Fabrication of Membrane Sensitive Electrodes for the Validated Electrochemical Quantification of Anti-Osteoporotic Drug Residues in Pharmaceutical Industrial Wastewater
Abstract
:1. Introduction
2. Results
2.1. Performance Characteristics of PVC Membrane Electrode and GCE
2.2. Determination of ALN in Spiked Water Samples
2.3. Determination of ALN in Actual Wastewater Samples from Industrial Pharmaceutical Plants
2.4. Statistical Application
3. Discussion
4. Materials and Methods
4.1. Instrumentation
4.2. Chemicals and Reagents
4.3. Sample Collection, Preparation, and Storage
4.4. Standard Solutions
4.5. Procedures
4.5.1. Precipitation of the Ion Exchanger
4.5.2. Sensor Fabrication
4.5.3. Sensor Calibration
4.5.4. Sensor Optimization
4.6. Application
4.6.1. Determination of ALN in Spiked Water Samples
4.6.2. Determination of ALN in Actual Wastewater Samples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Perazella, M.A.; Markowitz, G.S. Bisphosphonate nephrotoxicity. Kidney Int. 2008, 74, 1385–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krueger, C.D.; West, P.M.; Sargent, M.; Lodolce, A.E.; Pickard, A.S. Bisphosphonate-Induced Osteonecrosis of the Jaw. Ann. Pharmacother. 2007, 41, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Seifrtová, M.; Aufartová, J.; Vytlačilová, J.; Pena, A.; Solich, P.; Nováková, L. Determination of fluoroquinolone antibiotics in wastewater using ultra high-performance liquid chromatography with mass spectrometry and fluorescence detection. J. Sep. Sci. 2010, 33, 2094–2108. [Google Scholar] [CrossRef]
- Finkelstein, J.S.; Wyland, J.J.; Lee, H.; Neer, R.M. Effects of Teriparatide, Alendronate, or Both in Women with Postmenopausal Osteoporosis. J. Clin. Endocrinol. Metab. 2010, 95, 1838–1845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuljanin, J.; Janković, I.; Nedeljković, J.; Prstojević, D.; Marinković, V. Spectrophotometric determination of alendronate in pharmaceutical formulations via complex formation with Fe(III) ions. J. Pharm. Biomed. Anal. 2002, 28, 1215–1220. [Google Scholar] [CrossRef]
- Raza, A.; Zia-Ul-Haq, M. Application of Certain π-Acceptors for the Spectrophotometric Determination of Alendronate Sodium in Pharmaceutical Bulk and Dosage Forms. Int. J. Anal. Chem. 2011, 2011, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Alarfaj, N.A.; Abdel-Razeq, S.A.; Alqahtani, F.N. Spectrophotometric Determination of Alendronate Sodium in Bulk Drug and in Pharmaceutical Formulation. Asian J. Chem. 2011, 23, 697–700. [Google Scholar]
- Walash, M.I.; Metwally, M.E.-S.; Eid, M.; El-Shaheny, R.N. Validated spectrophotometric methods for determination of Alendronate sodium in tablets through nucleophilic aromatic substitution reactions. Chem. Central J. 2012, 6, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zacharis, C.K.; Tzanavaras, P.D. Determination of bisphosphonate active pharmaceutical ingredients in pharmaceuticals and biological material: A review of analytical methods. J. Pharm. Biomed. Anal. 2008, 48, 483–496. [Google Scholar] [CrossRef]
