Chemical Physical Characterization and Profile of Fruit Volatile Compounds from Different Accesses of Myrciaria floribunda (H. West Ex Wild.) O. Berg through Polyacrylate Fiber
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization of Rumberry Fruits
2.2. Profile of Volatile Compounds
3. Materials and Methods
3.1. Material
3.2. Methods
3.2.1. Physical and Physicochemical Characterization
3.2.2. Isolation of Volatile Organic Compounds (VOCs)
3.2.3. Separation and Identification of Volatile Compounds (VOCs)
3.2.4. Statistics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cruz Silva, A.V.; Sirqueira Nascimento, A.L.; Muniz, E.N. Fruiting and Quality Attributes of Cambui (Myrciaria Floribunda (West Ex Willd.) O. Berg in the Atlantic Forest of Northeast Brazil. Revista Agro@ Mbiente Online 2020, 14. [Google Scholar] [CrossRef]
- Souza, M.C.; Morim, M.P. Subtribos Eugeniinae O. Berg e Myrtinae O. Berg (Myrtaceae) na Restinga da Marambaia, RJ, Brasil. Acta Bot. Bras. 2008, 22, 652–683. [Google Scholar] [CrossRef]
- Santos, E.F.; Lemos, E.E.P.; Lima, S.T.; Araújo, R.R. Caracterização físico-química, compostos bioativos e atividade antioxidante total de frutos de cambuizeiro (Myrciaria floribunda O. Berg). Rev. Ouricuri 2017, 7, 64–79. [Google Scholar]
- Araújo, R.R.; Santos, E.F.; Santos, E.D.; Lemos, E.E.P.; Endres, L. Quantificação de Compostos Fenólicos Em Diferentes Genótipos de Fruto de Cambuí (Myrciaria Floribunda O. Berg) Nativos Da Vegetação Litorânea de Alagoas. In Proceedings of the Congresso Brasileiro de Processamento Mínimo e Pós-Colheita de Frutas, Flores e Hortaliças, Anais 1, Aracaju, Brazil, 24–28 May 2015. [Google Scholar]
- Narain, N.; Almeida, J.d.N.; Galvão, M.d.S.; Madruga, M.S.; de Brito, E.S. Compostos Voláteis Dos Frutos de Maracujá (Passiflora Edulis Forma Flavicarpa) e de Cajá (Spondias Mombin L.) Obtidos Pela Técnica de Headspace Dinâmico. Ciênc. Tecnol. Aliment 2004, 24, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Chitarra, M.I.F.; Chitarra, A. Pós-Colheita de Frutos e Hortaliças: Fisiologia e Manuseio, 2nd ed.; UFLA: Lavras, Brazil, 2005. [Google Scholar]
- Kataoka, H.; Lord, H.L.; Pawliszyn, J. Applications of Solid-Phase Microextraction in Food Analysis. J. Chromatogr. A 2000, 880, 35–62. [Google Scholar] [CrossRef]
- Franco, M.R.B.; Janzantti, N.S. Avanços Na Metodologia Instrumental Da Pesquisa Do Sabor. In Aroma e Sabor de Alimentos: Temas Atuais; Franco, M.R.B., Ed.; Editora Varela: São Paulo, Brazil, 2004; pp. 17–27. [Google Scholar]
- Garruti, D.d.S. Composição de Volateis e Qualidade de Aroma Do Vinho de Caju. Ph.D. Thesis, Universidade Federal de Campinas, São Paulo, Brazil, 2001. [Google Scholar]
- Tietbohl, L.A.C.; Barbosa, T.; Fernandes, C.P.; Santos, M.G.; Machado, F.P.; Santos, K.T.; Mello, C.B.; Araújo, H.P.; Gonzalez, M.S.; Feder, D.; et al. Laboratory Evaluation of the Effects of Essential Oil of Myrciaria Floribunda Leaves on the Development of Dysdercus Peruvianus and Oncopeltus Fasciatus. Rev. Bras. Farmacogn. 2014, 24, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Tietbohl, L.A.C.; Lima, B.G.; Fernandes, C.P.; Santos, M.G.; Silva, F.E.B.; Denardin, E.L.G.; Bachinski, R.; Alves, G.G.; Silva-Filho, M.V.; Rocha, L. Comparative Study and Anticholinesterasic Evaluation of Essential Oils from Leaves, Stems and Flowers of Myrciaria Floribunda (H. West Ex Willd.) O. Berg. Lat. Am. J. Pharm. 2012, 31, 637–641. [Google Scholar]
