Rubber Seed Oil-Based UV-Curable Polyurethane Acrylate Resins for Digital Light Processing (DLP) 3D Printing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of HRSO
2.3. Synthesis of RSO-PUA
2.4. Curing of RSO-PUA Resins
2.5. Digital Light Processing (DLP) Three-Dimensional (3D) Printing
2.6. Characterization
3. Result and Discussion
3.1. Structural Characterization of RSO-PUA Oligomer
3.2. Gel Contents
3.3. Properties of the UV-Cured RSO-PUA Materials
3.3.1. Dynamic Mechanical Analysis
3.3.2. Thermogravimetric Analysis
3.3.3. Mechanical Properties
3.3.4. Coating Properties
3.3.5. Fractured Surface Morphology Analysis
3.3.6. Swelling Properties
3.4. UV-Curing Kinetics of the RSO-PUA Resins
3.5. 3D Printing Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yao, C.; Xing, W.; Ma, C.; Song, L.; Hu, Y.; Zhuang, Z. Synthesis of phytic acid-based monomer for UV-Cured coating to improve fire safety of PMMA. Prog. Org. Coat. 2020, 140, 105497. [Google Scholar] [CrossRef]
- Wang, S.; Dai, J.; Teng, N.; Hu, J.; Zhao, W.; Liu, X. Synthesis of mechanically robust and self-healing UV-curable materials from renewable feedstock. ACS Sustain. Chem. Eng. 2020, 8, 16842–16852. [Google Scholar] [CrossRef]
- Zhang, B.; Li, H.; Cheng, J.; Ye, H.; Sakhaei, A.H.; Yuan, C.; Rao, P.; Zhang, Y.F.; Chen, Z.; Wang, R.; et al. Mechanically robust and UV-curable shape-memory polymers for digital light processing based 4D printing. Adv. Mater. 2021, 33, e2101298. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, S.; Chen, Y.; Yuan, T.; Yang, Z. One-step synthesis of novel renewable multi-functional linseed oil-based acrylate prepolymers and its application in UV-curable coatings. Prog. Org. Coat. 2020, 148, 105820. [Google Scholar] [CrossRef]
- Yanfang, S.; Hualai, W.; Hui, B. A coumarin-based turn-on chemosensor for selective detection of Zn(II) and application in live cell imaging. Spectrochim. Acta. Part. A Mol. Biomol. Spectrosc. 2020, 228, 117746. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Lu, M.; Wang, M.; Ding, J.; Sun, T.; Tang, Y.; Zhang, Y. A biocompatible glucose-containing ABC block terpolymer: Synthesis, characterization and its properties in solution. Polym. Bull. 2016, 73, 2373–2390. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, T.; Cui, Z.; Dai, H.; Cai, L. Stimuli-Responsive biomass cellulose particles being able to reversibly self-assemble at fluid interface. Front. Chem. 2020, 8, 712. [Google Scholar] [CrossRef]
- Paraskar, P.M.; Prabhudesai, M.S.; Hatkar, V.M.; Kulkarni, R.D. Vegetable oil based polyurethane coatings—A sustainable approach: A review. Prog. Org. Coat. 2021, 156, 106267. [Google Scholar] [CrossRef]
- Huang, J.; Yuan, T.; Ye, X.; Man, L.; Zhou, C.; Hu, Y.; Zhang, C.; Yang, Z. Study on the UV curing behavior of tung oil: Mechanism, curing activity and film-forming property. Ind. Crop. Prod. 2018, 112, 61–69. [Google Scholar] [CrossRef]
- Liang, B.; Li, R.; Zhang, C.; Yang, Z.; Yuan, T. Synthesis and characterization of a novel tri-functional bio-based methacrylate prepolymer from castor oil and its application in UV-curable coatings. Ind. Crop. Prod. 2019, 135, 170–178. [Google Scholar] [CrossRef]
