Insight into the Way the Content of Biologically Active Compounds in Meadowsweet Inflorescences (Filipendula ulmaria (L.) Maxim.) Is Shaped by Phytosociological Habitats
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Phytosociological Analysis
4.2. Plant Material Collection
4.3. Chemical Analysis
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Blumental, M.; Goldberg, A.; Brinckmann, J. Herbal Medicine: Expanded Commission E Monographs; Integrative Medicine Communications: New Jersey, NJ, USA, 2000. [Google Scholar]
- Fecka, I. Qualitative and quantitative determination of hydrolysable tannins and other polyphenols in herbal products from meadowsweet and dog rose. Phytochem. Anal. 2009, 20, 177–190. [Google Scholar] [CrossRef]
- Bespalov, V.G.; Baranenko, D.A.; Aleksandrov, V.A.; Semenov, A.L.; Kovan’ko, E.G.; Ivanov, S.D. Chemoprevention of Radiation-Induced Carcinogenesis Using Decoction of Meadowsweet (Filipendula ulmaria) Flowers. Pharm. Chem. J. 2019, 52, 860–862. [Google Scholar] [CrossRef]
- Arsenijevic, N.; Selakovic, D.; Katanic Stankovic, J.S.; Mihailovic, V.; Mitrovic, S.; Milenkovic, J.; Milanovic, P.; Vasovic, M.; Markovic, S.D.; Zivanovic, M.; et al. The Beneficial Role of Filipendula ulmaria Extract in Prevention of Prodepressant Effect and Cognitive Impairment Induced by Nanoparticles of Calcium Phosphates in Rats. Oxidative Med. Cell. Longev. 2021, 2021, 6670135. [Google Scholar] [CrossRef] [PubMed]
- Schanzer, I.A. Taxonomic Revision of the Genus Filipendula Mill. (Rosaceae). J. Jpn. Bot. 1994, 69, 290–319. [Google Scholar]
- Samardžić, S.; Arsenijević, J.; Božić, D.; Milenković, M.; Tešević, V.; Maksimović, Z. Antioxidant, anti-inflammatory and gastroprotective activity of Filipendula ulmaria (L.) Maxim. and Filipendula vulgaris Moench. J. Ethnopharmacol. 2018, 213, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Lima, M.J.; Sousa, D.; Lima, R.T.; Carvalho, A.M.; Ferreira, I.C.; Vasconcelos, M.H. Flower extracts of Filipendula ulmaria (L.) Maxim inhibit the proliferation of the NCI-H460 tumour cell line. Ind. Crop. Prod. 2014, 59, 149–153. [Google Scholar] [CrossRef]
- Cholet, J.; Decombat, C.; Vareille-Delarbre, M.; Gainche, M.; Berry, A.; Ogéron, C.; Ripoche, I.; Delort, L.; Vermerie, M.; Fraisse, D.; et al. Comparison of The Anti-Inflammatory and Immunomodulatory Mechanisms of Two Medicinal Herbs: Meadowsweet (Filipendula ulmaria) and Harpagophytum (Harpagophytum procumbens). Int. J. Plant Anim. Environ. Sci. 2019, 9, 145–163. [Google Scholar]
- Shilova, I.; Krasnov, E.; Korotkova, E.I.; Nagaev, M.; Lukina, A. Antioxidant properties of extracts from the above-ground parts of Filipendula ulmaria. Pharm. Chem. J. 2006, 40, 660–662. [Google Scholar] [CrossRef]
- Harbourne, N.; Marete, E.; Jacquier, J.C.; O’Riordan, D. Effect of drying methods on the phenolic constituents of meadowsweet (Filipendula ulmaria) and willow (Salix alba). LWT-Food Sci. Technol. 2009, 42, 1468–1473. [Google Scholar] [CrossRef]
- Krasnov, E.; Raldugin, V.; Shilova, I.; Avdeeva, E.Y. Phenolic compounds from Filipendula ulmaria. Chem. Nat. Compd. 2006, 42, 148–151. [Google Scholar] [CrossRef]
- Katanić, J.; Boroja, T.; Stanković, N.; Mihailović, V.; Mladenović, M.; Kreft, S.; Vrvić, M.M. Bioactivity, stability and phenolic characterization of Filipendula ulmaria (L.) Maxim. Food Funct. 2015, 6, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K. Meadowsweet Teas as New Functional Beverages: Comparative Analysis of Nutrients, Phytochemicals and Biological Effects of Four Filipendula Species. Molecules 2016, 22, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wysocki, C.; Sikorski, P. Fitosocjologia Stosowana w Ochronie i Kształtowaniu Krajobrazu; Wydawnictwo SGGW: Warszawa, Poland, 2002. [Google Scholar]
- Canter, P.H.; Thomas, H.; Ernst, E. Bringing medicinal plants into cultivation: Opportunities and challenges for biotechnology. Trends Biotechnol. 2005, 23, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Vysochina, G.; Kukushkina, T.; Vasfilov, E. Biologically Active Substances in Filipendula ulmaria (L.) Maxim. growing in the middle urals. Chem. Sustain. Dev. 2013, 21, 369–374. [Google Scholar]
- Harbourne, N.; Jacquier, J.C.; O’Riordan, D. Optimisation of the aqueous extraction conditions of phenols from meadowsweet (Filipendula ulmaria L.) for incorporation into beverages. Food Chem. 2009, 116, 722–727. [Google Scholar] [CrossRef]
- Mostowik, K.; Siwek, J.; Kisiel, M.; Kowalik, K.; Krzysik, M.; Plenzler, J.; Rzonca, B. Runoff trends in a changing climate in the Eastern Carpathians (Bieszczady Mountains, Poland). Catena 2019, 182, 104174. [Google Scholar] [CrossRef]
- Binczewska, A.; Asteman, I.; Asteman, I.P.; Moros, M.; Sławińska, J. Reconstruction of Climate and Environmental Changes in the Bornholm Basin during the Last 6000 Years, Based on Foraminiferal Assemblages. 2016. Available online: https://ui.adsabs.harvard.edu/abs/2016EGUGA..18..710B/abstract (accessed on 2 April 2021).
