Pharmaceutical Residues in Senior Residences Wastewaters: High Loads, Emerging Risks
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pharmaceuticals Released from Senior Residences
2.2. Main Patterns and Potential Metabolites
2.3. Total Discharges and Fate
3. Material and Methods
3.1. Chemicals and Reagents
3.2. Study Site and Sample Collection
3.3. Sample Extraction and Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ternes, T.A. Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 1998, 32, 3245. [Google Scholar] [CrossRef]
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and Personal Care Products in the Environment: Agents of Subtle Change? Environ. Health Perspec. 1999, 107, 907. [Google Scholar] [CrossRef] [PubMed]
- OECD Data on Pharmaceuticals. Available online: https://www.oecd.org/health/health-systems/pharmaceuticals.htm (accessed on 1 June 2021).
- Zuccato, E.; Castiglioni, S.; Fanelli, R. Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. J. Hazard. Mater. 2005, 122, 205. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S.; Bagnati, R.; Fanelli, R.; Pomati, F.; Calamari, D.; Zuccato, E. Removal of Pharmaceuticals in Sewage Treatment Plants in Italy. Environ. Sci. Technol. 2006, 40, 357. [Google Scholar] [CrossRef] [PubMed]
- Hijosa-Valsero, M.; Reyes-Contreras, C.; Domínguez, C.; Bécares, E.; Bayona, J.M. Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: Influent, effluent, pore water, substrate and plant roots. Chemosphere 2016, 145, 508. [Google Scholar] [CrossRef] [PubMed]
- Proctor, K.; Petrie, B.; Lopardo, L.; Camacho Muñoz, D.; Rice, J.; Barden, R.; Arnot, T.; Kasprzyk-Hordern, B. Micropollutant fluxes in urban environment-A catchment perspective. J. Hazard. Mater. 2021, 401, 123745. [Google Scholar] [CrossRef]
- Jameel, Y.; Valle, D.; Kay, P. Spatial variation in the detection rates of frequently studied pharmaceuticals in Asian, European and North American rivers. Sci. Total Environ. 2020, 724, 137947. [Google Scholar] [CrossRef]
- González Peña, O.I.; López Zavala, M.Á.; Cabral Ruelas, H. Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater. Int. J. Environ. Res. Public Health 2021, 18, 2532. [Google Scholar] [CrossRef]
- Hajjar, E.R.; Cafiero, A.C.; Hanlon, J.T. Polypharmacy in elderly patients. Am. J. Geriatr. Pharm. 2007, 5, 345. [Google Scholar] [CrossRef]
- Pasina, L.; Novella, A.; Cortesi Nobili, L.A.; Lettamanti, M.; Ianes, A. Drug prescriptions in nursing home residents: An Italian multicenter observational study. Eur. J. Clin. Pharmacol. 2020, 76, 1011. [Google Scholar] [CrossRef]
- Lacorte, S.; Luis, S.; Gómez-Canela, C.; Sala-Comorera, T.; Courtier, A.; Roig, B.; Oliveira-Brett, A.M.; Joannis-Cassan, C.; Aragonés, J.I.; Poggio, L. Pharmaceuticals released from senior residences: Occurrence and risk evaluation. Environ. Sci. Pollut. Res. 2018, 25, 6095. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Canela, C.; Sala-Comorera, T.; Pueyo, V.; Barata, C.; Lacorte, S. Analysis of 44 pharmaceuticals consumed by elderly using liquid chromatography coupled to tandem mass spectrometry. J. Pharmac. Biomed. Anal. 2019, 168, 55. [Google Scholar] [CrossRef] [PubMed]
- Drugbank. Available online: https://go.drugbank.com/ (accessed on 1 June 2021).
