Breath Biomarkers in Diagnostic Applications
Abstract
:1. Introduction
2. Approved and/or Established Breath-Based Tests
3. Tests Targeting Endogenous Compounds
3.1. Capnography
3.2. Nitric Oxide Breath Test for Asthma
3.3. Exhaled Carbon Monoxide in Neonatal Jaundice
3.4. Heartsbreath Test in Cardiac Transplant Rejection
4. Tests Exploiting Exogenous Compounds
4.1. Breath Alcohol Testing in Law Enforcement
4.2. Hydrogen Breath Test in Hypolactasia
4.3. 13C-Breath Tests in Clinical Applications
4.3.1. 13C-Urea Breath Test for Diagnosis of Helicobacter Pylori Infection
4.3.2. Gastric Emptying Breath Test for Gastroparesis
4.3.3. Maximum Liver Function Capacity Breath Test
5. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Snowden, S.; Dahlén, S.E.; Wheelock, C.E. Application of metabolomics approaches to the study of respiratory diseases. Bioanalysis 2012, 4, 2265–2290. [Google Scholar] [CrossRef] [Green Version]
- Dunn, W.B.; Ellis, D.I. Metabolomics: Current analytical platforms and methodologies. Trends Anal. Chem. 2005, 24, 285–294. [Google Scholar]
- Pleil, J.D.; Beauchamp, J.D.; Dweik, R.A.; Risby, T.H. Breath research in times of a global pandemic and beyond: The game changer. J. Breath Res. 2020, 14, 040202. [Google Scholar] [CrossRef]
- Beale, D.J.; Jones, O.A.; Karpe, A.V.; Dayalan, S.; Oh, D.Y.; Kouremenos, K.A.; Ahmed, W.; Palombo, E.A. A review of analytical techniques and their application in disease diagnosis in breathomics and salivaomics research. Int. J. Mol. Sci. 2016, 18, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pleil, J.D. Breath biomarkers in toxicology. Arch. Toxicol. 2016, 90, 2669–2682. [Google Scholar] [CrossRef] [PubMed]
- Pleil, J.D.; Lindstrom, A.B. Exhaled human breath measurement method for assessing exposure to halogenated volatile organic compounds. Clin. Chem. 1997, 43, 723–730. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, J.; Davis, C.; Pleil, J. Breathborne Biomarkers and the Human Volatilome, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- de Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A review of the volatiles from the healthy human body. J. Breath Res. 2014, 8, 014001. [Google Scholar] [CrossRef]
- Lawal, O.; Ahmed, W.M.; Nijsen, T.M.E.; Goodacre, R.; Fowler, S.J. Exhaled breath analysis: A review of ‘breath-taking’ methods for off-line analysis. Metabolomics 2017, 13, 1–16. [Google Scholar] [CrossRef]
- Rattray, N.J.W.; Hamrang, Z.; Trivedi, D.K.; Goodacre, R.; Fowler, S.J. Taking your breath away: Metabolomics breathes life in to personalized medicine. Trends Biotechnol. 2014, 32, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, J.D.; Pleil, J.D. Simply breath-taking? Developing a strategy for consistent breath sampling. J. Breath Res. 2013, 7, 042001. [Google Scholar] [CrossRef] [Green Version]
- Herbig, J.; Beauchamp, J. Towards standardization in the analysis of breath gas volatiles. J. Breath Res. 2014, 8, 037101. [Google Scholar] [CrossRef] [PubMed]
- Risby, T.H. Critical issues for breath analysis. J. Breath Res. 2008, 2, 030302. [Google Scholar] [CrossRef]
- Grob, N.M.; Dweik, R.A. Exhaled nitric oxide in asthma: Progress since the introduction of standardized methodology. J. Breath Res. 2008, 2, 037002. [Google Scholar] [CrossRef]
- Pleil, J.D.; Stiegel, M.A.; Beauchamp, J.D. Chapter 1—Breath biomarkers and the exposome. In Breathborne Biomarkers and the Human Volatilome, 2nd ed.; Beauchamp, J., Davis, C., Pleil, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–21. [Google Scholar]
- Lourenço, C.; Turner, C. Breath analysis in disease diagnosis: Methodological considerations and applications. Metabolites 2014, 4, 465–498. [Google Scholar] [CrossRef]
- Davis, M.D.; Fowler, S.J.; Montpetit, A.J. Exhaled breath testing—a tool for the clinician and researcher. Paediatr. Respir. Rev. 2019, 29, 37–41. [Google Scholar] [CrossRef]
- Wallace, M.A.G.; Pleil, J.D. Evolution of clinical and environmental health applications of exhaled breath research: Review of methods and instrumentation for gas-phase, condensate, and aerosols. Anal. Chim. Acta 2018, 1024, 18–38. [Google Scholar] [CrossRef]
- Basanta, M.; Ibrahim, B.; Dockry, R.; Douce, D.; Morris, M.; Singh, D.; Woodcock, A.; Fowler, S.J. Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: A cross-sectional study. Respir. Res. 2012, 13, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pleil, J.D.; Stiegel, M.A.; Risby, T.H. Clinical breath analysis: Discriminating between human endogenous compounds and exogenous (environmental) chemical confounders. J. Breath Res. 2013, 7, 017107. [Google Scholar] [CrossRef] [Green Version]
- Basanta, M.; Jarvis, R.M.; Xu, Y.; Blackburn, G.; Tal-Singer, R.; Woodcock, A.; Singh, D.; Goodacre, R.; Thomas, C.P.; Fowler, S.J. Non-invasive metabolomic analysis of breath using differential mobility spectrometry in patients with chronic obstructive pulmonary disease and healthy smokers. Analyst 2010, 135, 315–320. [Google Scholar] [CrossRef]
- Ibrahim, B.; Basanta, M.; Cadden, P.; Singh, D.; Douce, D.; Woodcock, A.; Fowler, S.J. Non-invasive phenotyping using exhaled volatile organic compounds in asthma. Thorax 2011, 66, 804–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruderer, T.; Gaisl, T.; Gaugg, M.T.; Nowak, N.; Streckenbach, B.; Müller, S.; Moeller, A.; Kohler, M.; Zenobi, R. On-Line Analysis of Exhaled Breath: Focus Review. Chem. Rev. 2019, 119, 10803–10828. [Google Scholar] [CrossRef] [PubMed]
- Boots, A.W.; Bos, L.D.; van der Schee, M.P.; van Schooten, F.J.; Sterk, P.J. Exhaled molecular fingerprinting in diagnosis and monitoring: Validating volatile promises. Trends Mol. Med. 2015, 21, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Bos, L.D.J.; Sterk, P.J.; Schultz, M.J. Volatile metabolites of pathogens: A systematic review. PLoS Pathog. 2013, 9, e1003311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, S.; Dickschat, J.S. Bacterial volatiles: The smell of small organisms. Nat. Prod. Rep. 2007, 24, 814–842. [Google Scholar] [CrossRef]
- Goodacre, R. Metabolomics of a superorganism. J. Nutr. 2007, 137, 259S–266S. [Google Scholar] [CrossRef] [Green Version]
- Fowler, S.J.; Basanta-Sanchez, M.; Xu, Y.; Goodacre, R.; Dark, P.M. Surveillance for lower airway pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath: A case-control study. Thorax 2015, 70, 320–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paschke, K.M.; Mashir, A.; Dweik, R.A. Clinical applications of breath testing. F1000 Med. Rep. 2010, 2. [Google Scholar] [CrossRef]
- O’Hara, M.E.; Clutton-Brock, T.H.; Green, S.; Mayhew, C.A. Endogenous volatile organic compounds in breath and blood of healthy volunteers: Examining breath analysis as a surrogate for blood measurements. J. Breath Res. 2009, 3, 027005. [Google Scholar] [CrossRef]
