Effect of Water Extract of Mangosteen Pericarp on Donepezil Pharmacokinetics in Mice
Abstract
:1. Introduction
2. Results
2.1. Effect of WMP and Donepezil Hydrochloride (DNP) Combination on Cell Viability
2.2. Safety of WMP
2.3. Effect of WMP on the Pharmacokinetics of Donepezil
2.4. Effect of WMP on Tissue Distribution of Donepezil
2.5. Effect of WMP on Plasma Protein Binding of Donepezil in Mice
2.6. Effect of WMP on Donepezil Metabolism In Vitro S9 Fractions of Liver and Small Intestine
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Preparation and Analysis of WMP
4.3. Effect of WMP and DNP Combination on Cell Viability of SH-SY5Y Neuroblastoma Cells Treated with Aβ(25–35)
4.4. Animals
4.5. Toxicity Test of WMP
4.6. Effect of WMP on the Pharmacokinetics of Donepezil
4.7. Effect of WMP on Tissue Distribution of Donepezil
4.8. Effect of WMP on Plasma Protein Binding of Donepezil
4.9. Effect of WMP on Donepezil Metabolism in In Vitro S9 Fractions of Various Tissues
4.10. LC-MS/MS Analysis of Donepezil in Biological Samples
4.11. LC-MS/MS Analysis of the Tentative Metabolites of Donepezil
4.12. Analysis of Pharmacokinetic Parameters
4.13. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Agis-Torres, A.; Solhuber, M.; Fernandez, M.; Sanchez-Montero, J.M. Multi-Target-Directed Ligands and other Therapeutic Strategies in the Search of a Real Solution for Alzheimer’s Disease. Curr. Neuropharmacol. 2014, 12, 2–36. [Google Scholar] [CrossRef] [Green Version]
- Anand, R.; Gill, K.D.; Mahdi, A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology 2014, 76 Pt A, 27–50. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, Y.E.; Jerng, U.M.; Kim, H.; Lee, S.I.; Kim, G.N.; Cho, S.H.; Kang, H.W.; Jung, I.C.; Han, K.; et al. Korean Traditional Medicine in Treating Patients with Mild Cognitive Impairment: A Multicenter Prospective Observational Case Series. Evid. Based Complement. Alternat. Med. 2020, 2020, 4323989. [Google Scholar] [CrossRef] [PubMed]
- Ezoulin, M.J.; Ombetta, J.E.; Dutertre-Catella, H.; Warnet, J.M.; Massicot, F. Antioxidative properties of galantamine on neuronal damage induced by hydrogen peroxide in SK-N-SH cells. Neurotoxicology 2008, 29, 270–277. [Google Scholar] [CrossRef]
- Amatsubo, T.; Yanagisawa, D.; Morikawa, S.; Taguchi, H.; Tooyama, I. Amyloid imaging using high-field magnetic resonance. Magn. Reson. Med. Sci. 2010, 9, 95–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, W.O.; Aristizabal-Pachon, A.F.; de Lima Montaldi, A.P.; Sakamoto-Hojo, E.T.; Takahashi, C.S. Galanthamine decreases genotoxicity and cell death induced by beta-amyloid peptide in SH-SY5Y cell line. Neurotoxicology 2016, 57, 291–297. [Google Scholar] [CrossRef]
- Kim, H.G.; Moon, M.; Choi, J.G.; Park, G.; Kim, A.J.; Hur, J.; Lee, K.T.; Oh, M.S. Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo. Neurotoxicology 2014, 40, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Kazui, H.; Morihara, T.; Sadik, G.; Kudo, T.; Takeda, M. Post-marketing survey of donepezil hydrochloride in Japanese patients with Alzheimer’s disease with behavioral and psychological symptoms of dementia (BPSD). Psychogeriatrics 2008, 8, 114–123. [Google Scholar] [CrossRef]
- Mufson, E.J.; Counts, S.E.; Perez, S.E.; Ginsberg, S.D. Cholinergic system during the progression of Alzheimer’s disease: Therapeutic implications. Expert Rev. Neurother. 2008, 8, 1703–1718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [Green Version]