- Korekar, G.; Kumar, A.; Ugale, C. Occurrence, fate, persistence and remediation of caffeine: A review. Environ. Sci. Pollut. Res. 2020, 27, 34715. [Google Scholar] [CrossRef] [PubMed]
- Quadra, G.R.; Paranaíba, J.R.; Vilas-Boas, J.; Roland, F.; Amado, A.M.; Barros, N.; Dias, A.J.; Simone Cardoso, J.P. A global trend of caffeine consumption over time and related-environmental impacts. Environ. Pollut. 2020, 256, 113343. [Google Scholar] [CrossRef]
- Pereira, A.; Silva, L.; Laranjeiro, C.; Lino, C.; Pena, A. Selected Pharmaceuticals in Different Aquatic Compartments: Part I—Source, Fate and Occurrence. Molecules 2020, 25, 1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, E.E.; Carter, L.J.; Kolpin, D.W.; Thomas-Oates, J.; Boxall, A.B.A. Temporal and spatial variation in pharmaceutical concentrations in an urban river system. Water Res. 2018, 137, 72. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Canela, C.; Pueyo, V.; Barata, C.; Lacorte, S.; Marcé, R.M. Development of predicted environmental concentrations to prioritize the occurrence of pharmaceuticals in rivers from Catalonia. Sci. Total Environ. 2019, 666, 57. [Google Scholar] [CrossRef]
- Hollender, J.; Rothardt, J.; Radny, D.; Loos, M.; Epting, J.; Huggenberger, P.; Borer, P.; Singer, H. Comprehensive micropollutant screening using LC-HRMS/MS at three riverbank filtration sites to assess natural attenuation and potential implications for human health. Water Res. X 2018, 1, 100007. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.Y.; Carvalho, G.; Reis MA, M.; Oehmen, A. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. Water Res. 2021, 188, 116446. [Google Scholar] [CrossRef]
- Fabregat-Safont, D.; Ibáñez, M.; Bijlsma, L.; Hernández, F.; Waichman, A.V.; de Oliveira, R.; Rico, A. Wide-scope screening of pharmaceuticals, illicit drugs and their metabolites in the Amazon River. Water Res. 2021, 200, 117251. [Google Scholar] [CrossRef]
- Sabater-Liesa, L.; Montemurro, N.; Ginebreda, A.; Barceló, D.; Eichhorn, P.; Pérez, D. Retrospective mass spectrometric analysis of wastewater-fed mesocosms to assess the degradation of drugs and their human metabolites. J. Hazard. Mater. 2021, 408, 124984. [Google Scholar] [CrossRef]
- Gómez-Canela, C.; Rovira García, X.; Martínez-Jerónimo, F.; Marcé, R.M.; Barata, C. Analysis of neurotransmitters in Daphnia magna affected by neuroactive pharmaceuticals using liquid chromatography-high resolution mass spectrometry. Environ. Pollut. 2019, 254, 113029. [Google Scholar] [CrossRef]
- Piña, B.; Bayona, J.M.; Christou, A.; Fatta-Kassinos, D.; Guillon, E.; Lambropoulou, D.; Costas, M.; Polesel, F.; Sayen, S. On the contribution of reclaimed wastewater irrigation to the potential exposure of humans to antibiotics, antibiotic resistant bacteria and antibiotic resistance genes—NEREUS COST Action ES1403 position paper. J. Environ. Chem. Eng. 2020, 8, 10213. [Google Scholar] [CrossRef]
- Li, D.; Chen, H.; Liu, H.; Schlenk, D.; Mu, J.; Lacorte, S.; Ying, G.G.; Xie, L. Anticancer drugs in the aquatic ecosystem: Environmental occurrence, ecotoxicological effect and risk assessment. Environ. Int. 2021, 153, 106543. [Google Scholar] [CrossRef] [PubMed]
- Institute of Statistics of Catalonia. Iidescat. Available online: https://www.idescat.cat/pub/?id=aec&n=849 (accessed on 10 June 2021).
- Kümmerer, K. Drugs in the environment: Emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—A review. Chemosphere 2001, 45, 957. [Google Scholar] [CrossRef]
- European Union Strategic Approach to Pharmaceuticals in the Environment. Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee, Brussels; 11.3.2019, COM(2019) 128 Final. Available online: https://ec.europa.eu/environment/water/water-dangersub/pdf/strategic_approach_pharmaceuticals_env.PDF (accessed on 10 June 2021).