- Xie, Z.; Jiang, Y.; Zhang, D.-Q. Simple analysis of four bisphosphonates simultaneously by reverse phase liquid chromatography using n-amylamine as volatile ion-pairing agent. J. Chromatogr. A 2006, 1104, 173–178. [Google Scholar] [CrossRef]
- Tsai, E.W.; Ip, D.P.; Brooks, M.A. Determination of alendronate in pharmaceutical dosage formulations by ion chromatography with conductivity detection. J. Chromatogr. A 1992, 596, 217–224. [Google Scholar] [CrossRef]
- Qin, X.; Tsai, E.W.; Sakuma, T.; Ip, D.P. Pharmaceutical application of liquid chromatography–mass spectrometry: II. Ion chromatography-ion spray mass spectrometric characterization of alendronate. J. Chromatogr. A 1994, 686, 205–212. [Google Scholar] [CrossRef]
- Han, Y.-H.R.; Qin, X.-Z. Determination of alendronate sodium by ion chromatography with refractive index detection. J. Chromatogr. A 1996, 719, 345–352. [Google Scholar] [CrossRef]
- Jeong, Y.; Park, J.; Jin, G.; Park, J. Spectrofluorimetric determination of alendronate by conjugation with the rhodamine B sulfonyl group. Bull. Korean Chem. Soc. 2011, 32, 1–3. [Google Scholar] [CrossRef] [Green Version]
- AlDeeb, S.K.; Hamdan, I.I.; Najjar, S.M. Spectroscopic and HPLC methods for the determination of alendronate in tablets and urine. Talanta 2004, 64, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Yun, M.-H.; Kwon, K.-I. High-performance liquid chromatography method for determining alendronate sodium in human plasma by detecting fluorescence: Application to a pharmacokinetic study in humans. J. Pharm. Biomed. Anal. 2006, 40, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Apostolou, C.; Dotsikas, Y.; Kousoulos, C.; Tsatsou, G.; Colocouri, F.; Soumelas, G.-S.; Loukas, Y.L. Application of a semi-automated 96-well format solid-phase extraction, column-switching, fluorescence detection protocol for the determination of alendronate in human urine samples obtained from a bioequivalence study. J. Pharm. Biomed. Anal. 2007, 43, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Tamim, M.K.; Gagne, J.-F.; Nadeau, F.; Tanguay, M.; Trabelsi, F.; Vallee, M. Quantitative Determination of Alendronate Sodium in Human Plasma Using a Validated LC- MS/MS Method: Application to Clinical Pharmacokinetic Studies. 2010. Available online: www.aapsj.org/abstracts/AM_2010/M1500.pdf (accessed on 21 March 2021).
- Zhu, L.S.; Lapko, V.N.; Lee, J.W.; Basir, Y.J.; Kafonek, C.; Olsen, R.; Briscoe, C. A general approach for the quantitative analysis of bisphosphonates in human serum and urine by high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 3421–3426. [Google Scholar] [CrossRef] [PubMed]
- Tarcomnicu, I.; Silvestro, L.; Savu, S.R.; Gherase, A.; Dulea, C. Development and application of a high-performance liquid chromatography–mass spectrometry method to determine alendronate in human urine. J. Chromatogr. A 2007, 1160, 21–33. [Google Scholar] [CrossRef]