- Kornaś, J.; Medwecka-Kornaś, A. Geografia Roślin; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1986. [Google Scholar]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [Green Version]
- Wright, D.M.; Jordan, G.J.; Lee, W.G.; Duncan, R.P.; Forsyth, D.M.; Coomes, D.A. Do leaves of plants on phosphorus--impoverished soils contain high concentrations of phenolic defence compounds? Funct. Ecol. 2010, 24, 52–61. [Google Scholar] [CrossRef]
- Tongco, M.D.C. Purposive Sampling as a Tool for Informant Selection. Ethnobot. Res. Appl. 2007, 5, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Darbyshire, I.; Anderson, S.; Asatryan, A.; Byfield, A.; Cheek, M.; Clubbe, C.; Ghrabi, Z.; Harris, T.; Heatubun, C.D.; Kalema, J.; et al. Important Plant Areas: Revised selection criteria for a global approach to plant conservation. Biodivers. Conserv. 2017, 26, 1767–1800. [Google Scholar] [CrossRef] [Green Version]
- Matuszkiewicz, W. Przewodnik do Oznaczania Zbiorowisk Roślinnych Polski; Wydawn. Nauk. PWN: Warszawa, Poland, 2001. [Google Scholar]
- World Health Organization. WHO Guidelines on Good Agricultural and Collection Practices (GACP) for Medicinal Plants. 2003. Available online: https://apps.who.int/iris/handle/10665/42783 (accessed on 2 April 2021).
- Zych, I.; Krzepiłko, A. Pomiar całkowitej zdolności antyoksydacyjnej wybranych antyoksydantów i naparów metodą redukcji rodnika DPPH. Chem.-Didact.-Ecol.-Metrol. 2010, 15, 51–54. [Google Scholar]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Warrier, R.; Paul, M.; Vineetha, M. Estimation of salicylic acid in Eucalyptus leaves using spectrophotometric methods. Genet. Plant Physiol. 2013, 3, 90–97. [Google Scholar]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Gostkowski, M.; Jałowiecki, P.; Tekień, A. Regional Diversification of Expenditure Structure in Poland: A GCA Approach. Sci. J. Wars. Univ. Life Sci. SGGW-Probl. World Agric. 2015, 15, 71–79. [Google Scholar]
Location | Allinge-Sandvig (DK) | Klemensker (DK) | Nexo (DK) | Iskrzynia (PL) | Haczów (PL) | Baligród (PL) | Jabłonka (PL) | Stability |
---|---|---|---|---|---|---|---|---|
Number of species in the photo 1 | 24 | 9 | 16 | 14 | 11 | 21 | 12 | |
ChCl. Molinio-Arrhenatheretea | ||||||||
Festuca pratensis | - 2 | 1 | - | 1 | - | - | - | II 3 |
Rumex acetosa | - | - | - | - | + | - | - | I |
Rannunculus acris | - | - | - | - | + | 1 | - | I |
Vicia cracca | - | - | - | - | - | - | - | I |
ChO. Molinietalia caerulae | ||||||||
Crisum palustre | - | - | - | - | - | - | 1 | I |
Lotus ulignosus | - | 1 | - | - | - | - | - | I |
Eupatorium cannabinum | - | - | - | - | - | - | 1 | I |
ChAll. Filipendulion ulmariae | ||||||||
Filipendula ulmaria | 4 | 2 | 3 | 3 | 1 | 4 | 2 | V |
Hypericum tetrapterum | - | - | - | - | - | - | 2 | I |
Lythrum salicaria | - | - | - | 2 | - | 1 | - | II |
Euphorbia palustris | - | - | - | - | - | 1 | - | I |
Mentha longifolia | - | - | - | - | - | + | - | I |
Stachys palustris | - | - | + | - | - | - | - | I |
ChAll. Caltion palustris | ||||||||
Juncus effuses | - | - | - | - | - | 2 | - | I |
Lysimachia vulgaris | - | - | - | - | - | 1 | - | I |