- Siobal, M.S. Monitoring exhaled carbon dioxide. Respir. Care 2016, 61, 1397–1416. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M. Breath tests in medicine. Sci. Am. 1992, 267, 74–79. [Google Scholar] [CrossRef]
- Gest, H. Bicentenary homage to Dr Jan Ingen-Housz, MD (1730–1799), pioneer of photosynthesis research. Photosynth. Res. 2000, 63, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, M.B. Infrared measurement of carbon dioxide in the human breath: “Breathe-through” devices from Tyndall to the present day. Anesth. Analg. 2008, 107, 890–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, J.M.; Stryer, L.; Tymoczko, J.L. Stryer Biochemie; Springer Spektrum: Berlin, Germany, 2018. [Google Scholar]
- Whitaker, D.K. Time for capnography-everywhere. Anaesthesia 2011, 66, 544–549. [Google Scholar] [CrossRef]
- Checketts, M.R.; Alladi, R.; Ferguson, K.; Gemmell, L.; Handy, J.M.; Klein, A.A.; Love, N.J.; Misra, U.; Morris, C.; Nathanson, M.H.; et al. Recommendations for standards of monitoring during anaesthesia and recovery 2015: Association of Anaesthetists of Great Britain and Ireland. Anaesthesia 2016, 71, 85–93. [Google Scholar] [CrossRef]
- Nassar, B.S.; Schmidt, G.A. Capnography during critical illness. Chest 2016, 149, 576–585. [Google Scholar] [CrossRef]
- Bhende, M. End-tidal carbon dioxide monitoring in pediatrics-clinical applications. J. Postgrad. Med. 2001, 47, 215. [Google Scholar]
- Varon, A.J.; Morrina, J.; Civetta, J.M. Clinical utility of a colorimetric end-tidal CO2 detector in cardiopulmonary resuscitation and emergency intubation. J. Clin. Monit. 1991, 7, 289–293. [Google Scholar] [CrossRef]
- MacLeod, B.A.; Heller, M.B.; Gerard, J.; Yealy, D.M.; Menegazzi, J.J. Verification of endotracheal tube placement with colorimetric end-tidal CO2 detection. Ann. Emerg. Med. 1991, 20, 267–270. [Google Scholar] [CrossRef]
- Kim, K.W.; Choi, H.R.; Bang, S.R.; Lee, J.w. Comparison of end-tidal CO2 measured by transportable capnometer (EMMA™ capnograph) and arterial pCO2 in general anesthesia. J. Clin. Monit. Comput. 2016, 30, 737–741. [Google Scholar] [CrossRef]
- Kameyama, M.; Uehara, K.; Takatori, M.; Tada, K. Clinical usefulness of EMMA for monitoring end-tidal carbon dioxide. Masui 2013, 62, 477–480. [Google Scholar]
- Langhan, M.L.; Chen, L. Current utilization of continuous end-tidal carbon dioxide monitoring in pediatric emergency departments. Pediatr. Emerg. Care 2008, 24, 211–213. [Google Scholar] [CrossRef] [Green Version]
- Bhavani-Shankar, K.; Philip, J.H. Defining Segments and Phases of a Time Capnogram. Anesth. Analg. 2000, 91, 973–977. [Google Scholar] [CrossRef]
- Langhan, M.L.; Kurtz, J.C.; Schaeffer, P.; Asnes, A.G.; Riera, A. Experiences with capnography in acute care settings: A mixed-methods analysis of clinical staff. J. Crit. Care 2014, 29, 1035–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erasmus, P.D. The use of end-tidal carbon dioxide monitoring to confirm endotracheal tube placement in adult and paediatric intensive care units in Australia and New Zealand. Anaesth. Intensive Care 2004, 32, 672–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deiorio, N. Continuous end-tidal carbon dioxide monitoring for confirmation of endotracheal tube placement is neither widely available nor consistently applied by emergency physicians. Emerg. Med. J. 2005, 22, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Neumar, R.W.; Otto, C.W.; Link, M.S.; Kronick, S.L.; Shuster, M.; Callaway, C.W.; Kudenchuk, P.J.; Ornato, J.P.; McNally, B.; Silvers, S.M. Part 8: Adult advanced cardiovascular life support: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2010, 122, 729–767. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, J.D.; Miekisch, W. Chapter 2—Breath sampling and standardization. In Breathborne Biomarkers and the Human Volatilome, 2nd ed.; Beauchamp, J., Davis, C., Pleil, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 23–41. [Google Scholar]
- Högman, M.; Lehtimäki, L. Chapter 4—Exhaled nitric oxide physiology and modeling. In Breathborne Biomarkers and the Human Volatilome, 2nd ed.; Beauchamp, J., Davis, C., Pleil, J., Eds.; Elsevier: Boston, MA, USA, 2020; pp. 63–77. [Google Scholar]
- Hogman, M.; Stromberg, S.; Schedin, U.; Frostell, C.; Hedenstierna, G.; Gustafsson, L. Nitric oxide from the human respiratory tract efficiently quantified by standardized single breath measurements. Acta Physiol. Scand. 1997, 159, 345–346. [Google Scholar] [CrossRef]
- Silkoff, P.E.; McClean, P.A.; Slutsky, A.S.; Furlott, H.G.; Hoffstein, E.; Wakita, S.; Chapman, K.R.; Szalai, J.P.; Zamel, N. Marked flow-dependence of exhaled nitric oxide using a new technique to exclude nasal nitric oxide. Am. J. Respir. Crit. Care Med. 1997, 155, 260–267. [Google Scholar] [CrossRef]
- Grob, N.M.; Dweik, R.A. Exhaled nitric oxide in asthma: From diagnosis, to monitoring, to screening: Are we there yet? Chest 2008, 133, 837–839. [Google Scholar] [CrossRef]
- West, J.B. Joseph Priestley, oxygen, and the enlightenment. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 306, L111–L119. [Google Scholar] [CrossRef] [Green Version]
- Ignarro, L.J.; Buga, G.M.; Wood, K.S.; Byrns, R.E.; Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 1987, 84, 9265–9269. [Google Scholar] [CrossRef] [Green Version]
- Furchgott, R.F.; Zawadzki, J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980, 288, 373–376. [Google Scholar] [CrossRef]
- Arnold, W.P.; Mittal, C.K.; Katsuki, S.; Murad, F. Nitric oxide activates guanylate cyclase and increases guanosine 3′: 5′-Cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. USA 1977, 74, 3203–3207. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, L.E.; Leone, A.M.; Persson, M.G.; Wiklund, N.P.; Moncada, S. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem. Biophys. Res. Commun. 1991, 181, 852–857. [Google Scholar] [CrossRef]
- Högman, M.; Risby, T. The unique contribution of Professor Lars E Gustafsson to the field of breath research. J. Breath Res. 2017, 11, 040201. [Google Scholar] [CrossRef]
- Alving, K.; Weitzberg, E.; Lundberg, J.M. Increased amount of nitric oxide in exhaled air of asthmatics. Eur. Respir. J. 1993, 6, 1368–1370. [Google Scholar] [PubMed]
- Kharitonov, S.A.; Yates, D.; Robbins, R.A.; Barnes, P.J.; Logan-Sinclair, R.; Shinebourne, E.A. Increased nitric oxide in exhaled air of asthmatic patients. Lancet 1994, 343, 133–135. [Google Scholar] [CrossRef]
- Persson, M.G.; Gustafsson, L.E.; Zetterström, O.; Agrenius, V.; Ihre, E. Single-breath nitric oxide measurements in asthmatic patients and smokers. Lancet 1994, 343, 146–147. [Google Scholar] [CrossRef]