- Apel, M.A.; Lima, M.E.L.; Souza, A.; Cordeiro, I.; Young, M.C.M.; Sobral, M.E.G.; Suffredini, I.B.; Moreno, P.R.H. Screening of the Biological Activity from Essential Oils of Native Species from the Atlantic Rain Forest (São Paulo–Brazil). Pharmacologyonline 2006, 3, 376–383. [Google Scholar]
- Da Silva, A.V.C.; Rabbani, A.R.C.; Costa, T.S.; Clivati, D. Fruit and Seed Biometry of Cambuí (Myciaria Tenella O. Berg). Rev. Agroambiente On-line 2012, 6, 258. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Guerra, D.; SEhn, T.T.S.; BOhrer, R.E.G.B.; da Silva, D.M. Caracterização Biométrica de Guabijuzeiros (Myrcianthes Pungens (O. Berg) d. Legrand). Rev. Eletrôn. Científ. Uergs 2020, 6, 83–91. [Google Scholar] [CrossRef]
- de Abreu, L.A.F.; Paiva, R.; Mosqueira, J.G.A.; dos Reis, M.V.; Araújo, A.B.S.; Boas, E.V.d.B.V. Antioxidant Activity and Physico-Chemical Analysis of Campomanesia Rufa (O.Berg) Nied. Fruits. Ciênc. Agrotec. 2020, 44, e016720. [Google Scholar] [CrossRef]
- Munhoz, C.L.; Ferreira, T.H.B.; Gomes, M.C.d.S. Caracterização Física de Frutos de Jambo Vermelho. Cad. Agroecol. 2018, 13, 7. [Google Scholar]
- Becker, F.S.; Vilas Boas, A.C.; Sales, A.; Tavares, L.S.; de Siqueira, H.H.; Vilas Boas, E.V.D.B. Characterization of ‘Sabará’ Jabuticabas at Different Maturation Stages. Acta Sci. Agron. 2015, 37, 457. [Google Scholar] [CrossRef] [Green Version]
- Souza, F.d.C.d.A.; Silva, E.P.; Aguiar, J.P.L. Vitamin Characterization and Volatile Composition of Camu-Camu (Myrciaria Dubia (HBK) McVaugh, Myrtaceae) at Different Maturation Stages. Food Sci. Technol. 2020. [CrossRef]
- De Almeida, E.S.; da Silva, R.N.; Gonçalves, E.M. Compostos fenólicos totais e características físico-químicas de frutos de jabuticaba. Gaia Sci. 2018, 12. [Google Scholar] [CrossRef] [Green Version]
- Vieira, M.I.C.; Tavares, F.J.C.; Pinheiro, L.F.; Sampaio, V.d.S.; de Lucena, E.M.P. Alterações físico-químicas durante o crescimento dos frutos da ubaia-azeda. Braz. J. Dev. 2020, 6, 58707–58718. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Schulz, M.; Nehring, P.; Della Betta, F.; Valese, A.C.; Daguer, H.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Nutritional and Bioactive Potential of Myrtaceae Fruits during Ripening. Food Chem. 2018, 239, 649–656. [Google Scholar] [CrossRef]
- Chaves Neto, J.R.; Silva, S.D.M.; Dantas, R.L. Atributos de Qualidade, Compostos Bioativos e Atividade Antioxidante de Frutos de Uvaieira Durante a Maturação. Agrarian 2020, 13, 269–308. [Google Scholar] [CrossRef]
- Lattuada, D.S.; Barros, N.; Hagemann, A.; de Souza, P.V.D. Caracterização Físico-Química e Desenvolvimento Pós-Colheita de Jabuticabas (Plinia Peruviana e P. Cauliflora). Iheringia Série Bot. 2020, 75, e2020015. [Google Scholar] [CrossRef]
- de Oliveira, L.M.; Porte, A.; de Oliveira Godoy, R.L.; da Costa Souza, M.; Pacheco, S.; de Araujo Santiago, M.C.P.; Gouvêa, A.C.M.S.; da Silva de Mattos do Nascimento, L.; Borguini, R.G. Chemical Characterization of Myrciaria Floribunda (H. West Ex Willd) Fruit. Food Chem. 2018, 248, 247–252. [Google Scholar] [CrossRef]