- Olivares, D.; Deshpande, V.K.; Shi, Y.; Lahiri, D.K.; Greig, N.H.; Rogers, J.T.; Huang, X. N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Curr. Alzheimer Res. 2012, 9, 746–758. [Google Scholar] [CrossRef]
- Cui, X.; Guo, Y.E.; Fang, J.H.; Shi, C.J.; Suo, N.; Zhang, R.; Xie, X. Donepezil, a drug for Alzheimer’s disease, promotes oligodendrocyte generation and remyelination. Acta Pharmacol. Sin. 2019, 40, 1386–1393. [Google Scholar] [CrossRef]
- Arias, E.; Gallego-Sandin, S.; Villarroya, M.; Garcia, A.G.; Lopez, M.G. Unequal neuroprotection afforded by the acetylcholinesterase inhibitors galantamine, donepezil, and rivastigmine in SH-SY5Y neuroblastoma cells: Role of nicotinic receptors. J. Pharmacol. Exp. Ther. 2005, 315, 1346–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solntseva, E.I.; Kapai, N.A.; Popova, O.V.; Rogozin, P.D.; Skrebitsky, V.G. The involvement of sigma1 receptors in donepezil-induced rescue of hippocampal LTP impaired by beta-amyloid peptide. Brain Res. Bull. 2014, 106, 56–61. [Google Scholar] [CrossRef]
- Suthammarak, W.; Numpraphrut, P.; Charoensakdi, R.; Neungton, N.; Tunrungruangtavee, V.; Jaisupa, N.; Charoensak, S.; Moongkarndi, P.; Muangpaisan, W. Antioxidant-Enhancing Property of the Polar Fraction of Mangosteen Pericarp Extract and Evaluation of Its Safety in Humans. Oxid. Med. Cell Longev. 2016, 2016, 1293036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, H.T.T.; Cho, J. Mangosteen Pericarp and Its Bioactive Xanthones: Potential Therapeutic Value in Alzheimer’s Disease, Parkinson’s Disease, and Depression with Pharmacokinetic and Safety Profiles. Int. J. Mol. Sci. 2020, 21, 6211. [Google Scholar] [CrossRef]
- Xie, Z.; Sintara, M.; Chang, T.; Ou, B. Daily consumption of a mangosteen-based drink improves in vivo antioxidant and anti-inflammatory biomarkers in healthy adults: A randomized, double-blind, placebo-controlled clinical trial. Food Sci. Nutr. 2015, 3, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; McGrath, J.J.; Dean, O.M.; Dodd, S.; Baker, A.; Cotton, S.M.; Scott, J.G.; Kavanagh, B.E.; Ashton, M.M.; Walker, A.J.; et al. Protocol and Rationale: A 24-week Double-blind, Randomized, Placebo Controlled Trial of the Efficacy of Adjunctive Garcinia mangostana Linn. (Mangosteen) Pericarp for Schizophrenia. Clin. Psychopharmacol. Neurosci. 2019, 17, 297–307. [Google Scholar] [CrossRef]
- Phyu, M.P.; Tangpong, J. Neuroprotective effects of xanthone derivative of Garcinia mangostana against lead-induced acetylcholinesterase dysfunction and cognitive impairment. Food Chem. Toxicol. 2014, 70, 151–156. [Google Scholar] [CrossRef]
- Sattayasai, J.; Chaonapan, P.; Arkaravichie, T.; Soi-Ampornkul, R.; Junnu, S.; Charoensilp, P.; Samer, J.; Jantaravinid, J.; Masaratana, P.; Suktitipat, B.; et al. Protective effects of mangosteen extract on H2O2-induced cytotoxicity in SK-N-SH cells and scopolamine-induced memory impairment in mice. PLoS ONE 2013, 8, e85053. [Google Scholar] [CrossRef] [Green Version]
- Di Matteo, V.; Esposito, E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Curr. Drug Targets CNS Neurol. Disord. 2003, 2, 95–107. [Google Scholar] [CrossRef]
