Antioxidant, Antimicrobial and Metmyoglobin Reducing Activity of Artichoke (Cynara scolymus) Powder Extract-Added Minced Meat during Frozen Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the C. scolymus Extract
2.3. Determination of Total Phenolic and Flavonoid in the Extract
2.4. Characterization of Phytochemical Composition with LC/QTOF-MS
2.5. Preparation of Meat Samples
2.6. Antimicrobial Activity
2.7. Preparation of Minced Meat Agar-Solution
2.8. Antioxidant Activity
2.8.1. DPPH: 2,2 Diphenyl-1-picrylhydrazyl Radical Scavenging Activity
2.8.2. TEAC Trolox Equivalent Antioxidant Capacity
2.8.3. FRAP: Ferric Reducing Antioxidant Power
2.9. Measurement of metMb Reducing Activity
2.10. Instrumental Color Measurements
2.11. pH Determination
2.12. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic and Flavonoid Analysis in Extracts
3.2. Identification and Quantification of Polyphenols by LC-QTOF-MS
3.3. Antimicrobial Activity
3.4. Antioxidant Activity
3.5. Measurement of metMb and Color Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pereira, P.M.D.C.C.; Vicente, A.F.D.R.B. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Bensid, A.; El Abed, N.; Houicher, A.; Regenstein, J.M.; Özogul, F. Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food–a review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Turgut, S.S.; Isıkcı, F.; Soyer, A. Antioxidant activity of pomegranate peel extract on lipid and protein oxidation in beef meatballs during frozen storage. Meat Sci. 2017, 129, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Niyonzima, E.; Ongol, M.P.; Kimonyo, A.; Sindic, M. Risk Factors and Control Measures for Bacterial Contamination in the Bovine Meat Chain: A Review on Salmonella and Pathogenic, E. coli. J. Food Res. 2015, 4, 98–121. [Google Scholar] [CrossRef]
- Gassara, F.; Kouassi, A.P.; Brar, S.K.; Belkacemi, K. Green alternatives to nitrates and nitrites in meat-based products—A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2133–2148. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Larraínzar, M.; Rúa, J.; Caro, I.; de Castro, C.; de Arriaga, D.; García-Armesto, M.R.; del Valle, P. Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control 2012, 26, 555–563. [Google Scholar] [CrossRef]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demir, T.; Akpınar, Ö. Biological Activities of Phytochemicals in Plants. Turk. J. Agric.-Food Sci. Technol. 2020, 8, 1734–1746. [Google Scholar] [CrossRef]
- Kalogianni, A.I.; Lazou, T.; Bossis, I.; Gelasakis, A.I. Natural phenolic compounds for the control of oxidation, bacterial spoilage, and foodborne pathogens in meat. Foods 2020, 9, 794–822. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.E.D.; Geesink, G.H.; Ilian, M.A.; Morton, J.D.; Bickerstaffe, R. The effects of natural antioxidants on oxidative processes and metmyoglobin reducing activity in beef patties. Food Chem. 2003, 81, 175–187. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G.; Williamson, G. Profile of polyphenols and phenolic acids in bracts and receptacles of globe artichoke (Cynara cardunculus var. scolymus) germplasm. J. Food Compos. Anal. 2011, 24, 148–153. [Google Scholar] [CrossRef]
- Miccadei, S.; Di Venere, D.; Cardinali, A.; Romano, F.; Durazzo, A.; Foddai, M.S.; Fraioli, R.; Mobarhan, S.; Maiani, G. Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells. Nutr. Cancer 2008, 60, 276–283. [Google Scholar] [CrossRef]
- Wang, L.; Qiao, K.; Huang, Y.; Zhang, Y.; Xiao, J.; Duan, W. Optimization of beef broth processing technology and isolation and identification of flavor peptides by consecutive chromatography and LC-QTOF-MS/MS. Food Sci. Nutr. 2020, 8, 4463–4471. [Google Scholar] [CrossRef]
- Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Res. Int. 2011, 44, 217–224. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Ramli, A.N.M.; Manap, N.W.A.; Bhuyar, P.; Azelee, N.I.W. Passion fruit (Passiflora edulis) peel powder extract and its application towards antibacterial and antioxidant activity on the preserved meat products. SN Appl. Sci. 2020, 2, 1–11. [Google Scholar] [CrossRef]
- Huang, B.; He, J.; Ban, X.; Zeng, H.; Yao, X.; Wang, Y. Antioxidant activity of bovine and porcine meat treated with extracts from edible lotus (Nelumbo nucifera) rhizome knot and leaf. Meat Sci. 2011, 87, 46–53. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; Lee, H.; Ha, J.; Lee, J.; Choi, Y.; Oh, H.; Hong, J.; Yoon, Y.; Choi, K.H. Evaluation on antimicrobial activity of psoraleae semen extract controlling the growth of gram-positive bacteria. Korean J. Food Sci. Anim. Resour. 2017, 37, 502–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Cuong, T.; Chin, K.B. Effects of annatto (Bixa orellana L.) seeds powder on physicochemical properties, antioxidant and antimicrobial activities of pork patties during refrigerated storage. Korean J. Food Sci. Anim. Resour. 2016, 36, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ergezer, H.; Serdaroğlu, M. Antioxidant potential of artichoke (Cynara scolymus L.) byproducts extracts in raw beef patties during refrigerated storage. J. Food Meas. Charact. 2018, 12, 982–991. [Google Scholar] [CrossRef]
- Zuorro, A.; Maffei, G.; Lavecchia, R. Reuse potential of artichoke (Cynara scolymus L.) waste for the recovery of phenolic compounds and bioenergy. J. Clean. Prod. 2016, 111, 279–284. [Google Scholar] [CrossRef]
- Francavilla, M.; Marone, M.; Marasco, P.; Contillo, F.; Monteleone, M. Artichoke Biorefinery: From Food to Advanced Technological Applications. Foods 2021, 10, 112–128. [Google Scholar] [CrossRef]
- Curadi, M.; Picciarelli, P.; Lorenzi, R.; Graifenberg, A.; Geccarelli, N. Antioxidant activity and phenolic compounds in the edible parts of early and late Italian artichoke (Cynara scolymus L.) varieties. Ital. J. Food Sci. 2005, 17, 33–44. Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16660260 (accessed on 1 September 2021).
- Wang, M.; Simon, J.E.; Aviles, I.F.; He, K.; Zheng, Q.Y.; Tadmor, Y. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J. Agric. Food Chem. 2003, 51, 601–608. [Google Scholar] [CrossRef]
- Andrés, S.; Morán, L.; Aldai, N.; Tejido, M.L.; Prieto, N.; Bodas, R.; Giráldez, F.J. Effects of linseed and quercetin added to the diet of fattening lambs on the fatty acid profile and lipid antioxidant status of meat samples. Meat Sci. 2014, 97, 156–163. [Google Scholar] [CrossRef]
- North, M.K.; Dalle Zotte, A.; Hoffman, L.C. The effects of dietary quercetin supplementation on the meat quality and volatile profile of rabbit meat during chilled storage. Meat Sci. 2019, 158, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.S.; Deng, W.; Liu, H.W. Effects of chlorogenic acid-enriched extract from Eucommia ulmoides leaf on performance, meat quality, oxidative stability, and fatty acid profile of meat in heat-stressed broilers. Poult. Sci. 2019, 98, 3040–3049. [Google Scholar] [CrossRef]
- Farag, M.A.; Al-Mahdy, D.A.; Salah El Dine, R.; Fahmy, S.; Yassin, A.; Porzel, A.; Brandt, W. Structure-Activity relationships of antimicrobial gallic acid derivatives from pomegranate and acacia fruit extracts against potato bacterial wilt pathogen. Chem. Biodivers. 2015, 12, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Mirderikvandi, M.; Kiani, A.; Khaldari, M.; Alirezaei, M. Effects of artichoke (Cynara scolymus L.) extract on antioxidant status in chicken thigh meat. Iran. J. Vet. Med. 2016, 10, 73–81. [Google Scholar]