- Kauffmann, C.; Giacomin, A.C.; Arossi, K.; Pacheco, L.A.; Hoehne, L.; de Freitas, E.M.; de Carvalho Machado, G.M.; do Canto Cavalheiro, M.M.; Gnoatto, S.C.B.; Ethur, E.M. Antileishmanial in Vitro Activity of Essential Oil from Myrciaria Plinioides, a Native Species from Southern Brazil. Braz. J. Pharm. Sci. 2019, 55, e17584. [Google Scholar] [CrossRef]
- da Silva Barbosa, D.C.; Holanda, V.N.; de Assis, C.R.D.; de Oliveira Farias de Aguiar, J.C.R.; DoNascimento, P.H.; da Silva, W.V.; do Amaral Ferraz Navarro, D.M.; da Silva, M.V.; de Menezes Lima, V.L.; dos Santos Correia, M.T. Chemical Composition and Acetylcholinesterase Inhibitory Potential, in Silico, of Myrciaria Floribunda (H. West Ex Willd.) O. Berg Fruit Peel Essential Oil. Ind. Crops Prod. 2020, 151, 112372. [Google Scholar] [CrossRef]
- Freitas, T.P.; Taver, I.B.; Spricigo, P.C.; do Amaral, L.B.; Purgatto, E.; Jacomino, A.P. Volatile Compounds and Physicochemical Quality of Four Jabuticabas (Plinia Sp.). Molecules 2020, 25, 4543. [Google Scholar] [CrossRef] [PubMed]
- Rondán, G.; Cabezas, A.; Oliveira, A.; Brousett-Minaya, M.; Narain, N. HS-SPME-GC-MS Detection of Volatile Compounds in Myrciaria Jabuticaba Fruit. Sci. Agropecu. 2018, 9, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Toledo, A.G.; de Souza, J.G.d.L.; da Silva, J.P.B.; Favreto, W.A.J.; da Costa, W.F.; Pinto, F.G.d.S. Chemical Composition, Antimicrobial and Antioxidant Activity of the Essential Oil of Leaves of Eugenia Involucrata DC. Biosci. J. 2020, 36. [Google Scholar] [CrossRef] [Green Version]
- Sharma, C.; Al Kaabi, J.M.; Nurulain, S.M.; Goyal, S.N.; Kamal, M.A.; Ojha, S. Polypharmacological Properties and Therapeutic Potential of β-Caryophyllene: A Dietary Phytocannabinoid of Pharmaceutical Promise. Curr. Pharm. Des. 2016, 22, 3237–3264. [Google Scholar] [CrossRef]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-Caryophyllene: A Sesquiterpene with Countless Biological Properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef] [Green Version]
- da Silva, R.C.S.; Milet-Pinheiro, P.; Bezerra da Silva, P.C.; da Silva, A.G.; da Silva, M.V.; Navarro, D.M.d.A.F.; da Silva, N.H. (E)-Caryophyllene and α-Humulene: Aedes Aegypti Oviposition Deterrents Elucidated by Gas Chromatography-Electrophysiological Assay of Commiphora Leptophloeos Leaf Oil. PLoS ONE 2015, 10, e0144586. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, F.B.; Júnior, I.D.; Lopes, P.Q.; Macêdo, R.O. Variação Da Quantidade de β-Cariofileno Em Óleo Essencial de Plectranthus Amboinicus (Lour.) Spreng., Lamiaceae, Sob Diferentes Condições de Cultivo. Rev. Bras. Farmacogn. 2010, 20, 600–606. [Google Scholar] [CrossRef] [Green Version]
- Souto, I.C.C.; Ferreira, J.L.S.; de Oliveira, H.M.B.F.; Alves, M.A.S.G.; de Oliveira Filho, A.A. Atividades Farmacológicas Do Monoterpeno 1,8-Cineol: Um Estudo in Silico. Rev. Bras. Educ. Saúde 2016, 6, 26–28. [Google Scholar] [CrossRef]
- Rodenak Kladniew, B.E.; Castro, M.A.; Crespo, R.; García de Bravo, M.M. Eucaliptol (1, 8-Cineole) Inhibe La Proliferación de Celulas Tumorales Mediante Arresto Del Ciclo Celular, Estrés Oxidativo, Activación de MAPKs e Inhibición de AKT. Terc. Época 2017, 7. Available online: http://sedici.unlp.edu.ar/handle/10915/63248 (accessed on 1 November 2017).