- Pedraza-Chaverri, J.; Reyes-Fermin, L.M.; Nolasco-Amaya, E.G.; Orozco-Ibarra, M.; Medina-Campos, O.N.; Gonzalez-Cuahutencos, O.; Rivero-Cruz, I.; Mata, R. ROS scavenging capacity and neuroprotective effect of alpha-mangostin against 3-nitropropionic acid in cerebellar granule neurons. Exp. Toxicol. Pathol. 2009, 61, 491–501. [Google Scholar] [CrossRef]
- Ashton, M.M.; Dean, O.M.; Walker, A.J.; Bortolasci, C.C.; Ng, C.H.; Hopwood, M.; Harvey, B.H.; Moller, M.; McGrath, J.J.; Marx, W.; et al. The Therapeutic Potential of Mangosteen Pericarp as an Adjunctive Therapy for Bipolar Disorder and Schizophrenia. Front. Psychiatry 2019, 10, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovalle-Magallanes, B.; Eugenio-Perez, D.; Pedraza-Chaverri, J. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food Chem. Toxicol. 2017, 109, 102–122. [Google Scholar] [CrossRef] [PubMed]
- Chin, Y.W.; Kinghorn, A.D. Structural Characterization, Biological Effects, and Synthetic Studies on Xanthones from Mangosteen (Garcinia mangostana), a Popular Botanical Dietary Supplement. Mini-Rev. Org. Chem. 2008, 5, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, Y.; Do, H.T.; Kim, S.; Kim, Y.M.; Chin, Y.W.; Cho, J. Memory-Enhancing Effects of Mangosteen Pericarp Water Extract through Antioxidative Neuroprotection and Anti-Apoptotic Action. Antioxidants 2021, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- Grutzendler, J.; Morris, J.C. Cholinesterase inhibitors for Alzheimer’s disease. Drugs 2001, 61, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Tsuno, N. Donepezil in the treatment of patients with Alzheimer’s disease. Expert Rev. Neurother. 2009, 9, 591–598. [Google Scholar] [CrossRef]
- Ismail, M.F.; Elmeshad, A.N.; Salem, N.A. Potential therapeutic effect of nanobased formulation of rivastigmine on rat model of Alzheimer’s disease. Int. J. Nanomed. 2013, 8, 393–406. [Google Scholar] [CrossRef]
- Lopes, J.P.; Tarozzo, G.; Reggiani, A.; Piomelli, D.; Cavalli, A. Galantamine potentiates the neuroprotective effect of memantine against NMDA-induced excitotoxicity. Brain Behav. 2013, 3, 67–74. [Google Scholar] [CrossRef]
- Benek, O.; Korabecny, J.; Soukup, O. A Perspective on Multi-target Drugs for Alzheimer’s Disease. Trends Pharmacol. Sci. 2020, 41, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.G.; Oh, M.S. Herbal medicines for the prevention and treatment of Alzheimer’s disease. Curr. Pharm. Des. 2012, 18, 57–75. [Google Scholar] [PubMed]
- Sahoo, A.K.; Dandapat, J.; Dash, U.C.; Kanhar, S. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer’s disease. J. Ethnopharmacol. 2018, 215, 42–73. [Google Scholar] [CrossRef] [PubMed]
- Cooper, E.L.; Ma, M.J. Alzheimer Disease: Clues from traditional and complementary medicine. J. Tradit. Complement. Med. 2017, 7, 380–385. [Google Scholar] [CrossRef]
- Saeri, S.; Hadjzadeh, M.A.; Hosseini, M.; Hosseinian, S.; Arab, Z. The effects of the combination of Cyperus rotundus, Crocus sativus, Piper nigrum, and Boswellia serrata on learning and memory deficit and oxidative damage in brain tissue of hypothyroid rats. J. Food Biochem. 2020, 44, e13391. [Google Scholar] [CrossRef]
- Agbabiaka, T.B.; Wider, B.; Watson, L.K.; Goodman, C. Concurrent Use of Prescription Drugs and Herbal Medicinal Products in Older Adults: A Systematic Review. Drugs Aging 2017, 34, 891–905. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, Y.D.; Zhao, P.; Huang, S.M. Predicting drug-drug interactions: An FDA perspective. AAPS J. 2009, 11, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Kenny, J.R.; Liu, M.M.; Chow, A.T.; Earp, J.C.; Evers, R.; Slatter, J.G.; Wang, D.D.; Zhang, L.; Zhou, H. Therapeutic protein drug-drug interactions: Navigating the knowledge gaps-highlights from the 2012 AAPS NBC Roundtable and IQ Consortium/FDA workshop. AAPS J. 2013, 15, 933–940. [Google Scholar] [CrossRef] [Green Version]
