Assessment of Volatile Aromatic Compounds in Smoke Tainted Cabernet Sauvignon Wines Using a Low-Cost E-Nose and Machine Learning Modelling
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC–MS Analysis
2.2. Smoke Aroma Intensity
2.3. Electronic Nose
2.4. Multivariate Data Analysis
2.5. Machine Learning Modelling
3. Materials and Methods
3.1. Smoke Treatments and Winemaking
3.2. GC–MS Analysis
3.3. Assessment of Smoke Aroma Intensity
3.4. Electronic Nose
3.5. Statistical Analysis and Machine Learning Modelling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Arcari, S.G.; Caliari, V.; Sganzerla, M.; Godoy, H.T. Volatile composition of Merlot red wine and its contribution to the aroma: Optimisation and validation of analytical method. Talanta 2017, 174, 752–766. [Google Scholar] [CrossRef]
- Ayestarán, B.; Martínez-Lapuente, L.; Guadalupe, Z.; Canals, C.; Adell, E.; Vilanova, M. Effect of the winemaking process on the volatile composition and aromatic profile of Tempranillo Blanco wines. Food Chem. 2019, 276, 187–194. [Google Scholar] [CrossRef]
- Zhao, P.; Qian, Y.; He, F.; Li, H.; Qian, M. Comparative characterisation of aroma compounds in merlot wine by lichrolut-en-based aroma extract dilution analysis and odor activity value. Chemosens. Percept. 2017, 10, 149–160. [Google Scholar] [CrossRef]
- McKay, M.; Bauer, F.; Panzeri, V.; Mokwena, L.; Buica, A. Profiling potentially smoke tainted red wines: Volatile phenols and aroma attributes. S. Afr. J. Enol. Vitic. 2019, 40, 1. [Google Scholar]
- Sherman, E.; Harbertson, J.F.; Greenwood, D.R.; Villas-Bôas, S.G.; Fiehn, O.; Heymann, H. Reference samples guide variable selection for correlation of wine sensory and volatile profiling data. Food Chem. 2018, 267, 344–354. [Google Scholar] [CrossRef]
- Siebert, T.E.; Stamatopoulos, P.; Francis, I.L.; Darriet, P. Sensory-directed characterisation of distinctive aromas of Sauternes and Viognier wines through semi-preparative liquid chromatography and gas chromatography approaches. J. Chromatogr. A 2021, 1637, 461803. [Google Scholar] [CrossRef]
- Forde, C.G.; Cox, A.; Williams, E.R.; Boss, P.K. Associations between the sensory attributes and volatile composition of Cabernet Sauvignon wines and the volatile composition of the grapes used for their production. J. Agric. Food Chem. 2011, 59, 2573–2583. [Google Scholar] [CrossRef] [PubMed]
- Morena Luna, L.; Reynolds, A.G.; Di Profio, F.; Zhang, L.; Kotsaki, E. Crop level and harvest date impact on four Ontario wine grape cultivars. II. Wine aroma compounds and sensory analysis. S. Afr. J. Enol. Vitic. 2018, 39, 246–270. [Google Scholar] [CrossRef] [Green Version]
- Noestheden, M.; Thiessen, K.; Dennis, E.G.; Tiet, B.; Zandberg, W.F. Quantitating organoleptic volatile phenols in smoke-exposed Vitis vinifera berries. J. Agric. Food Chem. 2017, 65, 8418–8425. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Garcia, A.; Wilkinson, K.; Culbert, J.; Lloyd, N.; Alonso, G.; Salinas, M.R. Accumulation of guaiacol glycoconjugates in fruit, leaves and shoots of Vitis vinifera cv. Monastrell following foliar applications of guaiacol or oak extract to grapevines. Food Chem. 2017, 217, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Pons, A.; Allamy, L.; Schüttler, A.; Rauhut, D.; Thibon, C.; Darriet, P. What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO One 2017, 51, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, S.; Summerson, V.; Gonzalez Viejo, C.; Tongson, E.; Lipovetzky, N.; Wilkinson, K.L.; Szeto, C.; Unnithan, R.R. Assessment of smoke contamination in grapevine berries and taint in wines due to bushfires using a low-cost E-nose and an artificial intelligence approach. Sensors 2020, 20, 5108. [Google Scholar] [CrossRef] [PubMed]
- Kennison, K.; Gibberd, M.; Pollnitz, A.; Wilkinson, K. Smoke-derived taint in wine: The release of smoke-derived volatile phenols during fermentation of Merlot juice following grapevine exposure to smoke. J. Agric. Food Chem. 2008, 56, 7379–7383. [Google Scholar] [CrossRef]
- Summerson, V.; Gonzalez Viejo, C.; Torrico, D.D.; Pang, A.; Fuentes, S. Detection of smoke-derived compounds from bushfires in Cabernet-Sauvignon grapes, must, and wine using Near-Infrared spectroscopy and machine learning algorithms. OENO One 2020, 54, 1105–1119. [Google Scholar] [CrossRef]
- Kennison, K.; Wilkinson, K.; Pollnitz, A.; Williams, H.; Gibberd, M. Effect of timing and duration of grapevine exposure to smoke on the composition and sensory properties of wine. Aust. J. Grape Wine Res. 2009, 15, 228–237. [Google Scholar] [CrossRef]