- Carneiro, N.S.; Alves, C.C.F.; Alves, J.M.; Egea, M.B.; Martins, C.H.G.; Silva, T.S.; Bretanha, L.C.; Balleste, M.P.; Micke, G.A.; Silveira, E.V.; et al. Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oils from Leaves and Flowers of Eugenia Klotzschiana Berg (Myrtaceae). An. Acad. Bras. Cienc. 2017, 89, 1907–1915. [Google Scholar] [CrossRef]
- de Cássia Da Silveira e Sá, R.; Andrade, L.N.; de Sousa, D.P. Sesquiterpenes from Essential Oils and Anti-Inflammatory Activity. Nat. Prod. Commun. 2015, 10, 1767–1774. [Google Scholar] [CrossRef] [Green Version]
- Chalannavar, R.K.; Narayanaswamy, V.K.; Baijnath, H.; Odhav, B. Chemical Composition of Essential Oil of Psidium Cattleianum Var. Lucidum (Myrtaceae). Afr. J. Biotechnol. 2012, 11, 8341–8347. [Google Scholar] [CrossRef]
- Noudogbessi, J.P.; Yédomonhan, P.; Sohounhloué, D.C.; Chalchat, J.C.; Figuérédo, G. Chemical Composition of Essential Oil of Syzygium Guineense (Willd.) DC. Var. Guineense (Myrtaceae) from Benin. Rec. Nat. Prod. 2008, 2, 33–38. [Google Scholar]
- Li, Y.-J.; Xuan, H.-Z.; Shou, Q.-Y.; Zhan, Z.-G.; Lu, X.; Hu, F.-L. Therapeutic Effects of Propolis Essential Oil on Anxiety of Restraint-Stressed Mice. Hum. Exp. Toxicol. 2012, 31, 157–165. [Google Scholar] [CrossRef] [PubMed]
- IAL, Instituto Adolf Lutz. Métodos Físico-Químicos Para Análises de Alimentos. In Normas Analíticas do Instituto Adolfo Lutz; Instituto Adolf Lutz: São Paulo, Brazil, 2008; p. 1020. [Google Scholar]
- AOAC, Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- García, Y.; Rufini, J.; Campos, M.; Guedes, M.; Augusti, R.; Melo, J. SPME Fiber Evaluation for Volatile Organic Compounds Extraction from Acerola. J. Braz. Chem. Soc. 2019, 30, 247–255. [Google Scholar] [CrossRef]
- García, Y.M.; de Lemos, E.E.P.; Augusti, R.; Melo, J.O.F. Optimization of Extraction and Identification of Volatile Compounds from Myrciaria floribunda. Rev. Ciênc. Agron. 2021, 52, e20207199. [Google Scholar] [CrossRef]
- Garcia, Y.M.; Guedes, M.N.S.; Rufini, J.C.M.; Souza, A.G.; Augusti, R.; Melo, J.O.F. Volatile Compounds Identified in Barbados Cherry ‘BRS-366 Jaburú’. Sci. Electron. Arch. 2016, 9, 67. [Google Scholar] [CrossRef]
- Xcalibur; Versión 1.4; Thermo Scientific: San Jose, CA, USA, 2011.