- Liang, B.; Kuang, S.; Huang, J.; Man, L.; Yang, Z.; Yuan, T. Synthesis and characterization of novel renewable tung oil-based UV-curable active monomers and bio-based copolymers. Prog. Org. Coat. 2019, 129, 116–124. [Google Scholar] [CrossRef]
- Liu, T.; Sun, L.; Ou, R.; Fan, Q.; Li, L.; Guo, C.; Liu, Z.; Wang, Q. Flame retardant eugenol-based thiol-ene polymer networks with high mechanical strength and transparency. Chem. Eng. J. 2019, 368, 359–368. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, X.; Zhu, J.; Liu, X.; Wang, Z.; Yan, J. UV-curable coatings from multiarmed cardanol-based acrylate oligomers. ACS Sustain. Chem. Eng. 2015, 3, 1313–1320. [Google Scholar] [CrossRef]
- Liu, J.; Liu, R.; Zhang, X.; Li, Z.; Tang, H.; Liu, X. Preparation and properties of UV-curable multi-arms cardanol-based acrylates. Prog. Org. Coat. 2016, 90, 126–131. [Google Scholar] [CrossRef]
- Pezzana, L.; Mousa, M.; Malmström, E.; Johansson, M.; Sangermano, M. Bio-based monomers for UV-curable coatings: Allylation of ferulic acid and investigation of photocured thiol-ene network. Prog. Org. Coat. 2021, 150, 105986. [Google Scholar] [CrossRef]
- Phalak, G.; Patil, D.; Vignesh, V.; Mhaske, S. Development of tri-functional biobased reactive diluent from ricinoleic acid for UV curable coating application. Ind. Crop. Prod. 2018, 119, 9–21. [Google Scholar] [CrossRef]
- Miao, J.-T.; Yuan, L.; Guan, Q.; Liang, G.; Gu, A. Water-phase synthesis of a biobased allyl compound for building uv-curable flexible thiol–ene polymer networks with high mechanical strength and transparency. ACS Sustain. Chem. Eng. 2018, 6, 7902–7909. [Google Scholar] [CrossRef]
- Dai, J.; Ma, S.; Wu, Y.; Zhu, J.; Liu, X. High bio-based content waterborne UV-curable coatings with excellent adhesion and flexibility. Prog. Org. Coat. 2015, 87, 197–203. [Google Scholar] [CrossRef]
- Miao, J.-T.; Peng, S.; Ge, M.; Li, Y.; Zhong, J.; Weng, Z.; Wu, L.; Zheng, L. Three-dimensional printing fully biobased heat-resistant photoactive acrylates from aliphatic biomass. ACS Sustain. Chem. Eng. 2020, 8, 9415–9424. [Google Scholar] [CrossRef]
- Wang, S.; Teng, N.; Dai, J.; Liu, J.; Cao, L.; Zhao, W.; Liu, X. Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer. Polymer 2020, 210, 123004. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Y.; Dai, J.; Teng, N.; Peng, Y.; Cao, L.; Liu, X. Making organic coatings greener: Renewable resource, solvent-free synthesis, UV curing and repairability. Eur. Polym. J. 2020, 123, 109439. [Google Scholar] [CrossRef]
- Fertier, L.; Ibert, M.; Buffe, C.; Saint-Loup, R.; Joly-Duhamel, C.; Robin, J.J.; Giani, O. New biosourced UV curable coatings based on isosorbide. Prog. Org. Coat. 2016, 99, 393–399. [Google Scholar] [CrossRef]
- Gadgeel, A.A.; Mhaske, S.T. Synthesis and characterization of UV curable polyurethane acrylate derived from α-Ketoglutaric acid and isosorbide. Prog. Org. Coat. 2021, 150, 105983. [Google Scholar] [CrossRef]
- Kim, J.S.; Park, H.W.; Lee, J.-H.; Lee, S.-H.; Cho, J.K.; Shin, S. Synthesis of a novel isosorbide-based dental material with improved water sorption. Eur. Polym. J. 2019, 112, 629–635. [Google Scholar] [CrossRef]