- Kennison, K.; Wilkinson, K.; Williams, H.; Smith, J.; Gibberd, M. Smoke-derived taint in wine: Effect of postharvest smoke exposure of grapes on the chemical composition and sensory characteristics of wine. J. Agric. Food Chem. 2007, 55, 10897–10901. [Google Scholar] [CrossRef]
- Alem, H.; Rigou, P.; Schneider, R.; Ojeda, H.; Torregrosa, L. Impact of agronomic practices on grape aroma composition: A review. J. Sci. Food Agric. 2019, 99, 975–985. [Google Scholar] [CrossRef]
- Genisheva, Z.; Quintelas, C.; Mesquita, D.P.; Ferreira, E.C.; Oliveira, J.M.; Amaral, A.L. New PLS analysis approach to wine volatile compounds characterisation by near infrared spectroscopy (NIR). Food Chem. 2018, 246, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, C.; Garde-Cerdán, T.; Pedroza, M.A.; Alonso, G.L.; Salinas, M.R. Determination of fermentative volatile compounds in aged red wines by near infrared spectroscopy. Food Res. Int. 2009, 42, 1281–1286. [Google Scholar] [CrossRef]
- Viejo, C.G.; Fuentes, S. Beer aroma and quality traits assessment using artificial intelligence. Fermentation 2020, 6, 56. [Google Scholar] [CrossRef]
- Han, F.; Zhang, D.; Aheto, J.H.; Feng, F.; Duan, T. Integration of a low-cost electronic nose and a voltammetric electronic tongue for red wines identification. Food Sci. Nutr. 2020, 8, 4330–4339. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Tongson, E.; Fuentes, S. Integrating a low-cost electronic nose and machine learning modelling to assess coffee aroma profile and intensity. Sensors 2021, 21, 2016. [Google Scholar] [CrossRef] [PubMed]
- Berna, A.Z.; Trowell, S.; Clifford, D.; Cynkar, W.; Cozzolino, D. Geographical origin of Sauvignon Blanc wines predicted by mass spectrometry and metal oxide based electronic nose. Anal. Chim. Acta 2009, 648, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Nimsuk, N. Improvement of accuracy in beer classification using transient features for electronic nose technology. J. Food Meas. Charact. 2019, 13, 656–662. [Google Scholar] [CrossRef]
- Mu, F.; Gu, Y.; Zhang, J.; Zhang, L. Milk source identification and milk quality estimation using an electronic nose and machine learning techniques. Sensors 2020, 20, 4238. [Google Scholar] [CrossRef] [PubMed]
- Gamboa, J.C.R.; da Silva, A.J.; de Andrade Lima, L.L.; Ferreira, T.A. Wine quality rapid detection using a compact electronic nose system: Application focused on spoilage thresholds by acetic acid. LWT 2019, 108, 377–384. [Google Scholar] [CrossRef] [Green Version]
- John, A.T.; Murugappan, K.; Nisbet, D.R.; Tricoli, A. An outlook of recent advances in chemiresistive sensor-based electronic nose systems for food quality and environmental monitoring. Sensors 2021, 21, 2271. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, K.; Zhang, C. Electronic nose for volatile organic compounds analysis in rice aging. Trends Food Sci. Technol. 2021, 109, 83–93. [Google Scholar] [CrossRef]
- Zarezadeh, M.R.; Aboonajmi, M.; Varnamkhasti, M.G.; Azarikia, F. Olive oil classification and fraud detection using E-nose and ultrasonic system. Food Anal. Methods 2021, 1–12. [Google Scholar] [CrossRef]
- Shim, C.H.; Lee, I.S. Classification of french red wines and monitoring of wine ageing with a portable electronic nose. In Proceedings of the International Conference on Electronics, Information, and Communication (ICEIC), Jeju-si, Korea, 31 January–3 February 2021; pp. 1–4. [Google Scholar]
- Summerson, V.; Gonzalez Viejo, C.; Szeto, C.; Wilkinson, K.L.; Torrico, D.D.; Pang, A.; Bei, R.D.; Fuentes, S. Classification of smoke contaminated Cabernet Sauvignon berries and leaves based on chemical fingerprinting and machine learning algorithms. Sensors 2020, 20, 5099. [Google Scholar] [CrossRef]
- Fang, Y.; Qian, M.C. Quantification of selected aroma-active compounds in Pinot noir wines from different grape maturities. J. Agric. Food Chem. 2006, 54, 8567–8573. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Issa-Issa, H.; Noguera-Artiaga, L.; Sendra, E.; Pérez-López, A.J.; Burló, F.; Carbonell-Barrachina, Á.A.; López-Lluch, D. Volatile composition, sensory profile, and consumers’ acceptance of fondillón. J. Food Qual. 2019, 2019, 5981762. [Google Scholar] [CrossRef] [Green Version]
- The Good Scents Company Information System. Available online: http://www.thegoodscentscompany.com/ (accessed on 1 April 2021).