- Llorach, R.; Espin, J.C.; Tomas-Barberan, F.A.; Ferreres, F. Artichoke (Cynara scolymus L.) byproducts as a potential source of health-promoting antioxidant phenolics. J. Agric. Food Chem. 2002, 50, 3458–3464. [Google Scholar] [CrossRef] [PubMed]
- Zahid, M.A.; Seo, J.K.; Park, J.Y.; Jeong, J.Y.; Jin, S.K.; Park, T.S.; Yang, H.S. The effects of natural antioxidants on protein oxidation, lipid oxidation, color, and sensory attributes of beef patties during cold storage at 4 °C. Korean J. Food Sci. Anim. Resour. 2018, 38, 1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Xu, Q.; Dai, R.; Ni, Y. Effects of natural antioxidants on colour stability, lipid oxidation and metmyoglobin reducing activity in raw beef patties. Acta Sci. Pol. Technol. Aliment. 2015, 14, 37–44. [Google Scholar] [CrossRef]
- Ramanathan, R.; Hunt, M.C.; Mancini, R.A.; Nair, M.N.; Denzer, M.L.; Suman, S.P.; Mafi, G.G. Recent updates in meat color research: Integrating traditional and high-throughput approaches. Meat Muscle Biol. 2020, 4, 1–24. [Google Scholar] [CrossRef]
- McCarthy, T.L.; Kerry, J.P.; Kerry, J.F.; Lynch, P.B.; Buckley, D.J. Evaluation of the antioxidant potential of natural food/plant extracts as compared with synthetic antioxidants and vitamin E in raw and cooked pork patties. Meat Sci. 2001, 58, 45–52. [Google Scholar] [CrossRef]
- Abbasi, F.; Samadi, F. Effect of different levels of artichoke (Cynara scolymus L.) leaf powder on the performance and meat quality of Japanese quail. Poult. Sci. J. 2014, 2, 95–111. [Google Scholar] [CrossRef]
- Samadi, F.; Abbasi, F.; Samadi, S. Effect of artichoke (Cynara scolymus) leaf powder on performance and physicochemical properties of frozen meat of japanese quail. Iran. J. Appl. Anim. Sci. 2015, 5, 933–940. [Google Scholar]
Method of Extract. | Total Phenolic Compounds (mg GAE/g extract) | Total Flavonoid Compounds (mg QE/g extract) |
---|---|---|
Method 1 | 17.37 ± 0.07 aB | 6.45 ± 0.03 bB |
Method 2 | 98.26 ± 0.05 aA | 19.74 ± 0.04 bA |
Peak No | Phenolic Compounds | Rt (min) | Observed m/z | Recovery (%) | Rec.RSD (%) | R2 | LOD (µg/mL) | LOQ (µg/mL) |
---|---|---|---|---|---|---|---|---|
1 | 3,4,5-Trihydroxybenzoic acid | 0.475 | 400.1022 | 90.28 ± 2.24 | 1.76 | 0.9967 | 0.07 | 0.18 |
2 | trans-3,4-Dihydroxycinnamic acid | 0.850 | 455.1171 | 88.27 ± 4.37 | 3.42 | 0.9996 | 0.11 | 0.35 |
3 | 4-Hydroxy-3-methoxybenzoic acid | 1.18 | 388.2636 | 90.51 ± 2.10 | 1.63 | 0.9985 | 0.06 | 0.13 |
4 | 3,5-Dimethoxy-4-hydroxybenzoic acid | 1.75 | 392.2331 | 90.38 ± 2.16 | 1.69 | 0.9967 | 0.06 | 0.16 |
5 | trans-4-Hydroxycinnamic acid | 1.9 | 371.1338 | 90.53 ± 2.03 | 1.58 | 0.9988 | 0.06 | 0.13 |
6 | p-Coumaroyl-O-feruloylquinic acid I | 2.02 | 266.2013 | 90.99 ± 0.36 | 0.27 | 0.9978 | 0.005 | 0.01 |
7 | 1,4,5-Trihydroxycyclohexanecarboxylic acid 3-(3,4-dihydroxycinnamate) | 2.75 | 481.1711 | 85.18 ± 6.27 | 4.92 | 0.9994 | 0.15 | 0.51 |
8 | (+)-Catechin | 2.83 | 461.1035 | 87.32 ± 4.90 | 3.85 | 0.9991 | 0.12 | 0.42 |
9 | (−)-Epigallocatechin | 2.93 | 423.1521 | 89.39 ± 3.33 | 2.61 | 0.9967 | 0.08 | 0.27 |
10 | p-Coumaroyl-O-feruloylquinic acid II | 3.04 | 362.2082 | 90.70 ± 1.49 | 1.17 | 0.9980 | 0.05 | 0.11 |
11 | trans-4-Hydroxy-3-methoxycinnamic acid | 3.62 | 298.1291 | 90.83 ± 1.30 | 1.00 | 0.9985 | 0.03 | 0.07 |
12 | trans-4-Hydroxy-3-methoxycinnamic acid | 4.33 | 466.1588 | 85.96 ± 5.88 | 4.61 | 0.9964 | 0.13 | 0.48 |
13 | p-Coumaroyl-O-feruloylquinic acid III | 4.52 | 403.1022 | 90.04 ± 2.67 | 2.09 | 0.9985 | 0.07 | 0.20 |
14 | 4′,5,7-Trihydroxyflavone | 5.36 | 321.3371 | 90.77 ± 1.41 | 1.09 | 0.9980 | 0.04 | 0.09 |