- Lundberg, J.; Farkas-Szallasi, T.; Weitzberg, E.; Rinder, J.; Lidholm, J.; Änggåard, A.; Hökfelt, T.; Lundberg, J.; Alving, K. High nitric oxide production in human paranasal sinuses. Nat. Med. 1995, 1, 370–373. [Google Scholar] [CrossRef]
- Pijnenburg, M.W.H.; De Jongste, J.C. Exhaled nitric oxide in childhood asthma: A review. Clin. Exp. Allergy 2008, 38, 246–259. [Google Scholar] [CrossRef]
- Moncada, S.; Higgs, A. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 1993, 329, 2002–2012. [Google Scholar]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar] [CrossRef] [Green Version]
- Hamad, A.M.; Clayton, A.; Islam, B.; Knox, A.J. Guanylyl cyclases, nitric oxide, natriuretic peptides, and airway smooth muscle function. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 285, 973–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malinovschi, A.; Michils, A.; Högman, M. Chapter 5—Exhaled nitric oxide in clinical practice. In Breathborne Biomarkers and the Human Volatilome, 2nd ed.; Beauchamp, J., Davis, C., Pleil, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 81–92. [Google Scholar]
- Aktan, F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004, 75, 639–653. [Google Scholar] [CrossRef] [PubMed]
- Chibana, K.; Trudeau, J.B.; Mustovitch, A.T.; Hu, H.; Zhao, J.; Balzar, S.; Chu, H.W.; Wenzel, S.E. IL-13 induced increases in nitrite levels are primarily driven by increases in inducible nitric oxide synthase as compared with effects on arginases in human primary bronchial epithelial cells. Clin. Exp. Allergy 2008, 38, 936–946. [Google Scholar] [CrossRef]
- Nathan, C.; Xie, Q.W. Nitric oxide synthases: Roles, tolls, and controls. Cell 1994, 78, 915–918. [Google Scholar] [CrossRef]
- Menzies-Gow, A.; Mansur, A.H.; Brightling, C.E. Clinical utility of fractional exhaled nitric oxide in severe asthma management. Eur. Respir. J. 2020, 55. [Google Scholar] [CrossRef]
- Ricciardolo, F.L.; Silkoff, P.E. Perspectives on exhaled nitric oxide. J. Breath Res. 2017, 11, 047104. [Google Scholar] [CrossRef] [Green Version]
- Robbins, R.A.; Millatmal, T.; Lassi, K.; Rennard, S.; Daughton, D. Smoking cessation is associated with an increase in exhaled nitric oxide. Chest 1997, 112, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Kissoon, N.; Duckworth, L.J.; Blake, K.V.; Murphy, S.P.; Taylor, C.L.; DeNicola, L.R.; Silkoff, P.E. Exhaled nitric oxide concentrations: Online versus offline values in healthy children. Pediatr. Pulmonol. 2002, 33, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Bruce, C.; Yates, D.H.; Thomas, P.S. Caffeine decreases exhaled nitric oxide. Thorax 2002, 57, 361–363. [Google Scholar] [CrossRef] [Green Version]
- Högman, M.; Drca, N.; Ehrstedt, C.; Meriläinen, P. Exhaled nitric oxide partitioned into alveolar, lower airways and nasal contributions. Respir. Med. 2000, 94, 985–991. [Google Scholar] [CrossRef] [Green Version]
- Högman, M.; Thornadtsson, A.; Hedenstierna, G.; Meriläinen, P. A practical approach to the theoretical models to calculate NO parameters of the respiratory system. J. Breath Res. 2014, 8, 016002. [Google Scholar] [CrossRef] [PubMed]
- Kharitonov, S.; Alving, K.; Barnes, P. Exhaled and nasal nitric oxide measurements: Recommendations. The European Respiratory Society task force. Eur. Respir. J. 1997, 10, 1683–1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Thoracic Society. Recommendations for standardized procedures for the on-line and off-line measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors. Am. J. Respir. Crit. Care Med. 1999, 160, 2104–2117. [Google Scholar]
- American Thoracic Society/European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. Am. J. Respir. Crit. Care Med. 2005, 171, 912–930. [Google Scholar] [CrossRef]
- Modak, A.S. Breath biomarkers for personalized medicine. Per. Med. 2010, 7, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Silkoff, P.E.; Stevens, A.; Pak, J.; Bucher-Bartelson, B.; Martin, R.J. A Method for the Standardized Offline Collection of Exhaled Nitric Oxide. Chest 1999, 116, 754–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Heijden, H.H.A.C.M.; Brouwer, M.L.; Hoekstra, F.; Van Der Pol, P.; Merkus, P.J.F.M. Reference values of exhaled nitric oxide in healthy children 1–5 years using off-line tidal breathing. Pediatr. Pulmonol. 2014, 49, 291–295. [Google Scholar] [CrossRef]
- Zhang, Y.; Eckel, S.; Berhane, K.; Garcia, E.; Muchmore, P.; Molshatzki, N.B.A.; Rappaport, E.; Linn, W.S.; Habre, R.; Gilliland, F. Long-term Exposures to Air Pollutants Affect FeNO in Children: A Longitudinal Study. MedRxiv 2021. [Google Scholar] [CrossRef]
- Buchvald, F.; Baraldi, E.; Carraro, S.; Gaston, B.; De Jongste, J.; Pijnenburg, M.W.; Silkoff, P.E.; Bisgaard, H. Measurements of exhaled nitric oxide in healthy subjects age 4 to 17 years. J. Allergy Clin. Immunol. 2005, 115, 1130–1136. [Google Scholar] [CrossRef]
- Gehring, U.; Oldenwening, M.; Brunekreef, B.; Wieringa, M.H.; Kerkhof, M.; Smit, H.A.; Van Der Ent, C.K.; De Jongste, J.C. The impact of ambient NO on online measurements of exhaled and nasal NO: The PIAMA study. Pediatric Allergy Immunol. 2009, 20, 665–672. [Google Scholar] [CrossRef]
- Ma’pol, A.; Hashim, J.H.; Norbäck, D.; Weislander, G.; Hashim, Z.; Isa, Z.M. FeNO level and allergy status among school children in Terengganu, Malaysia. J. Asthma 2020, 57, 842–849. [Google Scholar] [CrossRef]
- Linn, W.S.; Berhane, K.T.; Rappaport, E.B.; Bastain, T.M.; Avol, E.L.; Gilliland, F.D. Relationships of online exhaled, offline exhaled, and ambient nitric oxide in an epidemiologic survey of schoolchildren. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 674–681. [Google Scholar] [CrossRef] [Green Version]
- Silkoff, P.E.; Carlson, M.; Bourke, T.; Katial, R.; Ögren, E.; Szefler, S.J. The Aerocrine exhaled nitric oxide monitoring system NIOX is cleared by the US Food and Drug Administration for monitoring therapy in asthma. J. Allergy Clin. Immunol. 2004, 114, 1241–1256. [Google Scholar] [CrossRef] [PubMed]
- Horváth, I.; Barnes, P.J.; Loukides, S.; Sterk, P.J.; Högman, M.; Olin, A.C.; Amann, A.; Antus, B.; Baraldi, E.; Bikov, A. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 2017, 49, 1600965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tornberg, D.C.; Bjorne, H.; Lundberg, J.O.; Weitzberg, E. Multiple single-breath measurements of nitric oxide in the intubated patient. Am. J. Respir. Crit. Care Med. 2003, 168, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Heffler, E.; Carpagnano, G.E.; Favero, E.; Guida, G.; Maniscalco, M.; Motta, A.; Paoletti, G.; Rolla, G.; Baraldi, E.; Pezzella, V. Fractional Exhaled Nitric Oxide (FENO) in the management of asthma: A position paper of the Italian Respiratory Society (SIP/IRS) and Italian Society of Allergy, Asthma and Clinical Immunology (SIAAIC). Multidiscip. Respir. Med. 2020, 15, 36. [Google Scholar] [CrossRef] [Green Version]