- Bekker, M.Z.; Kreitman, G.Y.; Jeffery, D.W.; Danilewicz, J.C. Liberation of hydrogen sulfide from dicysteinyl polysulfanes in model wine. J. Agric. Food Chem. 2018, 66, 13483–13491. [Google Scholar] [CrossRef]
- Davis, P.M.; Qian, M.C. Effect of wine matrix composition on the quantification of volatile sulfur compounds by headspace solid-phase microextraction-gas chromatography-pulsed flame photometric detection. Molecules 2019, 24, 3320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, V.; Franco-Luesma, E.; Vela, E.; López, R.; Hernández-Orte, P. Elusive chemistry of hydrogen sulfide and mercaptans in wine. J. Agric. Food Chem. 2017, 66, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- Mouret, J.-R.; Sablayrolles, J.-M.; Farines, V. Study and modeling of the evolution of gas–liquid partitioning of hydrogen sulfide in model solutions simulating winemaking fermentations. J. Agric. Food Chem. 2015, 63, 3271–3278. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-K. Development of a method to measure hydrogen sulfide in wine fermentation. J. Microbiol. Biotechnol. 2008, 18, 1550–1554. [Google Scholar]
- Renouf, V.; Claisse, O.; Lonvaud-Funel, A. Understanding the microbial ecosystem on the grape berry surface through numeration and identification of yeast and bacteria. Aust. J. Grape Wine Res. 2005, 11, 316–327. [Google Scholar] [CrossRef]
- Summerson, V.; Gonzalez Viejo, C.; Torrico, D.D.; Pang, A.; Fuentes, S. Digital smoke taint detection in Pinot Grigio wines using an E-nose and machine learning algorithms following treatment with activated carbon and a cleaving enzyme. Fermentation 2021, 7, 119. [Google Scholar] [CrossRef]
- Viejo, C.G.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sens. Actuators B Chem. 2020, 308, 127688. [Google Scholar] [CrossRef]
- Szeto, C.; Ristic, R.; Capone, D.; Puglisi, C.; Pagay, V.; Culbert, J.; Jiang, W.; Herderich, M.; Tuke, J.; Wilkinson, K. Uptake and glycosylation of smoke-derived volatile phenols by cabernet sauvignon grapes and their subsequent fate during winemaking. Molecules 2020, 25, 3720. [Google Scholar] [CrossRef] [PubMed]
- Caravia, L.; Pagay, V.; Collins, C.; Tyerman, S.D. Application of sprinkler cooling within the bunch zone during ripening of Cabernet Sauvignon berries to reduce the impact of high temperature. Aust. J. Grape Wine Res. 2017, 23, 48–57. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.D.; Godbole, A.; Dunshea, F.R. Chemical characterisation of aromas in beer and their effect on consumers liking. Food Chem. 2019, 293, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, S.; Gonzalez Viejo, C.; Torrico, D.; Dunshea, F. Development of a biosensory computer application to assess physiological and emotional responses from sensory panelists. Sensors 2018, 18, 2958. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Viejo, C.; Torrico, D.D.; Dunshea, F.R.; Fuentes, S. Development of artificial neural network models to assess beer acceptability based on sensory properties using a robotic pourer: A comparative model approach to achieve an artificial intelligence system. Beverages 2019, 5, 33. [Google Scholar] [CrossRef] [Green Version]
Compound | RT | RI | Odour Description | C | CM | HS | HSM | LS |
---|---|---|---|---|---|---|---|---|
Hexanoic acid, ethyl ester (ns) | 12.15 | 996 | Fruity, apple, sweetish, spicy [1,2,3,34] | 6.72 × 106 | 4.97 × 106 | 6.29 × 106 | 5.65 × 106 | 6.47 × 106 |