15 | p-Coumaroyl-O-feruloylquinic acid IV | 5.92 | 286.3122 | 90.90 ± 0.88 | 0.68 | 0.9966 | 0.01 | 0.06 |
16 | 7-neohesperidoside | 6.65 | 448.1822 | 88.53 ± 3.94 | 3.11 | 0.9973 | 0.10 | 0.35 |
17 | 2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one | 7.97 | 488.1088 | 84.95 ± 6.52 | 5.11 | 0.9973 | 0.15 | 0.52 |
18 | 3,4′,5-Trihydroxy-trans-stilbene | 8.5 | 411.2633 | 89.74 ± 3.20 | 2.49 | 0.9988 | 0.08 | 0.22 |
19 | p-Coumaroyl-O-feruloylquinic acid V | 8.84 | 273.1023 | 90.95 ± 0.63 | 0.49 | 0.9985 | 0.01 | 0.04 |
Treatments | Inhibition Zone (mm) | ||||
---|---|---|---|---|---|
E. coli | S. aureus | L. monocytogenes | S. typhimurium | E. faecalis | |
Added + C. scolymus (5%) | 19.74 ± 0.08 cB | 19.75 ± 1.09 cC | 17.32 ± 0.83 dB | 29.33 ± 1.13 aB | 25.20 ± 0.95 bB |
Added + C. scolymus (10%) | 20.07 ± 0.66 cB | 21.10 ± 0.92 cB | 18.05 ± 0.45 dB | 30.95 ± 0.88 aB | 25.37 ± 0.53 bB |
Control(+) | 29.00 ± 1.41 bA | 30.00 ± 0.46 bA | 27.00 ± 0.95 cA | 32.00 ± 0.62 aA | 31.50 ± 1.15 aA |
Control(−) | 0 | 0 | 0 | 0 | 0 |
Added-Extract | Foodstuffs | Storage Period | Quality Measurements | Results | Reference |
---|---|---|---|---|---|
Artichoke (C. scolymus) powder extract | Minced Meat on the During Frozen Storage | 10 days |
| A potential to improve the meat quality | In this study |
Artichoke (C. scolymus) leaf powder | Meat Quality of Japanese Quail | 21 days |
| A potential to improve the oxidative stability and meat quality | [39] |
Artichoke (C. scolymus) leaf powder | Frozen Meat Quality of Japanese Quail | 21 days |
| A potential to improve the oxidative stability and meat quality | [40] |
Artichoke (C. scolymus) extract | Chicken thigh meat | 35 days |
| Decreases GPx and CAT activities in Chicken meat | [33] |
Artichoke (C. scolymus) byproducts extracts | Raw beef patties during refrigerated storage | 7 days |
| As natural antioxidant in meat products | [23] |
Storage Period | Storage Period | L* | a* | b* |
---|---|---|---|---|
Control | Day 0 | 35.62 ± 0.32 aB | 14.67 ± 0.48 bA | 15.03 ± 0.57 bA |
Added + C. scolymus | 36.84 ± 0.51 aA | 15.12 ± 0.37 bA | 15.92 ± 0.63 bA | |
Control | Day 3 | 35.74 ± 0.43 aB | 12.28 ± 0.51 bA | 14.22 ± 0.39 bA |
Added + C. scolymus | 36.21 ± 0.31 aA | 12.88 ± 0.31 bA | 14.20 ± 0.46 bA | |
Control | Day 6 | 37.13 ± 0.46 aA | 10.67 ± 0.54 bB | 13.44 ± 0.63 bB |
Added + C. scolymus | 35.24 ± 0.36 aB | 10.75 ± 0.49 bB | 12.88 ± 0.38 bB | |
Control | Day 10 | 38.56 ± 0.34 aA | 9.93 ± 0.48 bB | 12.82 ± 0.51 bB |
Added + C. scolymus | 34.88 ± 0.38 aB | 10.13 ± 0.56 bB | 12.11 ± 0.34 bB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demir, T.; Ağaoğlu, S. Antioxidant, Antimicrobial and Metmyoglobin Reducing Activity of Artichoke (Cynara scolymus) Powder Extract-Added Minced Meat during Frozen Storage. Molecules 2021, 26, 5494. https://doi.org/10.3390/molecules26185494
Demir T, Ağaoğlu S. Antioxidant, Antimicrobial and Metmyoglobin Reducing Activity of Artichoke (Cynara scolymus) Powder Extract-Added Minced Meat during Frozen Storage. Molecules. 2021; 26(18):5494. https://doi.org/10.3390/molecules26185494
Chicago/Turabian StyleDemir, Tuğba, and Sema Ağaoğlu. 2021. "Antioxidant, Antimicrobial and Metmyoglobin Reducing Activity of Artichoke (Cynara scolymus) Powder Extract-Added Minced Meat during Frozen Storage" Molecules 26, no. 18: 5494. https://doi.org/10.3390/molecules26185494
APA StyleDemir, T., & Ağaoğlu, S. (2021). Antioxidant, Antimicrobial and Metmyoglobin Reducing Activity of Artichoke (Cynara scolymus) Powder Extract-Added Minced Meat during Frozen Storage. Molecules, 26(18), 5494. https://doi.org/10.3390/molecules26185494