- Rupani, H.; Chauhan, A.J. Measurement of FeNO in asthma: What the hospital doctor needs to know. Br. J. Hosp. Med. 2019, 80, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Spahn, J.D.; Malka, J.; Szefler, S.J. Current application of exhaled nitric oxide in clinical practice. J. Allergy Clin. Immunol. 2016, 138, 1296–1298. [Google Scholar] [CrossRef] [Green Version]
- Price, D.B.; Buhl, R.; Chan, A.; Freeman, D.; Gardener, E.; Godley, C.; Gruffydd-Jones, K.; McGarvey, L.; Ohta, K.; Ryan, D. Fractional exhaled nitric oxide as a predictor of response to inhaled corticosteroids in patients with non-specific respiratory symptoms and insignificant bronchodilator reversibility: A randomised controlled trial. Lancet Respir. Med. 2018, 6, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Bjermer, L.; Alving, K.; Diamant, Z.; Magnussen, H.; Pavord, I.; Piacentini, G.; Price, D.; Roche, N.; Sastre, J.; Thomas, M. Current evidence and future research needs for FeNO measurement in respiratory diseases. Respir. Med. 2014, 108, 830–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaney, L.G.; Busby, J.; Bradding, P.; Chaudhuri, R.; Mansur, A.H.; Niven, R.; Pavord, I.D.; Lindsay, J.T.; Costello, R.W. Remotely monitored therapy and nitric oxide suppression identifies nonadherence in severe asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 454–464. [Google Scholar] [CrossRef] [Green Version]
- Price, D.; Ryan, D.; Burden, A.; Von Ziegenweidt, J.; Gould, S.; Freeman, D.; Gruffydd-Jones, K.; Copland, A.; Godley, C.; Chisholm, A. Using fractional exhaled nitric oxide (FeNO) to diagnose steroid-responsive disease and guide asthma management in routine care. Clin. Transl. Allergy 2013, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gréhant, N. Les Gaz du Sang: Applications à L’hygiène Expérimentale; Forgotten Books: Paris, French, 1894. (In French) [Google Scholar]
- Lepine, R.; Boulud, J. Sur l’existence d’oxyde de carbone dans le sang des anemiques. CR Soc. Biol. 1905, 57, 55. (In French) [Google Scholar]
- Sjöstrand, T. Endogenous formation of carbon monoxide in man under normal and pathological conditions. Scand. J. Clin. Lab. Investig. 1949, 1, 201–214. [Google Scholar] [CrossRef]
- Tenhunen, R.; Marver, H.S.; Schmid, R. Microsomal heme oxygenase characterization of the enzyme. J. Biol. Chem. 1969, 244, 6388–6394. [Google Scholar] [CrossRef]
- Berk, P.D.; Rodkey, F.L.; Blaschke, T.F.; Collison, H.A.; Waggoner, J.G. Comparison of plasma bilirubin turnover and carbon monoxide production in man. J. Lab. Clin. Med. 1974, 83, 29–37. [Google Scholar] [PubMed]
- Landaw, S.A.; Callahan, E.W.; Schmid, R. Catabolism of heme in vivo: Comparison of the simultaneous production of bilirubin and carbon monoxide. J. Clin. Investig. 1970, 49, 914–925. [Google Scholar] [CrossRef] [Green Version]
- Ryter, S.W.; Choi, A.M.K. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl. Res. 2016, 167, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Ryter, S.W. Chapter 6—Exhaled carbon monoxide. In Breathborne Biomarkers and the Human Volatilome, 2nd ed.; Beauchamp, J., Davis, C., Pleil, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 93–107. [Google Scholar]
- Okuyama, H.; Yonetani, M.; Uetani, Y.; Nakamura, H. End-tidal carbon monoxide is predictive for neonatal non-hemolytic hyperbilirubinemia. Pediatr. Int. 2001, 43, 329–333. [Google Scholar] [CrossRef]
- Cohen, R.S.; Wong, R.J.; Stevenson, D.K. Understanding neonatal jaundice: A perspective on causation. Pediatr. Neonatol. 2010, 51, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, D.K.; Vreman, H.J. Carbon monoxide and bilirubin production in neonates. Pediatrics 1997, 100, 252–259. [Google Scholar] [CrossRef]
- Johnson, L.; Bhutani, V.K. The clinical syndrome of bilirubin-induced neurologic dysfunction. Semin. Perinatol. 2011, 35, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Tidmarsh, G.F.; Wong, R.J.; Stevenson, D.K. End-tidal carbon monoxide and hemolysis. J. Perinatol. 2014, 34, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Watchko, J.F.; Tiribelli, C. Bilirubin-induced neurologic damage—Mechanisms and management approaches. N. Engl. J. Med. 2013, 369, 2021–2030. [Google Scholar] [CrossRef]
- Kaplan, M.; Bromiker, R.; Hammerman, C. Hyperbilirubinemia, hemolysis, and increased bilirubin neurotoxicity. Semin. Perinatol. 2014, 38, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.S.; Ostrander, C.R.; Cowan, B.E.; Stevens, G.B.; Hopper, A.O.; Stevenson, D.K. Pulmonary excretion rates of carbon monoxide using a modified technique: Differences between premature and full-term infants. Neonatology 1982, 41, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.W.; Hopper, A.O.; Shahin, S.M.; Cohen, R.S.; Ostrander, C.R.; Ariagno, R.L.; Stevenson, D.K. Neonatal bilirubin production estimated from “end-tidal” carbon monoxide concentration. J. Pediatr. Gastroenterol. Nutr. 1984, 3, 77–80. [Google Scholar] [CrossRef]
- Vreman, H.J.; Mahoney, J.J.; Stevenson, D.K. Carbon monoxide and carboxyhemoglobin. Adv. Pediatr. 1995, 42, 303–334. [Google Scholar]
- Bhutani, V.K.; Maisels, M.J.; Schutzman, D.L.; Castillo Cuadrado, M.E.; Aby, J.L.; Bogen, D.L.; Christensen, R.D.; Watchko, J.F.; Wong, R.J.; Stevenson, D.K. Identification of risk for neonatal haemolysis. Acta Paediatr. 2018, 107, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, V.K.; Srinivas, S.; Castillo Cuadrado, M.E.; Aby, J.L.; Wong, R.J.; Stevenson, D.K. Identification of neonatal haemolysis: An approach to predischarge management of neonatal hyperbilirubinemia. Acta Paediatr. 2016, 105, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Castillo Cuadrado, M.E.; Bhutani, V.K.; Aby, J.L.; Vreman, H.J.; Wong, R.J.; Stevenson, D.K. Evaluation of a new end-tidal carbon monoxide monitor from the bench to the bedside. Acta Paediatr. 2015, 104, 279–282. [Google Scholar] [CrossRef]
- Christensen, R.D.; Malleske, D.T.; Lambert, D.K.; Baer, V.L.; Prchal, J.T.; Denson, L.E.; Gerday, E.; Lewis, K.A.W.; Shepherd, J.G. Measuring end-tidal carbon monoxide of jaundiced neonates in the birth hospital to identify those with hemolysis. Neonatology 2016, 109, 1–5. [Google Scholar] [CrossRef]
- Elsaie, A.L.; Taleb, M.; Nicosia, A.; Zangaladze, A.; Pease, M.E.; Newton, K.; Schutzman, D.L. Comparison of end-tidal carbon monoxide measurements with direct antiglobulin tests in the management of neonatal hyperbilirubinemia. J. Perinatol. 2020, 1–5. [Google Scholar] [CrossRef]
