(+)-Usnic Acid as a Promising Candidate for a Safe and Stable Topical Photoprotective Agent
Abstract
:1. Introduction
2. Results
2.1. Both Usnic Acid Enantiomers Reveal High Skin Permeability
2.2. (+)-Usnic Acid Is Safer to Normal Skin Cells than Its Left-Handed Enantiomer
2.3. (+)-Usnic Acid Absorbs UV Radiation Similarly to Octocrylene
2.4. (+)-Usnic Acid Enahances the Photoprotective Potential of Octocrylene
2.5. Increase in Photostability of the Formulation with (+)-Usnic Acid Combined with Octocrylene
3. Discussion
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Permeability Study
4.3. Cell Viability Study
4.4. Ultraviolet Spectroscopy
4.5. Cosmetic Formulations
4.6. In Vitro Photoprotection Study
4.7. Photostability Study
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Galanty, A.; Paśko, P.; Podolak, I. Enantioselective activity of usnic acid: A comprehensive review and future perspectives. Phytochem. Rev. 2019, 18, 527–548. [Google Scholar] [CrossRef] [Green Version]
- Macedo, D.C.S.; Almeida, F.J.F.; Wanderley, M.S.O.; Ferraz, M.S.; Santos, N.P.S.; López, A.M.; Santos-Magalhaes, N.S.; Lira-Nogueira, M.C.B. Usnic acid: From an ancient lichen derivative to promising biological and nanotechnology applications. Phytochem. Rev. 2020, 20, 609–630. [Google Scholar] [CrossRef]
- Araújo, A.A.S.; De Melo, M.G.D.; Rabelo, T.K.; Nunes, P.S.; Santos, S.L.; Serafini, M.R.; Santos, M.R.V.; Quintans-Junior, L.J.; Gelain, D.P. Review of the biological properties and toxicity of usnic acid. Nat. Prod. Res. 2015, 29, 2167–2180. [Google Scholar] [CrossRef]
- Piska, K.; Galanty, A.; Koczurkiewicz, P.; Żmudzki, P.; Potaczek, J.; Podolak, I.; Pękala, E. Usnic acid reactive metabolites formation in human, rat, and mice microsomes. Implication for hepatotoxicity. Food Chem. Toxicol. 2018, 120, 112–118. [Google Scholar] [CrossRef]
- Gauslaa, Y.; Bidussi, M.; Solhaug, K.A.; Asplund, J.; Larsson, P. Seasonal and spatial variation in carbon based secondary compounds in green algal and cyanobacterial members of the epiphytic lichen genus Lobaria. Phytochemistry 2013, 94, 91–98. [Google Scholar] [CrossRef]
- Fernández, E.; Quilhot, W.; Rubio, C.; Hidalgo, M.E.; Diaz, R.; Ojeda, J. Effects of UV radiation on usnic acid in Xanthoparmelia microspora (Müll. Arg. Hale). Photochem. Photobiol. 2006, 82, 1065–1068. [Google Scholar] [CrossRef] [PubMed]
- Bjerke, J.W.; Lerfall, K.; Elvebakk, A. Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochem. Photobiol. Sci. 2002, 1, 678–685. [Google Scholar] [CrossRef]
- Neupane, B.P.; Malla, K.P.; Gautam, A.; Chaudhary, D.; Paudel, S.; Timsina, S.; Jamarkattel, N. Elevational trends in usnic acid concentration of lichen Parmelia flexilis in relation to temperature and precipitation. Climate 2017, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Engel, K.; Schmidt, U.; Reuter, J.; Weckesser, S.; Simon-Haarhaus, B.; Schempp, C.M. Usnea barbata extract prevents ultraviolet-B induced prostaglandin E2 synthesis and COX-2 expression in HaCaT keratinocytes. J. Photochem. Photobiol. B Biol. 2007, 89, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Kohlhardt-Floehr, C.; Boehm, F.; Troppens, S.; Lademann, J.; Truscott, T.G. Prooxidant and antioxidant behaviour of usnic acid from lichens under UVB-light irradiation–studies on human cells. J. Photochem. Photobiol. B Biol. 2010, 101, 97–102. [Google Scholar] [CrossRef]