- Excel 2013; Microsoft: Redmond, WA, USA, 2013.
- MatLab; Version 7.10.0.499; MathWorks: Natick, MA, USA, 2009.
- PLS Toolbox; Version 5.2.2; Eigenvectors Research: Manson, WA, USA, 2009.
Parameters | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Access | FW | SW | PW | NS | LD | TD | Format | Firmness (N) | pH | SS | TA | SS/TA |
g | mm | |||||||||||
AC67 | 0.58 a | 0.17 a | 0.41 a | 1.18 a | 8.91 b | 9.95 b | 0.90 b | 1.46 a | 3.53 a | 21.30 d | 5.15 b | 4.15 a |
AC92 | 0.43 a | 0.14 a | 0.29 a | 1.19 a | 7.10 a | 8.94 a | 0.86 a | 2.59 a | 3.83 a | 22.78 e | 5.05 b | 4.51 a |
AC112 | 0.79 b | 0.25 b | 0.54 b | 1.71 c | 10.81 d | 9.81 b | 1.10 d | 3.26 a | 3.68 a | 16.88 b | 4.93 b | 3.60 a |
AC132 | 1.14 c | 0.49 c | 0.64 b | 1.66 c | 11.64 e | 10.43 c | 1.12 d | 1.44 a | 3.99 a | 17.65 c | 4.93 b | 3.58 a |
AC136 | 0.81 b | 0.21 b | 0.61 b | 1.48 b | 10.69 d | 9.65 b | 1.11 d | 3.57 a | 3.75 a | 16.53 b | 4.90 b | 3.55 a |
AC137 | 0.77 b | 0.16 a | 0.61 b | 1.50 b | 10.76 d | 9.54 b | 1.13 d | 2.61 a | 3.99 a | 18.30 c | 2.70 a | 6.87 b |
AC153 | 0.82 b | 0.24 b | 0.58 b | 1.42 b | 9.50 b | 10.47 c | 0.91 b | 1.98 a | 3.90 a | 16.10 b | 4.35 b | 3.79 a |
AC156 | 0.91 b | 0.22 b | 0.69 b | 1.91 c | 10.66 d | 11.50 d | 0.93 c | 4.08 a | 3.62 a | 15.43 b | 3.95 b | 3.98 a |
AC160 | 0.57 a | 0.10 a | 0.47 a | 1.01 a | 9.84 c | 8.82 a | 1.12 d | 5.67 a | 3.35 a | 13.25 a | 2.80 a | 4.75 a |
Mean | 0.76 | 0.22 | 0.54 | 1.45 | 10.06 | 9.90 | 1.02 | 2.96 | 3.74 | 17.58 | 4.31 | 4.31 |
CV (%) | 20.07 | 20.83 | 22.43 | 12.11 | 5.09 | 5.95 | 1.51 | 56.17 | 9.83 | 4.02 | 14.66 | 16.28 |
Standard Error | 0.08 | 0.02 | 0.06 | 0.09 | 1.26 | 0.29 | 0.01 | 0.83 | 0.18 | 0.35 | 0.32 | 0.35 |
No. | VOCs | CAS | % Area | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AC67 | AC92 | AC112 | AC132 | AC136 | AC137 | AC153 | AC156 | AC160 | |||
1 | α-pinene | 80-56-8 | 0.59 | 0.24 | 0.19 | 1.09 | ‒ | 0.54 | ‒ | 0.08 | ‒ |
2 | Eucalyptus | 470-82-6 | 10.6 | 0.29 | 1.26 | 4.36 | 4.04 | 2.45 | 8.74 | 6.56 | 0.7 |
3 | 3-carene | 13466-78-9 | 5.0 | 1.06 | 0.09 | 1.09 | 2.48 | 1.66 | 1.69 | ‒ | ‒ |
4 | Ocimene | 502-99-8 | 1.17 | 1.58 | 0.2 | 4.76 | 0.21 | 0.63 | 0.74 | 0.03 | 0.18 |
5 | α-terpineol | 98-55-5 | 1 | 0.61 | 2.69 | 3.93 | 4.44 | 5.66 | ‒ | ‒ | 0.78 |
6 | α-canfolenal | 4501-58-0 | 0.2 | 0.71 | 0.11 | 0.21 | 0.5 | ‒ | 0.48 | 0.37 | ‒ |