- Akbar, M.; Berry-Bibee, E.; Blithe, D.L.; Day, R.S.; Edelman, A.; Hochel, J.; Jamshidi, R.; Kim, M.J.; Li, L.; Purohit, V.S.; et al. FDA Public Meeting Report on “Drug Interactions with Hormonal Contraceptives: Public Health and Drug Development Implications”. J. Clin. Pharmacol. 2018, 58, 1655–1665. [Google Scholar] [CrossRef]
- Rios, J.L.; Francini, F.; Schinella, G.R. Natural Products for the Treatment of Type 2 Diabetes Mellitus. Planta Med. 2015, 81, 975–994. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Hyde, A.J.; Zhang, A.L.; Xue, C.C.; May, B.H. Chinese Herbal Medicine for Mild Cognitive Impairment Using Montreal Cognitive Assessment: A Systematic Review. J. Altern. Complement. Med. 2019, 25, 578–592. [Google Scholar] [CrossRef]
- Wilbrandt, W. Behrens methods for calculation of LD50. Arzneimittelforschung 1952, 2, 501–503. [Google Scholar] [PubMed]
- Matsui, K.; Mishima, M.; Nagai, Y.; Yuzuriha, T.; Yoshimura, T. Absorption, distribution, metabolism, and excretion of donepezil (Aricept) after a single oral administration to Rat. Drug Metab. Dispos. 1999, 27, 1406–1414. [Google Scholar] [PubMed]
- You, B.H.; BasavanaGowda, M.K.; Lee, J.U.; Chin, Y.W.; Choi, W.J.; Choi, Y.H. Pharmacokinetic Properties of Moracin C in Mice. Planta Med. 2021, 87, 642–651. [Google Scholar] [CrossRef]
- Noh, M.Y.; Koh, S.H.; Kim, Y.; Kim, H.Y.; Cho, G.W.; Kim, S.H. Neuroprotective effects of donepezil through inhibition of GSK-3 activity in amyloid-beta-induced neuronal cell death. J. Neurochem. 2009, 108, 1116–1125. [Google Scholar] [CrossRef]
- Kapai, N.A.; Bukanova, J.V.; Solntseva, E.I.; Skrebitsky, V.G. Donepezil in a narrow concentration range augments control and impaired by beta-amyloid peptide hippocampal LTP in NMDAR-independent manner. Cell Mol. Neurobiol. 2012, 32, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Liu, C.; Wu, J.; Kou, X.; Shen, R. A review on alpha-mangostin as a potential multi-target-directed ligand for Alzheimer’s disease. Eur. J. Pharmacol. 2021, 897, 173950. [Google Scholar] [CrossRef]
- Baek, J.Y.; Jung, K.; Kim, Y.M.; Kim, H.Y.; Kang, K.S.; Chin, Y.W. Protective Effect of gamma-mangostin Isolated from the Peel of Garcinia mangostana against Glutamate-Induced Cytotoxicity in HT22 Hippocampal Neuronal Cells. Biomolecules 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Li, J.; Tan, X.; Luo, S.; Liu, Y.; Meng, Y.; Wu, B.; Zhou, Y.; Yang, Y.; Chen, H.; et al. Natural Xanthone α-Mangostin Inhibits LPS-Induced Microglial Inflammatory Responses and Memory Impairment by Blocking the TAK1/NF-κB Signaling Pathway. Mol. Nutr. Food Res. 2020, 64, e2000096. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Gupta, V.; Sharma, S. Donepezil. In StatPearls; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Seltzer, B. Donepezil: A review. Expert Opin. Drug Metab. Toxicol. 2005, 1, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Tiseo, P.J.; Foley, K.; Friedhoff, L.T. An evaluation of the pharmacokinetics of donepezil HCl in patients with moderately to severely impaired renal function. Br. J. Clin. Pharmacol. 1998, 46 (Suppl. 1), 56–60. [Google Scholar] [CrossRef] [Green Version]