- Chen, M.; Liu, K.; Zhong, D.; Chen, X. Trimethylsilyldiazomethane derivatization coupled with solid-phase extraction for the determination of alendronate in human plasma by LC-MS/MS. Anal. Bioanal. Chem. 2011, 402, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Coşofre, V.V.; Buck, R.P. Recent Advances in Pharmaceutical Analysis with Potentiometric Membrane Sensors. Crit. Rev. Anal. Chem. 1993, 24, 1–58. [Google Scholar] [CrossRef]
- Li, G.; Xia, Y.; Tian, Y.; Wu, Y.; Liu, J.; He, Q.; Chen, D. Review—Recent Developments on Graphene-Based Electrochemical Sensors toward Nitrite. J. Electrochem. Soc. 2019, 166, B881–B895. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.-T.; Liu, Y.; Qi, X.-M.; Jin, H.-G.; Yang, C.; Liu, J.; Li, G.-L.; He, Q.-G. Recent advances in black phosphorus-based electrochemical sensors: A review. Anal. Chim. Acta 2021, 1170, 338480. [Google Scholar] [CrossRef]
- Bakker, E.; Buhlmann, P.; Pretsch, E. The phase-boundary potential model. Talanta 2004, 63, 3–20. [Google Scholar] [CrossRef]
- Meyerholf, M.E.; Opdycke, W.N. Advances in Clinical Chemistry; Spiegel, H.E., Ed.; Academic Press, Inc.: Orlando, FL, USA, 2013; Volume 25, pp. 1–47. [Google Scholar]
- Riad, S.; Mostafa, N. Ion selective electrodes for potentiometric determination of baclofen in pharmaceutical preparations. Anal. Bioanal. Electrochem. 2013, 5, 494–505. [Google Scholar]
- Lindner, E.; Umezawa, Y. Performance evaluation criteria for preparation and measurement of macro- and microfabricated ion-selective electrodes (IUPAC Technical Report). Pure Appl. Chem. 2008, 80, 85–104. [Google Scholar] [CrossRef]
- Singh, A.K.; Mehtab, S.; Jain, A.K. Selective electrochemical sensor for copper (II) ion based on chelating ionophores. Anal. Chim. Acta 2006, 575, 25–31. [Google Scholar] [CrossRef] [PubMed]
- The United States Pharmacopeial Convention, The United States Pharmacopeia USP 28, National Formulary; The United States Pharmacopeial Convention, Inc.: Rockville, MD, USA, 2006; pp. 63–65.
- Jeffery, G.; Bassett, J.; Mendham, J.; Deny, R. Vogel’s Textbook of Quantitative Chemical Analysis, 5th ed.; Longman Ltd.: London, UK, 1989. [Google Scholar]
- Turiel, E.; Bordin, G.; Rodriguez, A.R. Determination of quinolones and fluoroquinolones in hospital sewage water by off-line and on-line solid-phase extraction procedures coupled to HPLC-UV. J. Sep. Sci. 2005, 28, 257–267. [Google Scholar] [CrossRef] [PubMed]
Parameter | Analysis % | ||
---|---|---|---|
C | H | N | |
Calculated % | 56.15 | 4.15 | 11.62 |
Found % | 55.81 | 4.18 | 11.55 |
Parameter | PVC Membrane Electrode | GC Electrode |
---|---|---|
Slope (mV decade−1) * | 29 | 29 |
Response time (sec) | 15 | 15 |
Correlation coefficient (r) | 0.9995 | 0.9991 |
Working pH range | 8–11 | 8–11 |
Concentration range (M) | 1 × 10−5–1 × 10−2 | 1 × 10−5–1 × 10−2 |
Concentration range (µg/mL) | 3.25–3250 | 3.25–3250 |
Stability (days) | 25 | 30 |
Accuracy (Mean * ± SD) | 100.20 ± 0.809 | 100.42 ± 0.929 |
Limit of detection (M) ** | 8 × 10−6 | 8 × 10−6 |
Ruggedness † | 103.12 * ± 2.014 | 102.96 * ± 1.966 |
Robustness Ψ | 100.96 * ± 0.987 | 99.36 * ± 0.586 |
−log Conc. (M) | E (mV) | |||||
---|---|---|---|---|---|---|
PVC Membrane Electrode | GC Electrode | |||||
25 °C | 30 °C | 40 °C | 25 °C | 30 °C | 40 °C | |