7 | Isopulegol acetate | 57576-09-7 | ‒ | 1.44 | 0.21 | 1.25 | 0.18 | 0.4 | 2.98 | 1.25 | ‒ |
8 | γ-terpineol | 586-81-2 | ‒ | 0.29 | 0.15 | 0.47 | ‒ | 0.32 | ‒ | 0.19 | ‒ |
9 | Acetate fenquila | 13851-11-1 | ‒ | 0.25 | 0.09 | ‒ | ‒ | 0.56 | ‒ | ‒ | ‒ |
10 | Borneol | 507-70-0 | ‒ | ‒ | ‒ | 0.4 | ‒ | 1.1 | ‒ | ‒ | ‒ |
11 | Isobornyl format | 1200-67-5 | 5.83 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 0.1 | ‒ |
Monoterpenes | 24.26 | 6.47 | 4.99 | 17.56 | 11.85 | 13.32 | 14.63 | 8.58 | 1.66 | ||
12 | α-muurolene | 10208-80-7 | 21.04 | 1.19 | 9.27 | 1.13 | 9.72 | 1.22 | 1.17 | 1.46 | 1.57 |
13 | Cyclosativene | 22469-52-9 | 3.95 | 9.29 | 6.78 | 4.37 | 0.64 | 0.96 | 0.99 | 0.48 | 2.51 |
14 | β-guaiene | 0.48 | 0.38 | 1 | 2.45 | 5.15 | 5.58 | 2.85 | 3.1 | 3.21 | |
15 | Caryophyllene | 21.59 | 8.20 | 25.8 | 1.77 | 35.73 | 0.05 | 32.88 | 0.45 | 48.51 | |
16 | α-longipinene | 5989-08-2 | 3.99 | 4.66 | 3.78 | 24.21 | 3.63 | 6.2 | 1.04 | 1.28 | 2.42 |
17 | Longifolene | 61262-67-7 | 6.35 | 3.50 | 4.58 | 4.24 | 0.36 | ‒ | 0.4 | 5.18 | 0.48 |
18 | α-selinene | 473-13-2 | 0.86 | 11.62 | 2.39 | 2.45 | 1.23 | 1.4 | ‒ | ‒ | 0.3 |
19 | Zonarene | 41929-05-9 | 2.11 | 3.38 | 3.43 | 8.92 | 0.37 | 0.47 | 4.5 | 0.51 | 4.81 |
20 | γ-selinene | 515-17-3 | ‒ | 4.64 | 11.2 | 0 | 16.05 | 58.18 | 0.4 | 63.1 | 0.63 |
21 | Ledene | 21747-46-6 | 0.4 | 0.03 | 4.38 | 13.21 | 0.17 | 7.7 | 0.52 | ‒ | 2.44 |
22 | Eudesma-3,7 (11) -diene | 6813-21-4 | 0.15 | 0.16 | 0.07 | 0.3 | 0.16 | 0.62 | 2.27 | 8.14 | 0.14 |
23 | α-gurjunene | 489-40-7 | 6.6 | 4.05 | 4.45 | 0.3 | 3.61 | 0.34 | 0.16 | 0.32 | 0.23 |
24 | Patchoulene | 1405-16-9 | 1.62 | 32.56 | 1.87 | 1.74 | 3.07 | 0.48 | 0.52 | 0.42 | 0.92 |
25 | Eremophila-1 (10), 11-diene | 10219-75-7 | 2.6 | 2.67 | 4.88 | 5.85 | 2.64 | ‒ | 1.69 | 0.05 | 3.94 |
26 | γ-himachalene | 53111-25-4 | ‒ | 0.05 | 0.34 | 0.77 | 0.25 | 1 | 4.07 | 0.32 | 1.05 |
27 | 10s, 11s-himachala-3 (12), 4-diene | 60909-28-6 | 0.2 | 0.68 | 0.78 | 7.6 | 1.18 | 0.49 | 8.89 | 0.65 | 6.94 |
28 | Aristolen | 88-84-6 | 0.2 | 0.23 | 1.37 | ‒ | 1.05 | 0.71 | 18.22 | 0.52 | 16.7 |
29 | γ-cadinene | 39029-41-9 | 0.45 | 2.27 | 3.53 | ‒ | 0.08 | 0.03 | ‒ | ‒ | ‒ |
30 | Cadina-3,9-diene | 523-47-7 | 1 | 1.75 | 2.88 | ‒ | 0.83 | ‒ | 0.18 | 0.76 | ‒ |
31 | α-cubebene | 17699-14-8 | 0.3 | 0.03 | 0.29 | ‒ | 0.25 | ‒ | ‒ | ‒ | ‒ |