- Tiseo, P.J.; Perdomo, C.A.; Friedhoff, L.T. Metabolism and elimination of 14C-donepezil in healthy volunteers: A single-dose study. Br. J. Clin. Pharmacol. 1998, 46 (Suppl. 1), 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Harthi, S.; Alavi, S.E.; Radwan, M.A.; El Khatib, M.M.; AlSarra, I.A. Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer’s disease. Sci. Rep. 2019, 9, 9563. [Google Scholar] [CrossRef] [PubMed]
- Md, S.; Ali, M.; Baboota, S.; Sahni, J.K.; Bhatnagar, A.; Ali, J. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev. Ind. Pharm. 2014, 40, 278–287. [Google Scholar] [CrossRef]
- Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Chougule, M.B.; Shoyele, S.A.; Alexander, A. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release 2018, 281, 139–177. [Google Scholar] [CrossRef]
- Wong, K.H.; Riaz, M.K.; Xie, Y.; Zhang, X.; Liu, Q.; Chen, H.; Bian, Z.; Chen, X.; Lu, A.; Yang, Z. Review of Current Strategies for Delivering Alzheimer’s Disease Drugs across the Blood-Brain Barrier. Int. J. Mol. Sci. 2019, 20, 381. [Google Scholar] [CrossRef] [Green Version]
- Amat-ur-Rasool, H.; Ahmed, M.; Hasnain, S.; Carter, W.G. Anti-Cholinesterase Combination Drug Therapy as a Potential Treatment for Alzheimer’s Disease. Brain Sci. 2021, 11, 184. [Google Scholar] [CrossRef] [PubMed]
- Confaloni, A.; Tosto, G.; Tata, A.M. Promising Therapies for Alzheimer’s Disease. Curr. Pharm. Des. 2016, 22, 2050–2056. [Google Scholar] [CrossRef]
- Spieler, D.; Namendorf, C.; Namendorf, T.; von Cube, M.; Uhr, M. Donepezil, a cholinesterase inhibitor used in Alzheimer’s disease therapy, is actively exported out of the brain by abcb1ab p-glycoproteins in mice. J. Psychiatr. Res. 2020, 124, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Dechwongya, P.; Limpisood, S.; Boonnak, N.; Mangmool, S.; Takeda-Morishita, M.; Kulsirirat, T.; Rukthong, P.; Sathirakul, K. The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach. Molecules 2020, 25, 5877. [Google Scholar] [CrossRef]
- Silva, V.; Gil-Martins, E.; Silva, B.; Rocha-Pereira, C.; Sousa, M.E.; Remiao, F.; Silva, R. Xanthones as P-glycoprotein modulators and their impact on drug bioavailability. Expert Opin. Drug Met. 2021, 17, 441–482. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Chin, Y.W. Multifaceted Factors Causing Conflicting Outcomes in Herb-Drug Interactions. Pharmaceutics 2021, 13, 43. [Google Scholar] [CrossRef]
- Choi, Y.H. Interpretation of Drug Interaction Using Systemic and Local Tissue Exposure Changes. Pharmaceutics 2020, 12, 417. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.Y.; Choi, H.O.; Kang, Y.S. The Acetylcholinesterase Inhibitors Competitively Inhibited an Acetyl L-Carnitine Transport Through the Blood-Brain Barrier. Neurochem. Res. 2012, 37, 1499–1507. [Google Scholar] [CrossRef]
- Kim, M.H.; Maeng, H.J.; Yu, K.H.; Lee, K.R.; Tsuruo, T.; Kim, D.D.; Shim, C.K.; Chung, S.J. Evidence of Carrier-Mediated Transport in the Penetration of Donepezil into the Rat Brain. J. Pharm. Sci. 2010, 99, 1548–1566. [Google Scholar] [CrossRef]
- Han, S.Y.; Chin, Y.W.; Choi, Y.H. A new approach for pharmacokinetic studies of natural products: Measurement of isoliquiritigenin levels in mice plasma, urine and feces using modified automated dosing/blood sampling system. Biomed. Chromatogr. 2013, 27, 741–749. [Google Scholar] [CrossRef]