- Bhatia, A.; Chua, M.C.; dela Puerta, R.; Rajadurai, V.S. Noninvasive Detection of Hemolysis with ETCOc Measurement in Neonates at Risk for Significant Hyperbilirubinemia. Neonatology 2020, 117, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Conrad, N.; Judge, A.; Tran, J.; Mohseni, H.; Hedgecott, D.; Crespillo, A.P.; Allison, M.; Hemingway, H.; Cleland, J.G.; McMurray, J.J. Temporal trends and patterns in heart failure incidence: A population-based study of 4 million individuals. Lancet 2018, 391, 572–580. [Google Scholar] [CrossRef] [Green Version]
- McMinn, J.F.; Lang, N.N.; McPhadden, A.; Payne, J.R.; Petrie, M.C.; Gardner, R.S. Biomarkers of acute rejection following cardiac transplantation. Biomark. Med. 2014, 8, 815–832. [Google Scholar] [CrossRef]
- Cleland, J.G.; van Veldhuisen, D.J.; Ponikowski, P. The year in cardiology 2018: Heart failure. Eur. Heart J. 2019, 40, 651–661. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.; Boehmer, J.P.; Cataneo, R.N.; Cheema, T.; Eisen, H.J.; Fallon, J.T.; Fisher, P.E.; Gass, A.; Greenberg, J.; Kobashigawa, J.; et al. Heart allograft rejection: Detection with breath alkanes in low levels (the HARDBALL study). J. Heart Lung Transplant. 2004, 23, 701–708. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Dipchand, A.; Starling, R.; Anderson, A.; Chan, M.; Desai, S.; Fedson, S.; Fisher, P.; Gonzales-Stawinski, G.; Martinelli, L. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J. Heart Lung Transplant. 2010, 29, 915–956. [Google Scholar] [CrossRef]
- Weber, B.N.; Kobashigawa, J.A.; Givertz, M.M. Evolving areas in heart transplantation. JACC: Heart Fail. 2017, 5, 869–878. [Google Scholar] [CrossRef]
- Khaw, B.A.; Narula, J. Antibody imaging in the evaluation of cardiovascular diseases. J. Nucl. Cardiol. 1994, 1, 457–476. [Google Scholar] [CrossRef]
- Moran, A.M.; Lipshultz, S.E.; Rifai, N.; O’Brien, P.; Mooney, H.; Perry, S.; Perez-Atayde, A.; Lipsitz, S.R.; Colan, S.D. Non-invasive assessment of rejection in pediatric transplant patients: Serologic and echocardiographic prediction of biopsy-proven myocardial rejection. J. Heart Lung Transplant. 2000, 19, 756–764. [Google Scholar] [CrossRef]
- Phillips, M.; Boehmer, J.P.; Cataneo, R.N.; Cheema, T.; Eisen, H.J.; Fallon, J.T.; Fisher, P.E.; Gass, A.; Greenberg, J.; Kobashigawa, J. Prediction of heart transplant rejection with a breath test for markers of oxidative stress. Am. J. Cardiol. 2004, 94, 1593–1594. [Google Scholar] [CrossRef] [PubMed]
- Kneepkens, C.F.; Lepage, G.; Roy, C.C. The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Radic. Biol. Med. 1994, 17, 127–160. [Google Scholar] [CrossRef]
- Phillips, M.; Cataneo, R.N.; Greenberg, J.; Gunawardena, R.; Naidu, A.; Rahbari-Oskoui, F. Effect of age on the breath methylated alkane contour, a display of apparent new markers of oxidative stress. J. Lab. Clin. Med. 2000, 136, 243–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, M. Method for the collection and assay of volatile organic compounds in breath. Anal. Biochem. 1997, 247, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Cargnoni, A.; Ceconi, C.; Bernocchi, P.; Parrinello, G.; Benigno, M.; Boraso, A.; Curello, S.; Ferrari, R. Changes in oxidative stress and cellular redox potential during myocardial storage for transplantation: Experimental studies. J. Heart Lung Transplant. 1999, 18, 478–487. [Google Scholar] [CrossRef]
- Food and Drug Administration, U.S. Humanitarian Device Exemption (HDE) Program. Guidance for Industry and Food and Drug Administration Staff. Available online: https://www.fda.gov/media/74307/download (accessed on 13 July 2021).
- Beauchamp, J. Inhaled today, not gone tomorrow: Pharmacokinetics and environmental exposure of volatiles in exhaled breath. J. Breath Res. 2011, 5, 037103. [Google Scholar] [CrossRef]
- Pleil, J.D.; Stiegel, M.A.; Sobus, J.R. Breath biomarkers in environmental health science: Exploring patterns in the human exposome. J. Breath Res. 2011, 5, 046005. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.; Altorki, N.; Austin, J.H.; Cameron, R.B.; Cataneo, R.N.; Greenberg, J.; Kloss, R.; Maxfield, R.A.; Munawar, M.I.; Pass, H.I. Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark. 2007, 3, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Bikov, A.; Paschalaki, K.; Logan-Sinclair, R.; Horváth, I.; Kharitonov, S.A.; Barnes, P.J.; Usmani, O.S.; Paredi, P. Standardised exhaled breath collection for the measurement of exhaled volatile organic compounds by proton transfer reaction mass spectrometry. BMC Pulm. Med. 2013, 13, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kischkel, S.; Miekisch, W.; Sawacki, A.; Straker, E.; Trefz, P.; Amann, A.; Schubert, J. Breath biomarkers for lung cancer detection and assessment of smoking related effects—Confounding variables, influence of normalization and statistical algorithms. Clin. Chim. Acta 2010, 411, 1637–1644. [Google Scholar] [CrossRef]
- Wilson, A.D. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites 2015, 5, 140–163. [Google Scholar] [CrossRef] [PubMed]
- Gaude, E.; Nakhleh, M.K.; Patassini, S.; Boschmans, J.; Allsworth, M.; Boyle, B.; van der Schee, M.P. Targeted breath analysis: Exogenous volatile organic compounds (EVOC) as metabolic pathway-specific probes. J. Breath Res. 2019, 13, 032001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wigmore, J.G.; Langille, R.M. Six generations of breath alcohol testing instruments: Changes in the detection of breath alcohol since 1930. An historical overview. Can. Soc. Forensic Sci. J. 2009, 42, 276–283. [Google Scholar] [CrossRef]
- Eisenmann, A.; Amann, A.; Said, M.; Datta, B.; Ledochowski, M. Implementation and interpretation of hydrogen breath tests. J. Breath Res. 2008, 2, 046002. [Google Scholar] [CrossRef]
- Savarino, V.; Vigneri, S.; Celle, G. The 13C urea breath test in the diagnosis of Helicobacter pylori infection. Gut 1999, 45, I18–I22. [Google Scholar] [CrossRef]
- Bharucha, A.E.; Camilleri, M.; Veil, E.; Burton, D.; Zinsmeister, A.R. Comprehensive assessment of gastric emptying with a stable isotope breath test. Neurogastroenterol. Motil. 2013, 25, 60–69. [Google Scholar] [CrossRef]
- Jara, M.; Bednarsch, J.; Valle, E.; Lock, J.F.; Malinowski, M.; Schulz, A.; Seehofer, D.; Jung, T.; Stockmann, M. Reliable assessment of liver function using LiMAx. J. Surg. Res. 2015, 193, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Kalant, H. Research on tolerance: What can we learn from history? Alcohol. Clin. Exp. Res. 1998, 22, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Anstie, F.E. Prognosis and treatment of certain acute diseases. Lancet 1867, 28, 385–387. [Google Scholar]
- Jones, A.W. Chapter 29—Breath analysis in law enforcement. In Breathborne Biomarkers and the Human Volatilome, 2nd ed.; Beauchamp, J., Davis, C., Pleil, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 475–492. [Google Scholar]
- Liljestrand, G.; Linde, P.T. Über die Ausscheidung des Alkohols mit der Exspirationsluft. Skand. Arch. Für Physiol. 1930, 60, 273–298. [Google Scholar] [CrossRef]