- Wu, J.; Yu, X.; Zhang, H.; Guo, J.; Hu, J.; Li, M.-H. Fully biobased vitrimers from glycyrrhizic acid and soybean oil for self-healing, shape memory, weldable, and recyclable materials. ACS Sustain. Chem. Eng. 2020, 8, 6479–6487. [Google Scholar] [CrossRef]
- Fu, J.; Wang, L.; Yu, H.; Haroon, M.; Haq, F.; Shi, W.; Wu, B.; Wang, L. Research progress of UV-curable polyurethane acrylate-based hardening coatings. Prog. Org. Coat. 2019, 131, 82–99. [Google Scholar] [CrossRef]
- Fu, J.; Yu, H.; Wang, L.; Fahad, S. Preparation and properties of UV-curable diamine-based polyurethane acrylate hard coatings. Appl. Surf. Sci. 2020, 533, 147442. [Google Scholar] [CrossRef]
- Wei, D.; Liao, B.; Huang, J.; Zhang, M.; Pang, H. Fabrication of castor oil-based hyperbranched urethane acrylate UV-curable coatings via thiol-ene click reactions. Prog. Org. Coat. 2019, 135, 114–122. [Google Scholar] [CrossRef]
- Li, K.; Shen, Y.; Fei, G.; Wang, H.; Li, J. Preparation and properties of castor oil/pentaerythritol triacrylate-based UV curable waterborne polyurethane acrylate. Prog. Org. Coat. 2015, 78, 146–154. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, C.; Shang, Q.; Zhou, Y. Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate. J. Coat. Technol. Res. 2017, 15, 77–85. [Google Scholar] [CrossRef]
- Hu, Y.; Shang, Q.; Bo, C.; Jia, P.; Feng, G.; Zhang, F.; Liu, C.; Zhou, Y. Synthesis and properties of UV-curable polyfunctional polyurethane acrylate resins from cardanol. ACS Omega 2019, 4, 12505–12511. [Google Scholar] [CrossRef]
- Paraskar, P.M.; Hatkar, V.M.; Kulkarni, R.D. Facile synthesis and characterization of renewable dimer acid-based urethane acrylate oligomer and its utilization in UV-curable coatings. Prog. Org. Coat. 2020, 149, 105946. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, J.; Zhu, G.; Yu, X.; Hu, Y.; Shang, Q.; Chen, J.; Hu, L.; Zhou, Y.; Liu, C. Self-healing, high-performance, and high-biobased-content UV-curable coatings derived from rubber seed oil and itaconic acid. Prog. Org. Coat. 2021, 159, 106391. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, Y.; Zhang, J.; Huang, J.; Liu, R.; Liu, C.; Ren, X.; An, R.; Zhou, Y. High-performance UV-curable polyurethane acrylate resins derived from low-iodine woody plant oils. Mater. Today Commun. 2020, 25, 101526. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Hu, Y.; Zhang, F.; Shang, Q.; Lei, W.; Zhou, Y.; Cai, Z. Castor oil-based polyfunctional acrylate monomers: Synthesis and utilization in UV-curable materials. Prog. Org. Coat. 2018, 121, 236–246. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Hu, L.; Zhou, Y. Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind. Crop. Prod. 2014, 52, 380–388. [Google Scholar] [CrossRef]
- Zhang, J.; Shang, Q.; Hu, Y.; Zhang, F.; Huang, J.; Lu, J.; Cheng, J.; Liu, C.; Hu, L.; Miao, H.; et al. High-biobased-content UV-curable oligomers derived from tung oil and citric acid: Microwave-assisted synthesis and properties. Eur. Polym. J. 2020, 140, 109997. [Google Scholar] [CrossRef]