- Kim, Y.J.; Han, S.Y.; Seo, J.S.; Chin, Y.W.; Choi, Y.H. Pharmacokinetics, Tissue Distribution, and Tentative Metabolite Identification of Sauchinone in Mice by Microsampling and HPLC-MS/MS Methods. Biol. Pharm. Bull. 2015, 38, 218–227. [Google Scholar] [CrossRef] [Green Version]
- Perrier, D.; Gibaldi, M. General derivation of the equation for time to reach a certain fraction of steady state. J. Pharm. Sci. 1982, 71, 474–475. [Google Scholar] [CrossRef] [PubMed]
Parameters | DNP (n = 10 from 30 Mice) | DNPWMP (n = 10 from 28 Mice ) |
---|---|---|
Body weight (g) | 28.30 ± 0.63 | 27.84 ± 0.54 |
AUC360 min (μg min/mL) | 16.21 ± 4.42 | 12.22 ± 2.43 |
AUC0-∞ (μg min/mL) | 16.73 ± 4.16 | 12.60 ± 2.49 |
Terminal half-life (min) | 77.32 ± 32.33 | 65.11 ± 10.83 |
Cmax (μg/mL) | 0.24 ± 0.12 | 0.16 ± 0.45 |
Tmax (min)a | 15 (15−15) | 15 (15−30) |
Vc/F (mL/kg) | 23,672.72 ± 7403.86 | 20,631.21 ± 1272.14 |
Vp/F (mL/kg) | 4160.44 ± 592.25 | 3886.46 ± 800.54 |
ka (1/min) | 0.071 ± 0.031 | 0.056 ± 0.028 |
k12 (1/min) | 0.014 ± 0.010 | 0.012 ± 0.0042 |
k21 (1/min) | 0.0087 ± 0.0058 | 0.010 ± 0.0062 |
ke (1/min) | 0.027 ± 0.013 | 0.023 ± 0.0043 |
Ae0–24 h (% of dose) | 1.65 ± 0.35 | 0.73 ± 0.67 |
GI24 h (% of dose) | 0.036 ± 0.02 | 0.08 ± 0.064 |
Tissue | 1 h | 4 h | ||
---|---|---|---|---|
DNP (n = 5) | DNPWMP (n = 5) | DNP (n = 5) | DNPWMP (n = 5) | |
Plasma | 0.10 ± 0.05 | 0.10 ± 0.02 | 0.02 ± 0.01 * | 0.01 ± 0.01 * |
Brain | 2.17 ± 1.21 | 1.98 ± 0.53 | 0.22 ± 0.08 * | 0.36 ± 0.081 *,+ |
(21.42 ± 6.07) | (20.44 ± 5.72) | (20.41 ± 5.72) | (31.73 ± 12.12) + | |
Kidney | 10.27 ± 6.55 | 7.91 ± 1.74 | 0.96 ± 0.17 * | 0.90 ± 0.28 * |
(115 ± 64.79) | (82.37 ± 23.81) | (82.38 ± 23.79) | (78.27 ± 33.31) | |
Liver | 15.07 ± 2.23 | 18.5 ± 2.34+ | 2.79 ± 0.70 * | 3.53 ± 1.87 * |
(179 ± 85.28) | (191 ± 69.39) | (197 ± 69.42) | (285 ± 96.81) | |
Stomach | 23.57 ± 5.79 | 35.48 ± 13.63 | 3.35 ± 1.53 * | 4.75 ± 2.38 * |
(309 ± 196) | (379 ± 185) | (379 ± 185) | (426 ± 264) | |
Small intestine | 15.82 ± 7.93 | 26.08 ± 9.60 | 3.33 ± 1.54 * | 2.29 ± 0.97 * |
(177 ± 99.16) | (263 ± 84.92) | (263 ± 84.88) | (189 ± 63.79) | |
Large intestine | 15.33 ± 5.50 | 22.41 ± 13.92 | 2.39 ± 0.62 * | 1.58 ± 0.40 *,+ |
(183 ± 100) | (218 ± 119) | (218 ± 119) | (147 ± 73.40) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, M.; Han, S.Y.; Kim, E.-S.; You, B.H.; Kim, Y.-M.; Cho, J.; Chin, Y.-W.; Choi, Y.H. Effect of Water Extract of Mangosteen Pericarp on Donepezil Pharmacokinetics in Mice. Molecules 2021, 26, 5246. https://doi.org/10.3390/molecules26175246
Bae M, Han SY, Kim E-S, You BH, Kim Y-M, Cho J, Chin Y-W, Choi YH. Effect of Water Extract of Mangosteen Pericarp on Donepezil Pharmacokinetics in Mice. Molecules. 2021; 26(17):5246. https://doi.org/10.3390/molecules26175246
Chicago/Turabian StyleBae, Mingoo, Seung Yon Han, Eun-Sun Kim, Byung Hoon You, Young-Mi Kim, Jungsook Cho, Young-Won Chin, and Young Hee Choi. 2021. "Effect of Water Extract of Mangosteen Pericarp on Donepezil Pharmacokinetics in Mice" Molecules 26, no. 17: 5246. https://doi.org/10.3390/molecules26175246
APA StyleBae, M., Han, S. Y., Kim, E. -S., You, B. H., Kim, Y. -M., Cho, J., Chin, Y. -W., & Choi, Y. H. (2021). Effect of Water Extract of Mangosteen Pericarp on Donepezil Pharmacokinetics in Mice. Molecules, 26(17), 5246. https://doi.org/10.3390/molecules26175246