±8.19 × 105 | ±1.66 × 106 | ±3.07 × 105 | ±3.60 × 105 | ±1.09 × 106 | ||||
Octanoic acid, ethyl ester (ns) | 16.25 | 1196 | Apple, fruity, sweetish, floral [2,3,34] | 4.07 × 107 | 3.57 × 107 | 4.16 × 107 | 3.41 × 107 | 4.08 × 107 |
±1.69 × 106 | ±5.46 × 106 | ±5.54 × 105 | ±1.99 × 106 | ±3.49 × 106 | ||||
Nonanoic acid, ethyl ester | 18.02 | 1294 | Fruity, nutty, floral [1,34] | 3.57 × 105 a | 6.27 × 105 a | 0 b | 4.37 × 105 a | 5.13 × 105 a |
±1.79 × 105 | ±9.82 × 104 | ±0 | ±3.72 × 104 | ±3.27 × 104 | ||||
Ethyl 9-decenoate | 19.57 | 1387.8 | Fruity, fatty [35] | 1.04 × 106 b | 6.98 × 105 c | 1.44 × 106 a | 9.07 × 105 bc | 1.13 × 106 ab |
±8.22 × 104 | ±1.54 × 105 | ±4.96 × 104 | ±4.47 × 104 | ±1.13 × 105 | ||||
Decanoic acid, ethyl ester | 19.70 | 1373 | Grape, oily [1,2,3,34] | 3.01 × 107 b | 2.88 × 107 b | 3.21 × 107 ab | 2.79 × 107 b | 3.51 × 107 a |
±1.24 × 106 | ±2.62 × 106 | ±1.11 × 106 | ±1.43 × 106 | ±7.82 × 105 | ||||
Octanoic acid, 3-methylbutyl ester | 20.51 | 1450.4 | Sweet, oily, fruity, soapy, pineapple, coconut [35] | 4.64 × 105 ab | 2.95 × 105 b | 5.44 × 105 a | 4.35 × 105 ab | 6.31 × 105 a |
±2.47 × 104 | ±1.49 × 105 | ±3.48 × 104 | ±1.94 × 104 | ±2.98 × 104 | ||||
Dodecanoic acid, ethyl ester | 22.75 | 1597 | Candy, floral, fruity, waxy, soap [1,34] | 4.58 × 106 c | 2.67 × 106 d | 6.49 × 106 b | 6.16 × 106 b | 8.31 × 106 a |
±1.19 × 105 | ±7.20 × 105 | ±3.78 × 105 | ±3.54 × 105 | ±2.42 × 105 | ||||
Benzene methanol, alpha-methyl-(ns) | 14.62 | 1194 | Chemical, medicinal, naphthyl, gardenia, hyacinth [35] | 2.13 × 107 | 2.39 × 107 | 3.33 × 107 | 2.44 × 107 | 3.40 × 107 |
±1.07 × 107 | ±1.20 × 107 | ±7.12 × 105 | ±1.22 × 107 | ±6.25 × 105 |
Stage | Samples | Observations | R | R2 | b | Performance (MSE) |
---|---|---|---|---|---|---|
Model 1 | ||||||
Training | 240 | 1920 | 0.99 | 0.98 | 1.00 | 8.39 × 1012 |
Testing | 60 | 480 | 0.98 | 0.96 | 1.00 | 5.24 × 1011 |
Overall | 300 | 2400 | 0.99 | 0.98 | 1.00 | - |
Model 2 | ||||||
Training | 240 | 240 | 0.99 | 0.98 | 0.96 | 0.42 |
Testing | 60 | 60 | 0.94 | 0.88 | 0.95 | 2.76 |
Overall | 300 | 300 | 0.97 | 0.94 | 0.96 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Summerson, V.; Gonzalez Viejo, C.; Pang, A.; Torrico, D.D.; Fuentes, S. Assessment of Volatile Aromatic Compounds in Smoke Tainted Cabernet Sauvignon Wines Using a Low-Cost E-Nose and Machine Learning Modelling. Molecules 2021, 26, 5108. https://doi.org/10.3390/molecules26165108
Summerson V, Gonzalez Viejo C, Pang A, Torrico DD, Fuentes S. Assessment of Volatile Aromatic Compounds in Smoke Tainted Cabernet Sauvignon Wines Using a Low-Cost E-Nose and Machine Learning Modelling. Molecules. 2021; 26(16):5108. https://doi.org/10.3390/molecules26165108
Chicago/Turabian StyleSummerson, Vasiliki, Claudia Gonzalez Viejo, Alexis Pang, Damir D. Torrico, and Sigfredo Fuentes. 2021. "Assessment of Volatile Aromatic Compounds in Smoke Tainted Cabernet Sauvignon Wines Using a Low-Cost E-Nose and Machine Learning Modelling" Molecules 26, no. 16: 5108. https://doi.org/10.3390/molecules26165108
APA StyleSummerson, V., Gonzalez Viejo, C., Pang, A., Torrico, D. D., & Fuentes, S. (2021). Assessment of Volatile Aromatic Compounds in Smoke Tainted Cabernet Sauvignon Wines Using a Low-Cost E-Nose and Machine Learning Modelling. Molecules, 26(16), 5108. https://doi.org/10.3390/molecules26165108