ChO. Arrhenatheretalia | ||||||||
Dactylis glomerata | - | - | - | + | - | - | - | I |
Equisetum palustre | - | - | - | - | + | - | - | I |
Campanula patula | - | - | - | + | - | + | - | II |
Crepis biennis | - | - | - | - | 1 | 2 | - | II |
Geranium pretense | - | - | - | - | 1 | + | - | II |
Achillea millefolium | - | - | - | + | + | 1 | - | III |
Arrhenantheum eliatus | - | 1 | - | - | - | - | - | I |
ChO. Agrorypo-Rumicon crispi | ||||||||
Festuca arundinacea | - | - | - | 1 | 1 | - | - | II |
Associated species | ||||||||
ChCl. Artemisietea vulgaris | ||||||||
Artemisia vulgaris | + | - | - | - | - | - | - | I |
Solidago canadiensis | - | - | - | 2 | - | + | - | II |
Urtica dioica | - | - | - | 1 | + | - | + | III |
Location | Total Phenolics (mg g−1 DW) | Slicylates (mg g−1 DW) | Antioxidant Capacity (%DPPH) | ||||||
---|---|---|---|---|---|---|---|---|---|
Xmax–Xmin | Mean | σ | Xmax–Xmin | Mean | σ | Xmax–Xmin | Mean | σ | |
Allinge-Sandvig (DK) | 344.64–336.48 | 341.47 b* | 4.37 | 40.23–35.49 | 38.23 bcd | 2.45 | 95.67–95.45 | 95.56 b | 0.11 |
Klemensker (DK) | 385.44–336.48 | 360.96 b | 24.48 | 45.41–42.39 | 44.26 cd | 1.65 | 96.00–95.56 | 95.78 b | 0.22 |
Nexo (DK) | 438.48–404.48 | 417.17 c | 18.56 | 63.52–54.03 | 58.34 e | 4.8 | 96.34–95.78 | 96.08 c | 0.28 |
Iskrzynia (PL) | 260.32–248.08 | 255.33 a | 6.43 | 34.2–28.6 | 30.9 ab | 2.93 | 95.56–95.01 | 95.26 a | 0.28 |
Haczów (PL) | 309.28–282.08 | 293.87 a | 13.96 | 41.53–28.17 | 35.5 abc | 6.77 | 95.23–94.67 | 94.97 a | 0.28 |
Baligród (PL) | 412.64–390.88 | 400.40 c | 11.13 | 51.01–43.86 | 47.28 de | 3.67 | 96.45–95.89 | 96.23 c | 0.29 |
Jabłonka (PL) | 264.40–249.44 | 257.15 a | 7.49 | 29.46–21.7 | 24.87 a | 4.07 | 95.45–94.89 | 95.23 a | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stawarczyk, K.; Chrupek, A.; Sękara, A.; Gostkowski, M.; Karbarz, M. Insight into the Way the Content of Biologically Active Compounds in Meadowsweet Inflorescences (Filipendula ulmaria (L.) Maxim.) Is Shaped by Phytosociological Habitats. Molecules 2021, 26, 5172. https://doi.org/10.3390/molecules26175172
Stawarczyk K, Chrupek A, Sękara A, Gostkowski M, Karbarz M. Insight into the Way the Content of Biologically Active Compounds in Meadowsweet Inflorescences (Filipendula ulmaria (L.) Maxim.) Is Shaped by Phytosociological Habitats. Molecules. 2021; 26(17):5172. https://doi.org/10.3390/molecules26175172
Chicago/Turabian StyleStawarczyk, Kinga, Aleksandra Chrupek, Agnieszka Sękara, Michał Gostkowski, and Małgorzata Karbarz. 2021. "Insight into the Way the Content of Biologically Active Compounds in Meadowsweet Inflorescences (Filipendula ulmaria (L.) Maxim.) Is Shaped by Phytosociological Habitats" Molecules 26, no. 17: 5172. https://doi.org/10.3390/molecules26175172
APA StyleStawarczyk, K., Chrupek, A., Sękara, A., Gostkowski, M., & Karbarz, M. (2021). Insight into the Way the Content of Biologically Active Compounds in Meadowsweet Inflorescences (Filipendula ulmaria (L.) Maxim.) Is Shaped by Phytosociological Habitats. Molecules, 26(17), 5172. https://doi.org/10.3390/molecules26175172