- Kalant, H. Pharmacokinetics of ethanol: Absorption, distribution, and elimination. In The Pharmacology of Alcohol and Alcohol Dependence; Begleiter, H., Kissin, B., Eds.; Oxford University Press, Inc.: Oxford, NY, USA, 1996; pp. 15–58. [Google Scholar]
- Cowan, J.M.; Burris, J.M.; Hughes, J.R.; Cunningham, M.P. The relationship of normal body temperature, end-expired breath temperature, and BAC/BrAC ratio in 98 physically fit human test subjects. J. Anal. Toxicol. 2010, 34, 238–242. [Google Scholar] [CrossRef]
- Jones, A.W. Variability of the blood:breath alcohol ratio in vivo. J. Stud. Alcohol Drugs 1978, 39, 1931–1939. [Google Scholar] [CrossRef]
- Jones, A.W.; Andersson, L. Comparison of ethanol concentrations in venous blood and end-expired breath during a controlled drinking study. Forensic Sci. Int. 2003, 132, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.D.; Hodgson, B.T. Blood/breath correlations: Intoxilyzer® 5000C, Alcotest® 7110, and Breathalyzer® 900A breath alcohol analyzers. Can. Soc. Forensic Sci. J. 1995, 28, 153–164. [Google Scholar]
- Jurič, A.; Fijačko, A.; Bakulić, L.; Orešić, T.; Gmajnički, I. Evaluation of breath alcohol analysers by comparison of breath and blood alcohol concentrations. Arh. Hig. Rada Toksikol. 2018, 69, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Sterling, K. The rate of dissipation of mouth alcohol in alcohol positive subjects. J. Forensic Sci. 2012, 57, 802–805. [Google Scholar] [CrossRef]
- Anderson, J.C.; Hlastala, M.P. The alcohol breath test in practice: Effects of exhaled volume. J. Appl. Physiol. 2019, 126, 1630–1635. [Google Scholar] [CrossRef]
- Jones, A.W. How breathing technique can influence the results of breath-alcohol analysis. Med. Sci. Law 1982, 22, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Kovačić, Z.; Nestić, M.; Stemberga, V.; Bosnar, A.; Petrovečki, M.; Sutlović, D. Reliability of breath alcohol testing with Dräger Alcotest 7410Plus analyzer in a court process. Med. Jad. 2008, 38, 47–51. [Google Scholar]
- Trafford, D.J.H.; Makin, H.L.J. Breath-alcohol concentration may not always reflect the concentration of alcohol in blood. J. Anal. Toxicol. 1994, 18, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Harger, R.N.; Lamb, E.B.; Hulpieu, H.R. A rapid chemical test for intoxication employing breath: A new reagent for alcohol and a procedure for estimating the concentration of alcohol in the body from the ratio of alcohol to carbon dioxide in the breath. J. Am. Med Assoc. 1938, 110, 779–785. [Google Scholar] [CrossRef]
- Harger, R.N. Debunking the Drunkometer. J. Crim. L. Criminol. 1949, 40, 497. [Google Scholar] [CrossRef]
- Borkenstein, R.F.; Smith, H.W. The breathalyzer and its applications. Med. Sci. Law 1961, 2, 13–22. [Google Scholar] [CrossRef]
- Grubb, D.; Rasmussen, B.; Linnet, K.; Olsson, S.; Lindberg, L. Breath alcohol analysis incorporating standardization to water vapour is as precise as blood alcohol analysis. Forensic Sci. Int. 2012, 216, 88–91. [Google Scholar] [CrossRef]
- Grubb, D.; Frigyesi, A.; Finnhult, M.; Dencker, D.; Olsson, S.G.; Lindberg, L. Breath alcohol analysis by standardization to water vapour enables contact free sampling with preserved high accuracy and precision as compared with mouthpiece sampling. J. Forensic Investig. 2014, 2, 1–6. [Google Scholar]
- Lindberg, L.; Brauer, S.; Wollmer, P.; Goldberg, L.; Jones, A.W.; Olsson, S.G. Breath alcohol concentration determined with a new analyzer using free exhalation predicts almost precisely the arterial blood alcohol concentration. Forensic Sci. Int. 2007, 168, 200–207. [Google Scholar] [CrossRef]
- Ferris, J.; Mazerolle, L.; King, M.; Bates, L.; Bennett, S.; Devaney, M. Random breath testing in Queensland and Western Australia: Examination of how the random breath testing rate influences alcohol related traffic crash rates. Accid. Anal. Prev. 2013, 60, 181–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kriikku, P.; Wilhelm, L.; Jenckel, S.; Rintatalo, J.; Hurme, J.; Kramer, J.; Jones, A.W.; Ojanperä, I. Comparison of breath-alcohol screening test results with venous blood alcohol concentration in suspected drunken drivers. Forensic Sci. Int. 2014, 239, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Dubowski, K.M. Quality assurance in breath-alcohol analysis. J. Anal. Toxicol. 1994, 18, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Metz, G.; Peters, T.; Jenkins, D.A.; Newman, A.; Blendis, L. Breath hydrogen as a diagnostic method for hypolactasia. Lancet 1975, 305, 1155–1157. [Google Scholar] [CrossRef]
- Satta, P.U.; Anania, C.; Astegiano, M.; Miceli, E.; Montalto, M.; Tursi, A. H2-breath testing for carbohydrate malabsorption. Aliment. Pharm. Ther. 2009, 29, 14–18. [Google Scholar]
- Solomons, N.W.; Garcia-Ibanez, R.; Viteri, F.E. Hydrogen breath test of lactose absorption in adults: The application of physiological doses and whole cow’s milk sources. Am. J. Clin. Nutr. 1980, 33, 545–554. [Google Scholar] [CrossRef]
- Hovde, Ø.; Farup, P.G. A comparison of diagnostic tests for lactose malabsorption-which one is the best? BMC Gastroenterol. 2009, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Arola, H. Diagnosis of hypolactasia and lactose malabsorption. Scand. J. Gastroenterol. 1994, 29, 26–35. [Google Scholar] [CrossRef]
- Misselwitz, B.; Pohl, D.; Fruhauf, H.; Fried, M.; Vavricka, S.R.; Fox, M. Lactose malabsorption and intolerance: Pathogenesis, diagnosis and treatment. United Eur. Gastroenterol. J. 2013, 1, 151–159. [Google Scholar] [CrossRef]
- Newcomer, A.D.; McGill, D.B.; Thomas, P.J.; Hofmann, A.F. Prospective comparison of indirect methods for detecting lactase deficiency. N. Engl. J. Med. 1975, 293, 1232–1236. [Google Scholar] [CrossRef]
- Casellas, F.; Malagelada, J.R. Applicability of short hydrogen breath test for screening of lactose malabsorption. Dig. Dis. Sci. 2003, 48, 1333–1338. [Google Scholar]
- Ruzsanyi, V.; Heinz-Erian, P.; Entenmann, A.; Karall, D.; Müller, T.; Schimkowitsch, A.; Amann, A.; Scholl-Bürgi, S. Diagnosing lactose malabsorption in children: Difficulties in interpreting hydrogen breath test results. J. Breath Res. 2016, 10, 016015. [Google Scholar] [CrossRef]
- Stefano, M.D.; Certo, M.; Colecchia, A.; Sorge, M.; Perri, F. H2-breath tests: Methodological audits in adults and children. Aliment. Pharm. Ther. 2009, 29, 8–13. [Google Scholar]
- Simren, M.; Stotzer, P.O. Use and abuse of hydrogen breath tests. Gut 2006, 55, 297–303. [Google Scholar] [CrossRef]
- Braden, B. Methods and functions: Breath tests. Best Pract. Res. Clin. Gasteroenterol. 2009, 23, 337–352. [Google Scholar] [CrossRef]
- Bond, J.H.; Levitt, M.D. Quantitative measurement of lactose absorption. Gastroenterology 1976, 70, 1058–1062. [Google Scholar]