- Varol, M.; Tay, T.; Candan, M.; Turk, A.; Koparal, A.T. Evaluation of the sunscreen lichen substances usnic acid and atranorin. Biocell 2015, 39, 25–31. [Google Scholar]
- Fernández, E.; Quilhot, W.; González, I.; Hidalgo, M.E.; Molina, X. Lichen metabolites as UVB filters: Lichen metabolites show photoprotector capacity. Cosmet. Toilet. 1996, 111, 69–74. [Google Scholar]
- Rancan, F.; Rosan, S.; Boehm, K.; Fernández, E.; Hidalgo, M.E.; Quihot, W.; Rubio, C.; Boehm, F.; Piazena, H.; Oltmanns, U. Protection against UVB irradiation by natural filters extracted from lichens. J. Photochem. Photobiol. B Biol. 2002, 68, 133–139. [Google Scholar] [CrossRef]
- Nash, J.F.; Tanner, P.R. Relevance of UV filter/sunscreen product photostability to human safety. Photodermatol. Photoimmunol. Photomed. 2014, 30, 88–95. [Google Scholar] [CrossRef]
- Berardesca, E.; Zuberbier, T.; Sanchez Viera, M.; Marinovich, M. Review of the safety of octocrylene used as an ultraviolet filter in cosmetics. J. Eur. Acad. Dermatol. 2019, 33, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giraldo, A.; Montes, R.; Rodil, R.; Quintana, J.B.; Vidal-Liñán, L.; Beiras, R. Ecotoxicological evaluation of the UV filters ethylhexyl dimethyl p-aminobenzoic acid and octocrylene using marine organisms Isochrysis galbana, Mytilus galloprovincialis and Paracentrotus lividus. Arch. Environ. Contam. Toxicol. 2017, 72, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Popiół, J.; Gunia-Krzyżak, A.; Słoczyńska, K.; Koczurkiewicz-Adamczyk, P.; Piska, K.; Wójcik-Pszczoła, K.; Żelaszczyk, D.; Krupa, A.; Żmudzki, P.; Marona, H.; et al. The involvement of xanthone and (E)-cinnamoyl chromophores for the design and synthesis of novel sunscreening agents. Int. J. Mol. Sci. 2021, 22, 34. [Google Scholar] [CrossRef]
- da Costa Júnior, S.D.; da Silva, W.R.C.; da Silva, A.M.C.M.; Maciel, M.A.V.; Cavalcanti, I.M.F. Synergistic effect between usnic acid and polymyxin B against resistant clinical isolates of Pseudomonas aeruginosa. Evid.-Based Complement. Altern. Med. 2020, 2020, 9852145. [Google Scholar] [CrossRef]
- Guney Eskiler, G.; Eryilmaz, I.E.; Yurdacan, B.; Egeli, U.; Cecener, G.; Tunca, B. Synergistic effects of hormone therapy drugs and usnic acid on hormone receptor-positive breast and prostate cancer cells. J. Biochem. Mol. Toxicol 2019, 33, e22338. [Google Scholar] [CrossRef]
- Galanty, A.; Paśko, P.; Podolak, I.; Zagrodzki, P. Optimization of usnic acid extraction conditions using fractional factorial design. Lichenologiest 2020, 52, 397–401. [Google Scholar] [CrossRef]
- Nunes, P.S.; Rabelo, A.S.; de Souza, J.C.C.; Santana, B.V.; da Silva, T.M.M.; Serafini, M.R.; dos Passos Menezes, P.; dos Santos Lima, B.; Cardoso, J.C.; Santana Alves, J.C.; et al. Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine model. Int. J. Pharm. 2016, 513, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Serafini, M.R.; Detoni, C.B.; Guterres, S.S.; da Silva, G.F.; de Souza Araújo, A.A. Determination of in vitro usnic acid delivery into porcine skin using a HPLC method. J. Chromatogr. Sci. 2015, 53, 757–760. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Yoon, S.; Yang, Y.; Lee, H.B.; Oh, S.; Jeong, M.H.; Yee, S.T.; Crisan, F.; Moon, C.; Lee, K.Y.; et al. Lichen secondary metabolites in Flavocetraria cucullata exhibit anti-cancer effects on human cancer cells through the induction of apoptosis and suppression of tumorigenic potentials. PLoS ONE 2014, 9, e111575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanty, A.; Koczurkiewicz, P.; Wnuk, D.; Paw, M.; Karnas, E.; Podolak, I.; Węgrzyn, M.; Borusiewicz, M.; Madeja, Z.; Czyż, J.; et al. Usnic acid and atranorin exert selective cytostatic and anti-invasive effects on human prostate and melanoma cancer cells. Toxicol. Vitr. 2017, 40, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Pyrczak-Felczykowska, A.; Narlawar, R.; Pawlik, A.; Guzow-Krzeminska, B.; Artymiuk, D.; Hac, A.; Rys, K.; Rendina, L.M.; Reekie, T.A.; Herman-Antiosiewicz, A.; et al. Synthesis of usnic acid derivatives and evaluation of their antiproliferative activity against cancer cells. J. Nat. Prod. 2019, 82, 1768–1778. [Google Scholar] [CrossRef] [PubMed]
- Kwong, S.P.; Wang, H.; Shi, L.; Huang, Z.; Lu, B.; Cheng, X.; Chou, G.; Ji, L.; Wang, C. Identification of photodegraded derivatives of usnic acid with improved toxicity profile and UVA/UVB protection in normal human L02 hepatocytes and epidermal melanocytes. J. Photochem. Photobiol. B Biol. 2020, 205, 111814. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.; Osterwalder, U.; Wang, S.Q.; Burnett, M.; Lim, H.W. Photoprotection: Part II. Sunscreen: Development, efficacy, and controversies. J. Am. Acad. Dermatol. 2013, 69, e1–e14. [Google Scholar] [CrossRef] [PubMed]
- Shaath, N.A. On the theory of ultraviolet absorption by sunscreen chemicals. J. Soc. Cosmet. Chem. 1987, 38, 193–207. [Google Scholar]
- Diffey, B.L.; Robson, J. A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum. J. Soc. Cosmet. Chem. 1989, 40, 127–133. [Google Scholar]
- Lohézic-Le Dévéhat, F.; Legouin, B.; Couteau, C.; Boustie, J.; Coiffard, L. Lichenic extracts and metabolites as UV filters. J. Photochem. Photobiol. B Biol. 2013, 120, 17–28. [Google Scholar] [CrossRef]
- Legouin, B.; Dévéhat, L.L.; Ferron, S.; Rouaud, I.; Le Pogam, P.; Cornevin, L.; Bertrand, M.; Boustie, J. Specialized metabolites of the lichen Vulpicida pinastri act as photoprotective agents. Molecules 2017, 22, 1162. [Google Scholar] [CrossRef]
- Smith, G.J.; Miller, I.J. The effect of molecular environment on the photochemistry of p-methoxycinnamic acid and its esters. J. Photochem. Photobiol. A Chem. 1998, 118, 93–97. [Google Scholar] [CrossRef]
- Freitas, J.V.; Lopes, N.P.; Gaspar, L.R. Photostability evaluation of five UV-filters, trans-resveratrol and beta-carotene in sunscreens. Eur. J. Pharm. Sci. 2015, 78, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Popiół, J.; Gunia-Krzyżak, A.; Piska, K.; Żelaszczyk, D.; Koczurkiewicz, P.; Słoczyńska, K.; Wójcik-Pszczoła, K.; Krupa, A.; Kryczyk-Poprawa, A.; Żesławska, E.; et al. Discovery of novel UV-filters with favorable safety profiles in the 5-arylideneimidazolidine-2,4-dione derivatives group. Molecules 2019, 24, 2321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanaj-Kaczmarek, J.; Paczkowska, M.; Osmałek, T.; Kaproń, B.; Plech, T.; Szymanowska, D.; Karaźniewicz-Łada, M.; Kobus-Cisowska, J.; Cielecka-Piontek, J. Hydrogel delivery system containing Calendulae flos lyophilized extract with chitosan as a supporting strategy for wound healing applications. Pharmaceutics 2020, 12, 634. [Google Scholar] [CrossRef] [PubMed]