32 | α-ylangene | 14912-44-8 | ‒ | 0.19 | 0.38 | ‒ | 0.44 | ‒ | ‒ | ‒ | ‒ |
33 | Guayana-1 (5), 11-diene | 3691-12-1 | 0.11 | 0.52 | 0.29 | ‒ | ‒ | 0.05 | ‒ | 0.03 | ‒ |
34 | δ-elemene | 20307-84-0 | ‒ | 0.04 | 0.13 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ |
35 | Copena | 3856-25-5 | 1.4 | 0.45 | 0.48 | 0.33 | ‒ | ‒ | ‒ | ‒ | ‒ |
36 | γ-muurolene | 30021-74-0 | ‒ | ‒ | ‒ | ‒ | ‒ | 0.04 | ‒ | ‒ | ‒ |
Sesquiterpenes | 75.42 | 92.54 | 94.35 | 79.64 | 86.61 | 85.52 | 80.75 | 86.77 | 96.8 | ||
Total identified | 99.68 | 99.01 | 99.34 | 97.2 | 98.46 | 98.84 | 95.38 | 95.35 | 98.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, Y.M.; Ramos, A.L.C.C.; de Paula, A.C.C.F.F.; do Nascimento, M.H.; Augusti, R.; de Araújo, R.L.B.; de Lemos, E.E.P.; Melo, J.O.F. Chemical Physical Characterization and Profile of Fruit Volatile Compounds from Different Accesses of Myrciaria floribunda (H. West Ex Wild.) O. Berg through Polyacrylate Fiber. Molecules 2021, 26, 5281. https://doi.org/10.3390/molecules26175281
García YM, Ramos ALCC, de Paula ACCFF, do Nascimento MH, Augusti R, de Araújo RLB, de Lemos EEP, Melo JOF. Chemical Physical Characterization and Profile of Fruit Volatile Compounds from Different Accesses of Myrciaria floribunda (H. West Ex Wild.) O. Berg through Polyacrylate Fiber. Molecules. 2021; 26(17):5281. https://doi.org/10.3390/molecules26175281
Chicago/Turabian StyleGarcía, Yesenia Mendoza, Ana Luiza Coeli Cruz Ramos, Ana Cardoso Clemente Filha Ferreira de Paula, Maicon Heitor do Nascimento, Rodinei Augusti, Raquel Linhares Bello de Araújo, Eurico Eduardo Pinto de Lemos, and Júlio Onésio Ferreira Melo. 2021. "Chemical Physical Characterization and Profile of Fruit Volatile Compounds from Different Accesses of Myrciaria floribunda (H. West Ex Wild.) O. Berg through Polyacrylate Fiber" Molecules 26, no. 17: 5281. https://doi.org/10.3390/molecules26175281
APA StyleGarcía, Y. M., Ramos, A. L. C. C., de Paula, A. C. C. F. F., do Nascimento, M. H., Augusti, R., de Araújo, R. L. B., de Lemos, E. E. P., & Melo, J. O. F. (2021). Chemical Physical Characterization and Profile of Fruit Volatile Compounds from Different Accesses of Myrciaria floribunda (H. West Ex Wild.) O. Berg through Polyacrylate Fiber. Molecules, 26(17), 5281. https://doi.org/10.3390/molecules26175281