- Calloway, D.H.; Murphy, E.L.; Bauer, D. Determination of lactose intolerance by breath analysis. Am. J. Gastroenterol. 1969, 14, 811–815. [Google Scholar] [CrossRef]
- Sategna-Guidetti, C.; Cruto, E.; Capobianco, P. Breath hydrogen excretion after lactose and whole milk ingestion: A prospective comparison in lactase deficiency. J. Clin. Gastroenterol. 1989, 11, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Abramowitz, A.; Granot, E.; Tamir, I.; Deckelbaum, R.J. Two-hour lactose breath hydrogen test. J. Pediatr. Gastroenterol. Nutr. 1986, 5, 130–133. [Google Scholar] [PubMed]
- Corazza, G.; Strocchi, A.; Sorge, M.; Benati, G.; Gasbarrini, G. Prevalence and consistency of low breath H2 excretion following lactulose ingestion. Dig. Dis. Sci. 1993, 38, 2010–2016. [Google Scholar] [PubMed]
- Szilagyi, A.; Cohen, A.; Vinokuroff, C.; Ahman, D.; Nathwani, U.; Yesovitch, S. Deadaption and readaptation with lactose, but no cross-adaptation to lactulose: A case of occult colonic bacterial adaptation. Can. J. Gastroenterol. 2004, 18, 677–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertzler, S.R.; Savaiano, D.A. Colonic adaptation to daily lactose feeding in lactose maldigesters reduces lactose intolerance. Am. J. Clin. Nutr. 1996, 64, 232–236. [Google Scholar] [CrossRef]
- de Lacy Costello, B.P.; Ledochowski, M.; Ratcliffe, N.M. The importance of methane breath testing: A review. J. Breath Res. 2013, 7, 024001. [Google Scholar] [CrossRef]
- Materacki, L.; Lee, S.M.; Laidler, P.; Yong, K.; Betteridge, F.; Murugiah, D.; Colleypriest, B. PWE-098 Is methane testing a useful adjunct to hydrogen breath testing? Gut 2018, 67, A167. [Google Scholar]
- Gao, F.; Wang, M.; Zhang, X.; Zhang, J.; Xue, Y.; Wan, H.; Wang, P. Simultaneous detection of hydrogen and methane in breath for the diagnosis of small intestinal bacterial overgrowth by fast gas chromatography. Anal. Methods 2018, 10, 4329–4338. [Google Scholar] [CrossRef]
- Vernia, P.; Cesarini, M.; de Carolis, A.; Vernia, F. Early hydrogen excretion peaks during breath tests. Small intestinal bacterial overgrowth or accelerated transit? Dig. Liver Dis. 2021, 53, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Corazza, G.R.; Strocchi, A.; Gasbarrini, G. Fasting breath hydrogen in celiac disease. Gastroenterology 1987, 93, 53–58. [Google Scholar] [CrossRef]
- Kerlin, P.; Wong, L.; Harris, B.; Capra, S. Rice flour, breath hydrogen, and malabsorption. Gastroenterology 1984, 87, 578–585. [Google Scholar] [CrossRef]
- Levitt, M.D. Production and excretion of hydrogen gas in man. N. Engl. J. Med. 1969, 281, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Braden, B.; Lembcke, B.; Kuker, W.; Caspary, W.F. 13C-breath tests: Current state of the art and future directions. Dig. Liver Dis. 2007, 39, 795–805. [Google Scholar] [CrossRef]
- Lacroix, M.; Mosora, F.; Pontus, M.; Lefebvre, P.; Luyckx, A.; Lopez-Habib, G. Glucose naturally labeled with carbon-13: Use for metabolic studies in man. Science 1973, 181, 445–446. [Google Scholar] [CrossRef]
- Modak, A.S. Stable isotope breath tests in clinical medicine: A review. J. Breath Res. 2007, 1, 014003. [Google Scholar] [CrossRef]
- Peek, R.M.; Blaser, M.J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer 2002, 2, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Hooi, J.K.Y.; Lai, W.Y.; Ng, W.K.; Suen, M.M.Y.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.S.; Wu, J.C.Y. Global prevalence of Helicobacter pylori infection: Systematic review and meta-analysis. Gastroenterology 2017, 153, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Nocon, M.; Kuhlmann, A.; Leodolter, A.; Roll, S.; Vauth, C.; Willich, S.N.; Greiner, W. Efficacy and cost-effectiveness of the 13C-urea breath test as the primary diagnostic investigation for the detection of Helicobacter pylori infection compared to invasive and non-invasive diagnostic tests. GMS Health Technol. Assess. 2009, 5. [Google Scholar] [CrossRef] [Green Version]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.; Bazzoli, F.; El-Omar, E.; Graham, D.; Hunt, R.; Rokkas, T.; Vakil, N.; Kuipers, E.J. Current concepts in the management of Helicobacter pylori infection: The Maastricht III Consensus Report. Gut 2007, 56, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Crowe, S.E. Helicobacter pylori infection. N. Engl. J. Med. 2019, 380, 1158–1165. [Google Scholar] [CrossRef]
- Nomura, A.; Stemmermann, G.N.; Chyou, P.H.; Kato, I.; Perez-Perez, G.I.; Blaser, M.J. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N. Engl. J. Med. 1991, 325, 1132–1136. [Google Scholar] [CrossRef]
- Parsonnet, J.; Friedman, G.D.; Vandersteen, D.P.; Chang, Y.; Vogelman, J.H.; Orentreich, N.; Sibley, R.K. Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 1991, 325, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.Y.; Evans JR, D.J.; Alpert, L.C.; Klein, P.D.; Evans, D.G.; Opekun, A.R.; Boutton, T.W. Campylobacter pylori detected noninvasively by the 13C-urea breath test. Lancet 1987, 329, 1174–1177. [Google Scholar] [CrossRef]
- Gatta, L.; Ricci, C.; Tampieri, A.; Osborn, J.; Perna, F.; Bernabucci, V.; Vaira, D. Accuracy of breath tests using low doses of 13C-urea to diagnose Helicobacter pylori infection: A randomised controlled trial. Gut 2006, 55, 457–462. [Google Scholar] [CrossRef]
- Leodolter, A.; Dominguez-Munoz, J.E.; Von Arnim, U.; Manes, G.; Malfertheiner, P. 13C-urea breath test for the diagnosis of Helicobacter pylori infection: A further simplification for clinical practice. Scand. J. Gastroenterol. 1998, 33, 267–270. [Google Scholar]
- Ellenrieder, V.; Glasbrenner, B.; Stoffels, C.; Weiler, S.; Bode, G.; Möller, P.; Adler, G. Qualitative and semi-quantitative value of a modified 13C-urea breath test for identification ofHelicobacter pyloriinfection. Eur. J. Gastroenterol. Hepatol. 1997, 9, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.Y.; Malaty, H.M.; Cole, R.A.; Martin, R.F.; Klein, P.D. Simplified 13C-urea breath test for detection of Helicobacter pylori infection. Am. J. Gastroenterol. 2001, 96, 1741–1745. [Google Scholar] [CrossRef]
- Klein, P.D.; Graham, D.Y. Minimum analysis requirements for the detection of Helicobacter pylori infection by the 13C-urea breath test. Am. J. Gastroenterol. 1993, 88, 1865–1869. [Google Scholar]
- Vaira, D.; Vakil, N. Blood, urine, stool, breath, money, and Helicobacter pylori. Gut 2001, 48, 287–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gisbert, J.P.; Pajares, J.M. 13C-urea breath test in the diagnosis of Helicobacter pylori infection—A critical review. Aliment. Pharm. Ther. 2004, 20, 1001–1017. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, S.; Kato, M.; Saito, M.; Fukuda, S.; Kato, C.; Hamada, S.; Nagashima, R.; Obara, K.; Suzuki, M.; Honda, H. Comparison between a new 13C-urea breath test, using a film-coated tablet, and the conventional 13C-urea breath test for the detection of Helicobacter pylori infection. J. Gastroenterol. 2004, 39, 621–628. [Google Scholar] [CrossRef]