- Wróbel-Biedrawa, D.; Grabowska, K.; Galanty, A.; Sobolewska, D.; Żmudzki, P.; Podolak, I. Anti-melanoma potential of two benzoquinone homologues embelin and rapanone—A comparative in vitro study. Toxicol. Vitr. 2020, 65, 104826. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 24443:2012 Determination of Sunscreen UVA Photoprotection In Vitro; International Organization for Standardization: London, UK, 2012. [Google Scholar]
- de Oliveira, C.A.; Peres, D.D.; Rugno, C.M.; Kojima, M.; de Oliveira Pinto, C.A.S.; Consiglieri, V.O.; Kaneko, T.M.; Rosado, C.; Mota, J.; Velasco, M.V.R.; et al. Functional photostability and cutaneous compatibility of bioactive UVA sun care products. J. Photochem. Photobiol. B Biol. 2015, 148, 154–159. [Google Scholar] [CrossRef]
- Bino, A.; Baldisserotto, A.; Scalambra, E.; Dissette, V.; Vedaldi, D.E.; Salvador, A.; Durini, E.; Manfredini, S.; Vertuani, S. Design, synthesis and biological evaluation of novel hydroxy-phenyl-1H-benzimidazoles as radical scavengers and UV-protective agents. J. Enzym. Inhib. Med. Chem. 2017, 32, 527–537. [Google Scholar] [CrossRef]
Concentration (µg/mL) | Papp ± SD (×10−6 cm s−1) | |
---|---|---|
(+)-Usnic Acid | (−)-Usnic Acid | |
2 | 7.53 ± 1.25 | 7.46 ± 1.12 |
4 | 7.90 ± 0.65 | 8.28 ± 1.33 |
Compound | λmax (nm) | εmax (M−1 cm−1) | E1.1 (λmax) | ‹E1.1mean› |
---|---|---|---|---|
(+)-Usnic acid | 281 | 21 120 | 613 | 76 |
Octocrylene | 302 | 13 650 | 378 | 141 |
Formulation | SPFin vitro ± SD | UVA PF ± SD |
---|---|---|
1% (+)-usnic acid | 1.20 ± 0.08 #,a,b | 0.86 ± 0.04 #,d,e |
1% octocrylene | 1.36 ± 0.02 #,a,c | 0.83 ± 0.01 #,d,f |
1% (+)-usnic acid + 1% octocrylene | 1.70 ± 0.07 #,b,c | 0.94 ± 0.01 #,e,f |
Control (base) | 0.72 ± 0.01 | 0.70 ± 0.01 |
Formulation | % of Initial SPFin vitro ± SD | % of Initial UVA PF ± SD |
---|---|---|
1% (+)-usnic acid | 91.63 ± 0.59 a | 97.67 ± 0.00 c |
1% octocrylene | 92.62 ±1.57 b | 95.15 ± 0.86 d |
1% (+)-usnic acid + 1% octocrylene | 97.65 ± 5.82 a,b | 101.06 ± 3.01 c,d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galanty, A.; Popiół, J.; Paczkowska-Walendowska, M.; Studzińska-Sroka, E.; Paśko, P.; Cielecka-Piontek, J.; Pękala, E.; Podolak, I. (+)-Usnic Acid as a Promising Candidate for a Safe and Stable Topical Photoprotective Agent. Molecules 2021, 26, 5224. https://doi.org/10.3390/molecules26175224
Galanty A, Popiół J, Paczkowska-Walendowska M, Studzińska-Sroka E, Paśko P, Cielecka-Piontek J, Pękala E, Podolak I. (+)-Usnic Acid as a Promising Candidate for a Safe and Stable Topical Photoprotective Agent. Molecules. 2021; 26(17):5224. https://doi.org/10.3390/molecules26175224
Chicago/Turabian StyleGalanty, Agnieszka, Justyna Popiół, Magdalena Paczkowska-Walendowska, Elżbieta Studzińska-Sroka, Paweł Paśko, Judyta Cielecka-Piontek, Elżbieta Pękala, and Irma Podolak. 2021. "(+)-Usnic Acid as a Promising Candidate for a Safe and Stable Topical Photoprotective Agent" Molecules 26, no. 17: 5224. https://doi.org/10.3390/molecules26175224
APA StyleGalanty, A., Popiół, J., Paczkowska-Walendowska, M., Studzińska-Sroka, E., Paśko, P., Cielecka-Piontek, J., Pękala, E., & Podolak, I. (2021). (+)-Usnic Acid as a Promising Candidate for a Safe and Stable Topical Photoprotective Agent. Molecules, 26(17), 5224. https://doi.org/10.3390/molecules26175224