- Joannis-Cassan, C.; Rodriguez Castillo, A.S.; Dezani, C.; Gómez-Canela, C.; Reoyo-Prats, B.; Calas-Blanchard, C.; Barata, C.; Lacorte, S.; Plantard, G. Towards an innovative combined process coupling biodegradation and photo-oxidation for the removal of pharmaceutical residues. J. Chem. Technol. Biotechnol. 2021, 96, 755. [Google Scholar] [CrossRef]
- Caban, M.; Stepnowski, P. How to decrease pharmaceuticals in the environment? A review. Environ. Chem. Lett. 2021, 19, 3115. [Google Scholar] [CrossRef]
- Luís, S.; Lima, M.L.; Poggio, L.; Aragonés, J.I.; Courtier, A.; Roig, B.; Blanchard, C. Lay people and experts’ risk perception of pharmaceuticals in the environment in Southwestern Europe. Regul. Toxicol. Pharmacol. 2020, 117, 104783. [Google Scholar] [CrossRef]
Residences | Capacity (Beds) | Type of Residence | Water Consumption (m3 year−1) | Number of Pharmaceuticals Administered | Number of Samples Collected |
---|---|---|---|---|---|
S1 | 130 | Sociosanitary, general impairment & psychiatric unit | 6679 | 164 | 15 |
S2 | 126 | Housing and general impairment | 7100 | 134 | 9 |
F1 | 81 | Housing and general impairment | 4560 | 133 | 15 |
F2 | 82 | Housing and general impairment | 5164 | 188 | 12 |
P1 | 52 | Housing and general impairment | 5230 | 116 | 8 |
P2 | 61 | Housing and general impairment | 4859 | 146 | 8 |
Drug | Uses | Metabolism | Half-Life (h) | Elimination Route | Excreted Unchanged | Metabolites Formed |
---|---|---|---|---|---|---|
Dichlorobenzyl alcohol R02AA03 | Mild antiseptic with a broad spectrum for bacterial and virus to treat mouth and throat infections | Hepatic | Urine | 90% | hippuric acid | |
Amoxicillin J01CA04 | Penicillin derivative used for the treatment of infections caused by gram-positive bacteria | Hepatic | 1 | Urine | 70–78% | 7 metabolites formed by hydroxylation; oxidative deamination; decarboxylation and glucuronidation |
Amylmetacresol | Antiseptic used to treat infections in the mouth and throat. | n.a. | n.a. | Urine | n.a. | n.a. |
Acetylsalicylic acid B01AC06 | Salicylate used to treat pain, fever, inflammation, migraines, and reducing the risk of major adverse cardiovascular events | Hydrolyzed in plasma | 0.2–0.3 | Urine | 10–85% as salicylate | salicylic acid; salicyluric acid; ether; phenolic glucuronide and ester; acyl glucuronide; gentisic acid; hydroxybenzoic acids |
Atorvastatin C10AA05 | Lipid-lowering drug to treat several types of dyslipidemias | P450 (rapid) | 14 | Bile | n.a. | para-hydroxyatorvastatin; para-hydroxyatorvastatin glucuronide; para and ortho-hydroxyatorvastatin lactone; ortho-hydroxyatorvastatin; ortho-hydroxyatorvastatin glucuronide |
Bicalutamide L02BB03 | Androgen receptor inhibitor used to treat metastatic prostate carcinoma. | Stereo specific metabolism | 142 | n.a. | n.a. | bicalutamide glucuronides |
Budesonide D07AC09, R01AD05, A07EA06 | Corticosteroid used to treat Crohn’s disease, asthma, COPD, hay fever and allergies, and ulcerative colitis. | CYP3A (>80-metabolized) | 2–6 | Urine | 0% (60% as metabolite) | 6-beta-hydroxybudesonide; 22-hydroxy Intermediate; 16alpha-butyrloxyprednisolone; 16-alpha-hydroxyprednisolone; delta6-budesonide; 23-hydroxybudesonide |