- Man, L.; Hu, Y.; Feng, Y.; Zhang, C.; Yuan, T.; Yang, Z. Facile synthesis of a novel bio-based methacrylate monomer derived from tung oil and its application for solvent-free thermosetting coatings. Ind. Crop. Prod. 2019, 133, 348–356. [Google Scholar] [CrossRef]
- Liang, D.; Zhang, Q.; Zhang, W.; Liu, L.; Liang, H.; Quirino, R.L.; Chen, J.; Liu, M.; Lu, Q.; Zhang, C. Tunable thermo-physical performance of castor oil-based polyurethanes with tailored release of coated fertilizers. J. Clean. Prod. 2019, 210, 1207–1215. [Google Scholar] [CrossRef]
- Wu, Q.; Hu, Y.; Tang, J.; Zhang, J.; Wang, C.; Shang, Q.; Feng, G.; Liu, C.; Zhou, Y.; Lei, W. High-performance soybean-oil-based epoxy acrylate resins: “Green” synthesis and application in UV-curable coatings. ACS Sustain. Chem. Eng. 2018, 6, 8340–8349. [Google Scholar] [CrossRef]
- Fei, M.; Liu, T.; Zhao, B.; Otero, A.; Chang, Y.-C.; Zhang, J. From glassy plastic to ductile elastomer: Vegetable oil-based UV-curable vitrimers and their potential use in 3D printing. ACS Appl. Polym. Mater. 2021, 3, 2470–2479. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, S.; Li, Q.; Wang, S.; Huang, K.; Xu, X.; Wang, B.; Zhu, J. Dynamic transfer auto-catalysis of epoxy vitrimers enabled by the carboxylic acid/epoxy ratio based on facilely synthesized trifunctional monoesterified cyclic anhydrides. Eur. Polym. J. 2020, 135, 109881. [Google Scholar] [CrossRef]
- Fu, J.; Yu, H.; Wang, L.; Lin, L.; Khan, R.U. Preparation and properties of UV-curable hyperbranched polyurethane acrylate hard coatings. Prog. Org. Coat. 2020, 144, 105635. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, J.; Huang, J.; Yu, X.; Cheng, J.; Shang, Q.; Hu, Y.; Liu, C.; Hu, L.; Zhou, Y. High-performance 3D printing UV-curable resins derived from soybean oil and gallic acid. Green Chem. 2021, 23, 5911. [Google Scholar] [CrossRef]
- Peng, S.; Li, Y.; Wu, L.; Zhong, J.; Weng, Z.; Zheng, L.; Yang, Z.; Miao, J. 3D Printing mechanically robust and transparent polyurethane—Elastomers for stretchable electronic sensors. ACS Appl. Mater. Interfaces 2020, 12, 6479–6488. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, N.; Parra-Cabrera, C.; Kim, Y.T.; Kuo, A.P.; Folch, A. Desktop-stereolithography 3D-printing of a poly(dimethylsiloxane)-based material with sylgard-184 properties. Adv. Mater. 2018, 30, 1800001. [Google Scholar] [CrossRef] [PubMed]
- Sutton, J.T.; Rajan, K.; Harper, D.P.; Chmely, S.C. Lignin-containing photoactive resins for 3D printing by stereolithography. ACS Appl. Mater. Interfaces 2018, 10, 36456–36463. [Google Scholar] [CrossRef]
- Bassett, A.W.; Honnig, A.E.; Breyta, C.M.; Dunn, I.C.; La Scala, J.J.; Stanzione, J.F. Vanillin-based resin for additive manufacturing. ACS Sustain. Chem. Eng. 2020, 8, 5626–5635. [Google Scholar] [CrossRef]
Samples | RSO-PUA (%) | HEA (%) | TEGDA (%) | TMPTA (%) | D1173 (%) | Gel Content (%) |
---|---|---|---|---|---|---|
RSO-PUA | 97 | 0 | 0 | 0 | 3 | 83.9 ± 0.9 |
RSO-PUA/10% HEA | 87 | 10 | 0 | 0 | 3 | 91.6 ± 0.7 |
RSO-PUA/20% HEA | 77 | 20 | 0 | 0 | 3 | 91.8 ± 0.8 |
RSO-PUA/30% HEA | 67 | 30 | 0 | 0 | 3 | 91.8 ± 0.1 |
RSO-PUA/40% HEA | 57 | 40 | 0 | 0 | 3 | 93.0 ± 0.3 |
RSO-PUA/40% TEGDA | 57 | 0 | 40 | 0 | 3 | 95.0 ± 0.9 |
RSO-PUA/40% TMPTA | 57 | 0 | 0 | 40 | 3 | 98.5 ± 1.4 |
