phosphonic Acids (IUPAC Technical Report). Pure Appl. Chem. 2001, 73, 1641–1677. [Google Scholar] [CrossRef]
- Wadas, T.J.; Wong, E.H.; Weisman, G.R.; Anderson, C.J. Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease. Chem. Rev. 2010, 110, 2858–2902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evers, A.; Hancock, R.D.; Martell, A.E.; Motekaitis, R.J. Metal Ion Recognition in Ligands with Negatively Charged Oxygen Donor Groups. Complexation of Iron(III), Gallium(III), Indium(III), Aluminum(III), and Other Highly Charged Metal Ions. Inorg. Chem. 1989, 28, 2189–2195. [Google Scholar] [CrossRef]
- Summers, K.L.; Sarbisheh, E.K.; Zimmerling, A.; Cotelesage, J.J.H.; Pickering, I.J.; George, G.N.; Price, E.W. Structural Characterization of the Solution Chemistry of Zirconium(IV) Desferrioxamine: A Coordination Sphere Completed by Hydroxides. Inorg. Chem. 2020, 59, 17443–17452. [Google Scholar] [CrossRef]
- Savastano, M.; Bazzicalupi, C.; Ferraro, G.; Fratini, E.; Gratteri, P.; Bianchi, A. Tales of the Unexpected: The Case of Zirconium(IV) Complexes with Desferrioxamine. Molecules 2019, 24, 2098. [Google Scholar] [CrossRef] [Green Version]
- Toporivska, Y.; Gumienna-Kontecka, E. The Solution Thermodynamic Stability of Desferrioxamine B (DFO) with Zr(IV). J. Inorg. Biochem. 2019, 198, 110753. [Google Scholar] [CrossRef]
- KOYASHI, T.; SASAKI, T.; TAKAGI, I.; MORIYAMA, H. Zirconium Solubility in Ternary Aqueous System of Zr(IV)-OH-Carboxylates. J. Nucl. Sci. Technol. 2009, 46, 142–148. [Google Scholar] [CrossRef]
- Perk, L.R.; Vosjan, M.J.W.D.; Visser, G.W.M.; Budde, M.; Jurek, P.; Kiefer, G.E.; van Dongen, G.A.M.S. P-Isothiocyanatobenzyl-Desferrioxamine: A New Bifunctional Chelate for Facile Radiolabeling of Monoclonal Antibodies with Zirconium-89 for Immuno-PET Imaging. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 250–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buglyó, P.; Culeddu, N.; Kiss, T.; Micera, G.; Sanna, D. Vanadium (IV) and Vanadium (V) Complexes of Deferoxamine B in Aqueous Solution. J. Inorg. Biochem. 1995, 60, 45–59. [Google Scholar] [CrossRef]
- Desroches, S.; Biron, F.; Berthon, G. Aluminum Speciation Studies in Biological Fluids Part 5. A Quantitative Investigation of Al(III) Complex Equilibria with Desferrioxamine, 2,3-Dihydroxybenzoic Acid, Tiron, CP20 (L1), and CP94 under Physiological Conditions, and Computer-Aided Assessment of the Aluminum-Mobilizing Capacities of These Ligands in Vivo. J. Inorg. Biochem. 1999, 75, 27–35. [Google Scholar] [CrossRef]
- Simanova, A.A.; Persson, P.; Loring, J.S. Evidence for Ligand Hydrolysis and Fe(III) Reduction in the Dissolution of Goethite by Desferrioxamine-B. Geochim. Cosmochim. Acta 2010, 74, 6706–6720. [Google Scholar] [CrossRef]
- Duckworth, O.W.; Bargar, J.R.; Jarzecki, A.A.; Oyerinde, O.; Spiro, T.G.; Sposito, G. The Exceptionally Stable Cobalt(III)–Desferrioxamine B Complex. Mar. Chem. 2009, 113, 114–122. [Google Scholar] [CrossRef]
- Christenson, E.A.; Schijf, J. Stability of YREE Complexes with the Trihydroxamate Siderophore Desferrioxamine B at Seawater Ionic Strength. Geochim. Cosmochim. Acta 2011, 75, 7047–7062. [Google Scholar] [CrossRef]
- Sasaki, T.; Koyashi, T.; Takagi, I.; Moriyama, H. Hydrolysis Constant and Coordination Geometry of Zirconium(IV). J. Nucl. Sci. Technol. 2008, 45, 735–739. [Google Scholar] [CrossRef]
- Brown, P.L.; Curti, E.; Grambow, B. Chemical Thermodynamics of Zirconium; Mompean, F., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2006; Volume 8, ISBN 9780080457536. [Google Scholar]
- Vosjan, M.J.W.D.; Perk, L.R.; Visser, G.W.M.; Budde, M.; Jurek, P.; Kiefer, G.E.; van Dongen, G.A.M.S. Conjugation and Radiolabeling of Monoclonal Antibodies with Zirconium-89 for PET Imaging Using the Bifunctional Chelate p-Isothiocyanatobenzyl-Desferrioxamine. Nat. Protoc. 2010, 5, 739. [Google Scholar] [CrossRef]