Caffeine N06BC01 | Stimulant present in tea, coffee, cola beverages, analgesic drugs, and agents used to increase alertness. | Hepatic CYP1A2 | 5 | Urine | 2% (mainly adsorbed in renal tubules) | theobromine; theophylline; 1-methylxanthine; 1-methyluric acid; 1,3,7-trimethyluric acid; 1,7-dimethylxanthine; 1-methylxanthine; 5-acetylamino-6-formylamino-3-methyluracil; 1,7-dimethyluric acid |
Carbamazepine N03AF01 | Anticonvulsant to treat seizures and pain resulting from trigeminal neuralgia | Hepatic CYP3A4 | 27–36.8 | Urine | 72% | 10,11-epoxycarbamazepine; 10,11-dihydroxycarbamazepine; 3-hydroxycarbamazepine; 2,3-dihydroxycarbamazepine; carbamazepine-o-quinione; carbamazepine 2,3-epoxide; 2-hydroxycarbamazepine; 2-hydroxyiminostilbene; iminoquinone |
Clomethiazole N05CM02 | γ-aminobutyric acid (GABAA)-mimetic drug used as sedative and hypnotic to prevent symptoms of acute alcohol withdrawal. | n.a. | n.a. | n.a. | n.a. | n.a. |
Chlorpheniramine R06AB04 | Histamine to treat upper respiratory allergies | Hepatic CYP 450 | 21–27 | n.a. | n.a. | n.a. |
Clarythromycin J01FA09 | Macrolide antibiotic | Hepatic-CYP3A4 | 3–4 | Urine | 20–30% | 14-hydroxyclarithromycin; N-desmethylclarithromycin |
Cloperastine R05DB21 | Cough suppressant | n.a. | n.a. | n.a. | n.a. | n.a. |
Cyclophosphamide L01AA01 | Nitrogen mustard to treat lymphomas, myelomas, leukemia, mycosis fungoides, neuroblastoma, ovarian adenocarcinoma, retinoblastoma, and breast carcinoma. | Hepatic CYP450 (75% of the drug activated) | 3–12 | Urine | 10–20% | 4-hydroxycyclophosphamide; aldophosphamide; phosphoramide mustard; phosphoramide aziridinium; acrolein; acrylic acid; carboxyphosphamide; alcophosphamide; carboxyphosphamide; nornitrogen mustard; 4-ketocyclophosphamide; dechloroethyl cyclophosphamide; chloroacetaldehyde |
Dextromethorphan R05DA09 | To treat cases of dry cough | CYP3A4, CYP2D6, CYP2C9; CYP2D6 CYP2C9 | 3–30 | n.a. | n.a. | dextrorphan; 3-hydroxymorphinan; 3-hydroxymorphinan sulfate; 3-hydroxymorphinan o-glucuronide; dextrorphan sulfate; dextrorphan o-glucuronide; (+)-3-methoxymorphinan 3-hydroxymorphinan |
Diclofenac M01AB05, others | SAID used to treat pain and inflammation | CYP2C9 | 2 | Urine | 60–70% | 4’-hydroxydiclofenac; diclofenac acyl glucuronide; 3’-hydroxydiclofenac; 5-hydroxy diclofenac; diclofenac o-imine methine; diclofenac 2’;3’-oxide; diclofenac radical and the hydroxylated and gluthathion conjugated derivatives |
Donepezil N06DA02 | Acetylcholinesterase inhibitor to treat mild to moderate Alzheimer’s Disease | Hepatic CYP3A4 | 70 | Urine | 57% | 6-O-desmethyl donepezil and O-dealkylation, hydroxylation, N-oxidation, hydrolysis, and O-glucuronidation metabolites |
Dutasteride G04CB02 | Antiandrogenic compound to treat benign prostatic hyperplasia | Hepatic CYP3A4, CYP3A5 | 840 | Feces | 1–15% (2–90% as metabolites) | 4′-hydroxydutasteride; 6-hydroxydutasteride; 6,4′-dihydroxydutasteride; 1,2-dihydrodutasteride; 15-hydroxydutasteride; 6,4′-dihydroxydutasteride; 15-hydroxydutasteride |