2 | 40 | 40 | 39.5 | 30 | 30 | 30 |
3 | 69 | 69 | 69 | 59.5 | 59 | 59 |
4 | 98 | 98.5 | 98 | 89 | 88 | 88 |
5 | 127 | 127.5 | 127 | 118 | 117 | 117 |
6 | 141 | 141 | 141 | 133 | 132 | 132 |
7 | 142 | 142 | 142 | 134 | 134 | 134 |
Interferent | PVC Membrane Electrode * | GC Electrode * |
---|---|---|
Magnesium chloride | 5.3 × 10−2 | 5.1 × 10−2 |
Potassium sulfate | 3.1 × 10−2 | 3.3 × 10−2 |
Potassium phosphate | 4.1 × 10−2 | 4.5 × 10−2 |
Ammonium nitrate | 7.6 × 10−3 | 7.8 × 10−3 |
Potassium carbonate | 4.1 × 10−2 | 3.8 × 10−2 |
Sodium fluoride | 5.2 × 10−2 | 6.1 × 10−2 |
Sodium iodide | 2.7 × 10−2 | 2.9 × 10−2 |
Residronate sodium | 5.5 × 10−2 | 5.6 × 10−2 |
Clodronate disodium tetrahydrate | 5.9 × 10−2 | 5.8 × 10−2 |
Specimen | PVC Membrane Electrode | GC Electrode |
---|---|---|
Distilled water (Rec. %) * | 102.57 | 101.89 |
Tap water (Rec. %) * | 101.78 | 103.11 |
Sample Number | PVC Electrode β | GC Electrode β | Official USP Method [30] * |
---|---|---|---|
Sample 1 | 10.33 | 10.99 | 10.63 |
Sample 2 | 15.98 | 15.22 | 15.56 |
Sample 3 | 25.76 | 25.52 | 25.65 |
Sample 4 | 32.11 | 32.74 | 32.46 |
Sample 5 | 53.25 | 52.45 | 52.84 |
Sample 6 | 78.96 | 77.47 | 78.86 |
Added ALN (µg/mL) | PVC Electrode (Recovery % ± SD) * | GC Electrode (Recovery % ± SD) * |
---|---|---|
100 | 100.81 ± 0.831 | 100.79 ± 0.799 |
200 | 99.69 ± 0.731 | 101.55 ± 0.893 |
300 | 102.11 ± 0.921 | 99.49 ± 1.031 |
Items | PVC Membrane Electrode | GC Electrode | The Official USP Method |
---|---|---|---|
Mean ± SD | 100.20 ± 0.809 | 100.42 ± 0.929 | 99.81 ± 0.587 |
RSD | 0.807 | 0.925 | 0.588 |
Variance | 0.654 | 0.863 | 0.345 |
n | 5 | 5 | 5 |
F-value (6.39) * | 1.90 | 2.50 | - |
Student’s t-test (2.306) * | 0.920 | 1.242 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Gawad, S.A.; Afzal, O.; Arab, H.H.; Alabbas, A.B.; Alqarni, A.M. Fabrication of Membrane Sensitive Electrodes for the Validated Electrochemical Quantification of Anti-Osteoporotic Drug Residues in Pharmaceutical Industrial Wastewater. Molecules 2021, 26, 5093. https://doi.org/10.3390/molecules26165093
Abdel-Gawad SA, Afzal O, Arab HH, Alabbas AB, Alqarni AM. Fabrication of Membrane Sensitive Electrodes for the Validated Electrochemical Quantification of Anti-Osteoporotic Drug Residues in Pharmaceutical Industrial Wastewater. Molecules. 2021; 26(16):5093. https://doi.org/10.3390/molecules26165093
Chicago/Turabian StyleAbdel-Gawad, Sherif A., Obaid Afzal, Hany H. Arab, Alhumaidi B. Alabbas, and Abdulmalik M. Alqarni. 2021. "Fabrication of Membrane Sensitive Electrodes for the Validated Electrochemical Quantification of Anti-Osteoporotic Drug Residues in Pharmaceutical Industrial Wastewater" Molecules 26, no. 16: 5093. https://doi.org/10.3390/molecules26165093
APA StyleAbdel-Gawad, S. A., Afzal, O., Arab, H. H., Alabbas, A. B., & Alqarni, A. M. (2021). Fabrication of Membrane Sensitive Electrodes for the Validated Electrochemical Quantification of Anti-Osteoporotic Drug Residues in Pharmaceutical Industrial Wastewater. Molecules, 26(16), 5093. https://doi.org/10.3390/molecules26165093