Samples | E′25 a (GPa) | Tg b (°C) | νe c (103 mol/m3) | T5 d (°C) | T10 e (°C) | Tmax f (°C) | wchar g (%) |
---|---|---|---|---|---|---|---|
RSO-PUA | 1.5 | 89.3 | 168.4 | 241.9 | 266.9 | 431.5 | 0.8 |
RSO-PUA/10% HEA | 1.6 | 82.5 | 184.3 | 221.9 | 266.9 | 422.0 | 4.4 |
RSO-PUA/20% HEA | 1.3 | 78.6 | 144.4 | 219.4 | 264.4 | 418.0 | 4.9 |
RSO-PUA/30% HEA | 1.4 | 69.3 | 163.2 | 204.2 | 259.2 | 421.8 | 4.5 |
RSO-PUA/40% HEA | 0.9 | 57.7 | 105.2 | 229.1 | 271.6 | 425.3 | 2.6 |
RSO-PUA/40% TEGDA | 1.7 | 74.8 | 194.4 | 246.6 | 279.1 | 420.6 | 4.9 |
RSO-PUA/40% TMPTA | 2.3 | 109.4 | 241.2 | 261.6 | 291.6 | 437.1 | 5.7 |
Samples | σa (MPa) | Eb (MPa) | εc (%) | Ad.d | P.H.e | Fl.f (mm) |
---|---|---|---|---|---|---|
RSO-PUA | 11.2 ± 2.6 | 314.8 ± 65.4 | 5.2 ± 0.2 | 2 | 2H | 2 |
RSO-PUA/10% HEA | 16.3 ± 0.6 | 330.6 ± 42.2 | 8.2 ± 0.7 | 2 | 2H | 2 |
RSO-PUA/20% HEA | 16.2 ± 1.0 | 354.1 ± 38.9 | 6.7 ± 1.7 | 2 | H | 2 |
RSO-PUA/30% HEA | 10.2 ± 0.3 | 251.0 ± 14.3 | 11.4 ± 1.8 | 2 | 2H | 2 |
RSO-PUA/40% HEA | 5.4 ± 0.8 | 113.3 ± 16.0 | 39.8 ± 5.4 | 2 | 3H | 2 |
RSO-PUA/40% TEGDA | 12.5 ± 0.9 | 304.0 ± 32.4 | 6.5 ± 1.0 | 7 | 3H | 18 |
RSO-PUA/40% TMPTA | 11.7 ± 0.9 | 443.6 ± 0.4 | 6.7 ± 1.3 | 2 | 3H | 2 |
Samples | Swelling (%) | αf a (%) | Rp b (s−1) | |||
---|---|---|---|---|---|---|
Water | Ethanol | Acetone | Toluene | |||
RSO-PUA | 0.22 | 2.87 | 6.71 | 5.52 | 65.5 | 5.5 |
RSO-PUA/10% HEA | 0.49 | 1.42 | 6.45 | 5.04 | 84.5 | 15.8 |
RSO-PUA/20% HEA | 0.35 | 2.24 | 7.50 | 2.56 | 87.0 | 15.3 |
RSO-PUA/30% HEA | 0.35 | 3.25 | 7.67 | 3.23 | 97.4 | 22.1 |
RSO-PUA/40% HEA | 0.38 | 1.96 | 4.06 | 2.51 | 93.1 | 20.5 |
RSO-PUA/40% TEGDA | 0.48 | 1.14 | 2.17 | 0.29 | 66.4 | 10.0 |
RSO-PUA/40% TMPTA | 0.27 | 0.78 | 0.93 | 0.48 | 70.3 | 12.1 |
Sample | Penetration Depth (mm) | Critical Cure Time (s) | Critical Exposure Energy (mJ/cm2) | R2 |
---|---|---|---|---|
RSO-PUA/HEA40% | 0.327 | 1.90 | 15.20 | 0.99 |
Commercial resin | 0.314 | 2.04 | 16.32 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Zhu, G.; Zhang, J.; Huang, J.; Yu, X.; Shang, Q.; An, R.; Liu, C.; Hu, L.; Zhou, Y. Rubber Seed Oil-Based UV-Curable Polyurethane Acrylate Resins for Digital Light Processing (DLP) 3D Printing. Molecules 2021, 26, 5455. https://doi.org/10.3390/molecules26185455
Hu Y, Zhu G, Zhang J, Huang J, Yu X, Shang Q, An R, Liu C, Hu L, Zhou Y. Rubber Seed Oil-Based UV-Curable Polyurethane Acrylate Resins for Digital Light Processing (DLP) 3D Printing. Molecules. 2021; 26(18):5455. https://doi.org/10.3390/molecules26185455
Chicago/Turabian StyleHu, Yun, Guoqiang Zhu, Jinshuai Zhang, Jia Huang, Xixi Yu, Qianqian Shang, Rongrong An, Chengguo Liu, Lihong Hu, and Yonghong Zhou. 2021. "Rubber Seed Oil-Based UV-Curable Polyurethane Acrylate Resins for Digital Light Processing (DLP) 3D Printing" Molecules 26, no. 18: 5455. https://doi.org/10.3390/molecules26185455
APA StyleHu, Y., Zhu, G., Zhang, J., Huang, J., Yu, X., Shang, Q., An, R., Liu, C., Hu, L., & Zhou, Y. (2021). Rubber Seed Oil-Based UV-Curable Polyurethane Acrylate Resins for Digital Light Processing (DLP) 3D Printing. Molecules, 26(18), 5455. https://doi.org/10.3390/molecules26185455