Escitalopram N06AB10 | Serotonin re-uptake inhibitor to treat depressive, anxiety and obsessive-compulsive disorders | Hepatic, CYP2C19, CYP3A4 CYP2D6 | 27–32 | Urine | 8% | S-desmethylcitalopram; S-didesmethylcitalopram; escitalopram propionic acid |
Estrone G03CA07 | Estrogen to treat perimenopausal and postmenopausal symptoms | Hepatic | 19 | n.a. | n.a. | 2-hydroxyestrone; 4-hydroxyestrone; estrone sulfate; estrone glucuronide; 2-hydroxyestrone sulfate; 4-hydroxyestrone sulfate; 2-OH-estrone; 4-OH-estrone; 6alpha-H-estrone; 6beta-estrone; 7alpha-OH-estrone; 15alpha-OH -estrone; 16alpha-OH-estrone; 16beta-OH-estrone |
Ezetimibe C10AX09 | Cholesterol absorption inhibitor used to lower total cholesterol | Small intestine and hepatic | 22 | Feces | 69% | ezetimibe glucuronide; SCH 57871; SCH 57871-glucuronide, SCH 488128 |
Fluticasone R03BA05 | Corticosteroid to treat and manage asthma, dermatoses | Hepatic CYP 450 3A4 | 24 | Feces | 90% | fluticasone propionate |
Furosemide C03CA01 | Diuretic to treat hypertension, and edemas | Kidney Hepatic | 4.5 | Urine | 50% | furosemide glucuronide; saluamine; 4-chloro-5-sulfamoylanthranilic acid |
Gabapentin N03AX12 | Anticonvulsant for peripheral neuropathy, neuralgia and seizures | Not metabolized | 5–7 | Urine | 100% | No metabolites; excreted as unchanged drug |
Ibuprofen M02AA13, others | NSAID analgesic, anti-inflammatory and antipyretic | Hepatic (rapid biotransformed) | 1.2–2 | Urine | 0% | ibuprofen glucuronide; 2-hydroxyibuprofen; 3-hydroxyibuprofen; carboxy-ibuprofen; 1-hydroxyibuprofen |
Ifosfamide L01AA06 | Alkylating and immunosuppressive agent used in chemotherapy for the treatment of cancers | Hepatic | 7–15 | Urine | 12–18% | 3-dechloroethylifosfamide; dechloroethylifosfamide; chloroacetaldehyde; 4-hydroxyifosfamide and derivatives |
L-ascorbic acid A11GA01 | Vitamin used to correct vitamin C deficiency, scurvy, iron sorption | Hepatic | 384 | n.a. | n.a. | ascorbic acid-2-sulfate; dehydroascorbate; 2;3-dikeogulonic acid; erythrulose; threosone; oxalic acid |
Levetiracetam N03AX14 | Novel anticonvulsant agent to treat onset seizures in epileptic patients | Minimally metabolized | 6–8 | Urine | 66% | levetiracetam carboxilic acid |
Levofloxacin J01MA12 | Fluoroquinolone antibiotic to treat infections | n.a. | 6–8 | Urine | 87% | desmethyl-levofloxacin levofloxacin-N-oxide |
Lidocaine S01HA07, D04AB01, R02AD02, C01BB01, N01BB52 | Local anesthetic used in superficial and invasive procedures | Hepatic (rapid) | 1.3–2 | Urine | 5% | 3-hydroxylidocaine; monoethylglycinexylidide; 2,6-dimethylaniline (2,6-xylidine)and hydroxyl and amino derivatives |
Macrogol A06AD15 | Laxative to treat constipation and used before colonoscopies | Not metabolized | 4.1 | Feces | 85–99% | No metabolites formed |
Megestrol G03AC05, others | Progestin to treat anorexia and cachexia and antineoplastic agent | Hepatic | 34 | Urine | n.a. | n.a. |