- Bhatt, N.B.; Pandya, D.N.; Rideout-Danner, S.; Gage, H.D.; Marini, F.C.; Wadas, T.J. A Comprehensively Revised Strategy That Improves the Specific Activity and Long-Term Stability of Clinically Relevant 89 Zr-Immuno-PET Agents. Dalton Trans. 2018, 47, 13214–13221. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Rosenkrans, Z.T.; Liu, J.; Huang, G.; Luo, Q.-Y.; Cai, W. ImmunoPET: Concept, Design, and Applications. Chem. Rev. 2020, 120, 3787–3851. [Google Scholar] [CrossRef] [PubMed]
- Farkas, E.; Csóka, H.; Micera, G.; Dessi, A. Copper(II), Nickel(II), Zinc(II), and Molybdenum(VI) Complexes of Desferrioxamine B in Aqueous Solution. J. Inorg. Biochem. 1997, 65, 281–286. [Google Scholar] [CrossRef]
- Kiss, T.; Farkas, E. Metal-Binding Ability of Desferrioxamine, B. J. Incl. Phenom. Mol. Recognit. Chem. 1998, 32, 385–403. [Google Scholar] [CrossRef]
- Jones, K.E.; Batchler, K.L.; Zalouk, C.; Valentine, A.M. Ti(IV) and the Siderophore Desferrioxamine B: A Tight Complex Has Biological and Environmental Implications. Inorg. Chem. 2017, 56, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Graves, S.A.; Kutyreff, C.; Barrett, K.E.; Hernandez, R.; Ellison, P.A.; Happel, S.; Aluicio-Sarduy, E.; Barnhart, T.E.; Nickles, R.J.; Engle, J.W. Evaluation of a Chloride-Based 89Zr Isolation Strategy Using a Tributyl Phosphate (TBP)-Functionalized Extraction Resin. Nucl. Med. Biol. 2018, 64, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Glaser, J.M.; Edwards, K.J.; Sarbisheh, E.K.; Salih, A.K.; Lewis, J.S.; Price, E.W. A Systematic Evaluation of Antibody Modification and 89Zr-Radiolabeling for Optimized Immuno-PET. Bioconjugate Chem. 2020, 32, 1177–1191. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency. Quality Control in the Production of Radiopharmaceuticals, IAEA-TECDOC-1856; International Atomic Energy Agency: Vienna, Austria, 2018; p. 77. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1856web.pdf (accessed on 1 August 2021).
- Holland, J.P.; Sheh, Y.; Lewis, J.S. Standardized Methods for the Production of High Specific-Activity Zirconium-89. Nucl. Med. Biol. 2009, 36, 729–739. [Google Scholar] [CrossRef] [Green Version]
pKa1 | pKa2 | pKa3 | pKa4 | Ref | |
---|---|---|---|---|---|
0.1 | 8.4 ± 0.3 | 9.2 ± 0.1 | 9.7 ± 0.2 | 11.0 ± 0.3 | [18] |
0.15 | 8.38 ± 0.03 | 8.96 ± 0.04 | 9.66 ± 0.08 | 11.31 ± 0.25 | This study |
0.15 | 8.207 | 8.811 | 9.381 | 10.397 | [16] |
0.60 | 8.33 ± 0.03 | 8.96 ± 0.03 | 9.45 ± 0.05 | 10.85 ± 0.05 | [15] |
0.70 | 8.40 ± 0.01 | 8.93 ± 0.02 | 9.58 ± 0.02 | 10.74 ± 0.09 | [19] |
1 | 8.6 ± 0.4 | 9.2 ± 0.3 | 9.8 ± 0.2 | 10.9 ± 0.1 | [17] |
p | q | r | log βpqr |
---|---|---|---|
1 | 1 | 1 | 49.1 ± 0.3 |
1 | 2 | 1 | 54.9 ± 0.3 |
1 | 2 | 2 | 66.1 ± 0.1 |
1 | 3 | 2 | 75.9 ± 0.3 |
1 | 4 | 2 | 85.3 ± 0.1 |
1 | 5 | 2 | 93.3 ± 0.1 |
2 | 5 | 3 | 138.7 ± 0.1 |
2 | 6 | 3 | 147.7 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imura, R.; Ida, H.; Sasaki, I.; Ishioka, N.S.; Watanabe, S. Re-Evaluations of Zr-DFO Complex Coordination Chemistry for the Estimation of Radiochemical Yields and Chelator-to-Antibody Ratios of 89Zr Immune-PET Tracers. Molecules 2021, 26, 4977. https://doi.org/10.3390/molecules26164977
Imura R, Ida H, Sasaki I, Ishioka NS, Watanabe S. Re-Evaluations of Zr-DFO Complex Coordination Chemistry for the Estimation of Radiochemical Yields and Chelator-to-Antibody Ratios of 89Zr Immune-PET Tracers. Molecules. 2021; 26(16):4977. https://doi.org/10.3390/molecules26164977
Chicago/Turabian StyleImura, Ryota, Hiroyuki Ida, Ichiro Sasaki, Noriko S. Ishioka, and Shigeki Watanabe. 2021. "Re-Evaluations of Zr-DFO Complex Coordination Chemistry for the Estimation of Radiochemical Yields and Chelator-to-Antibody Ratios of 89Zr Immune-PET Tracers" Molecules 26, no. 16: 4977. https://doi.org/10.3390/molecules26164977
APA StyleImura, R., Ida, H., Sasaki, I., Ishioka, N. S., & Watanabe, S. (2021). Re-Evaluations of Zr-DFO Complex Coordination Chemistry for the Estimation of Radiochemical Yields and Chelator-to-Antibody Ratios of 89Zr Immune-PET Tracers. Molecules, 26(16), 4977. https://doi.org/10.3390/molecules26164977