Mycophenolic acid L04AA06 | Immunosuppressant to prevent organ transplant rejections | Glucuronyl transferase | 8–16 | n.a. | n.a. | mycophenolic acid-acyl glucuronide; 6-O-desmethyl-mycophenolic acid; mycophenolic acid-7-O-glucuornide |
Paracetamol N02BE01 | Analgesic drug for pain management and as antipyretic | Hepatic | 2.5 | Urine | 5% | N-acetyl-p-benzoquinone imine; acetaminophen cysteine, glucuronide and sulfate |
Prednisone H02AB07 | Corticosteroid to treat inflammation, immune-mediated reactions and endocrine or neoplastic diseases | n.a. | 2–3 | Urine | n.a. | prednisolone and hydroxy and dihydro prednisone and further metabolized to sulfate and glucuronide conjugates |
Pregabalin N03AX16 | Anticonvulsant drug to treat neuropathy, fibromyalgia, seizures | Less than 2% | 6.3 | Urine | 98% | N-methylpregabalin |
Quetiapine N05AH04 | Psychotropic for the management of bipolar disorder, schizophrenia, and major depressive disorder | Hepatic | 6–7 | Urine | 1% | n-desalkylquetiapine; 7-hydroxyquetiapine; quetiapine sulfoxide; o-desalkylquetiapine |
Rosuvastatin C10AA07 | Lipid regulator | Hepatic | 19 | Feces | 77% | n-desmethylrosuvastatin; rosuvastatin 5 S-lactone |
Sulfamethoxazole J01EC01 | Sulfonamide antibiotic to treat urinary, gastrointestinal and respiratory infections | Kidney | 10 | Urine | 30% | 5-hydroxysulfamethoxazole; N-acetylsulfamethoxazole; sulfamethoxazole N4-hydroxylamine; sulfamethoxazole N-glucuronide |
Tiotropium R03BB04 | Bronchodilator to treat chronic obstructive pulmonary disease | Not heavily metabolized | 24 | Urine | 74% | N-methylscopine + dithienylglycolic acid |
Trazodone N06AX05 | Serotonin uptake inhibitor to treat major depressive disorder | Hepatic CYP3A4 | 7.3 | Feces | 21% | m-chlorophenylpiperazine; triazolopyridinone dihydrodiol; triazolopyridinone epoxide; 4’-hydroxytrazodone |
Valsartan C09CA03 | Angiotensin-receptor blocker to manage hypertension | Minimal hepatic | 6 | Feces | 83% | valeryl-4-hydroxyvalsartan |
Vildagliptin A10BH02 | Treatment of type 2 diabetes mellitus | Hydrolyzed | 2 | Urine | 23% | vildagliptin M20.7; M15.3; M20.2; M20.9;M21.6 metabolites |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lacorte, S.; Gómez-Canela, C.; Calas-Blanchard, C. Pharmaceutical Residues in Senior Residences Wastewaters: High Loads, Emerging Risks. Molecules 2021, 26, 5047. https://doi.org/10.3390/molecules26165047
Lacorte S, Gómez-Canela C, Calas-Blanchard C. Pharmaceutical Residues in Senior Residences Wastewaters: High Loads, Emerging Risks. Molecules. 2021; 26(16):5047. https://doi.org/10.3390/molecules26165047
Chicago/Turabian StyleLacorte, Silvia, Cristian Gómez-Canela, and Carole Calas-Blanchard. 2021. "Pharmaceutical Residues in Senior Residences Wastewaters: High Loads, Emerging Risks" Molecules 26, no. 16: 5047. https://doi.org/10.3390/molecules26165047
APA StyleLacorte, S., Gómez-Canela, C., & Calas-Blanchard, C. (2021). Pharmaceutical Residues in Senior Residences Wastewaters: High Loads, Emerging Risks. Molecules, 26(16), 5047. https://doi.org/10.3390/molecules26165047