- Calvet, X.; Sánchez-Delgado, J.; Montserrat, A.; Lario, S.; Ramírez-Lázaro, M.J.; Quesada, M.; Casalots, A.; Suárez, D.; Campo, R.; Brullet, E. Accuracy of diagnostic tests for Helicobacter pylori: A reappraisal. Clin. Infect. Dis. 2009, 48, 1385–1391. [Google Scholar] [CrossRef] [Green Version]
- Modak, A.S. Chapter 17—13C breath tests. In Breathborne Biomarkers and the Human Volatilome, 2nd ed.; Beauchamp, J., Davis, C., Pleil, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 273–287. [Google Scholar]
- Camilleri, M.; Chedid, V.; Ford, A.C.; Haruma, K.; Horowitz, M.; Jones, K.L.; Low, P.A.; Park, S.Y.; Parkman, H.P.; Stanghellini, V. Gastroparesis. Nat. Rev. Dis. Primers 2018, 4, 1–19. [Google Scholar] [CrossRef]
- Beaumont, W.; Osler, W. Experiments and Observations on the Gastric Juice and the Physiology of Digestion; Dover Publications, Inc.: Mineola, NY, USA, 1996. [Google Scholar]
- Scarpignato, C. Gastric emptying measurement in man. In Clinical Investigation of Gastric Function; Scarpignato, C., Bianchi Porro, G., Eds.; Karger Publishers: Basel, Switzerland, 1990; Volume 17, pp. 198–246. [Google Scholar]
- Heading, R.C. Gastric emptying: A clinical perspective. Clin. Sci. 1982, 63, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Abell, T.L.; Camilleri, M.; Donohoe, K.; Hasler, W.L.; Lin, H.C.; Maurer, A.H.; McCallum, R.W.; Nowak, T.; Nusynowitz, M.L.; Parkman, H.P. Consensus recommendations for gastric emptying scintigraphy: A joint report of the American Neurogastroenterology and Motility Society and the Society of Nuclear Medicine. J. Nucl. Med. Technol. 2008, 36, 44–54. [Google Scholar] [CrossRef]
- Lin, H.C.; Prather, C.; Fisher, R.S.; Meyer, J.H.; Summers, R.W.; Pimentel, M.; Mccallum, R.W.; Akkermans, L.M.; Loening-Baucke, V. Measurement of gastrointestinal transit. Dig. Dis. Sci. 2005, 50, 989–1004. [Google Scholar] [CrossRef] [PubMed]
- DiBaise, J.K.; Park, F.L.; Lyden, E.; Brand, R.E.; Brand, R.M. Effects of low doses of erythromycin on the 13C Spirulina platensis gastric emptying breath test and electrogastrogram: A controlled study in healthy volunteers. Am. J. Gastroenterol. 2001, 96, 2041–2050. [Google Scholar] [CrossRef] [PubMed]
- Hauser, B.; Roelants, M.; De Schepper, J.; Veereman, G.; Caveliers, V.; Devreker, T.; De Greef, E.; Vandenplas, Y. Gastric emptying of solids in children: Reference values for the 13C-octanoic acid breath test. Neurogastroenterol. Motil. 2016, 28, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Bruno, G.; Lopetuso, L.R.; Ianiro, G.; Laterza, L.; Gerardi, V.; Petito, V.; Poscia, A.; Gasbarrini, A.; Ojetti, V.; Scaldaferri, F. 13C-octanoic acid breath test to study gastric emptying time. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 59–64. [Google Scholar] [PubMed]
- Bertram, F.; Andresen, V.; Layer, P.; Keller, J. Simultaneous non-invasive measurement of liquid gastric emptying and small bowel transit by combined 13C-acetate and H2-lactulose breath test. J. Breath Res. 2014, 8, 046007. [Google Scholar] [CrossRef] [PubMed]
- Ghoos, Y.F.; Maes, B.D.; Geypens, B.J.; Mys, G.; Hiele, M.I.; Rutgeerts, P.J.; Vantrappen, G. Measurement of gastric emptying rate of solids by means of a carbon-labeled octanoic acid breath test. Gastroenterology 1993, 104, 1640–1647. [Google Scholar] [CrossRef]
- González, A.; Mugueta, C.; Parra, D.; Labayen, I.; Martinez, A.; Varo, N.; Monreal, I.; Gil, M.J. Characterisation with stable isotopes of the presence of a lag phase in the gastric emptying of liquids. Eur. J. Nutr. 2000, 39, 224–228. [Google Scholar] [CrossRef]
- Viramontes, B.E.; Kim, D.Y.; Camilleri, M.; Lee, J.S.; Stephens, D.; Burton, D.D.; Thomforde, G.M.; Klein, P.D.; Zinsmeister, A.R. Validation of a stable isotope gastric emptying test for normal, accelerated or delayed gastric emptying. Neurogastroenterol. Motil. 2001, 13, 567–574. [Google Scholar] [CrossRef]
- Lee, J.S.; Camilleri, M.; Zinsmeister, A.R.; Burton, D.D.; Kost, L.J.; Klein, P.D. A valid, accurate, office based non-radioactive test for gastric emptying of solids. Gut 2000, 46, 768–773. [Google Scholar] [CrossRef]
- Food and Drug Administration, U.S. Summary of Safety and Effectiveness Data (PMA P110015). Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf11/P110015b.pdf (accessed on 13 July 2021).
- Ilan, Y. The assessment of liver function using breath tests. Aliment. Pharm. Ther. 2007, 26, 1293–1302. [Google Scholar] [CrossRef]
- Stockmann, M.; Lock, J.F.; Malinowski, M.; Niehues, S.M.; Seehofer, D.; Neuhaus, P. The LiMAx test: A new liver function test for predicting postoperative outcome in liver surgery. HPB 2010, 12, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Stockmann, M.; Lock, J.F.; Riecke, B.; Heyne, K.; Martus, P.; Fricke, M.; Lehmann, S.; Niehues, S.M.; Schwabe, M.; Lemke, A.J.; et al. Prediction of postoperative outcome after hepatectomy with a new bedside test for maximal liver function capacity. Ann. Surg. 2009, 250, 119–125. [Google Scholar] [CrossRef]
- Sakka, S.G. Assessing liver function. Curr. Opin. Crit. Care 2007, 13, 207–214. [Google Scholar] [CrossRef]
- Schneider, P.D. Preoperative assessment of liver function. Surg. Clin. N. Am. 2004, 84, 355–373. [Google Scholar] [CrossRef]
- Lalazar, G.; Ilan, Y. Assessment of liver function in acute or chronic liver disease by the methacetin breath test: A tool for decision making in clinical hepatology. J. Breath Res. 2009, 3, 047001. [Google Scholar] [CrossRef]
- Festi, D.; Capodicasa, S.; Vestito, A.; Mazzella, G.; Roda, E.; Vitacolonna, E.; Petrolati, A.; Angelico, M.; Colecchia, A. Breath tests with stable isotopes: Have they a role in liver transplantation? Eur. Rev. Med. Pharmacol. Sci. 2004, 8, 55–58. [Google Scholar]
- Hepner, G.W.; Vesell, E.S. Assessment of aminopyrine metabolism in man by breath analysis after oral administration of 14C-aminopyrine: Effects of phenobarbital, disulfiram and portal cirrhosis. N. Engl. J. Med. 1974, 291, 1384–1388. [Google Scholar] [CrossRef]
- Burke, P.A.; Stack, J.A.; Wagner, D.; Lewis, D.W.; Jenkins, R.L.; Forse, R.A. L-[1-13C] Phenylalanine oxidation as a measure of hepatocyte functional capacity in end-stage liver disease. Am. J. Surg. 1997, 173, 270–273. [Google Scholar] [CrossRef]
- Watkins, P.B.; Murray, S.A.; Winkelman, L.G.; Heuman, D.M.; Wrighton, S.A.; Guzelian, P.S. Erythromycin breath test as an assay of glucocorticoid-inducible liver cytochromes P-450. Studies in rats and patients. J. Clin. Investig. 1989, 83, 688–697. [Google Scholar] [CrossRef] [Green Version]
- Saadeh, S.; Behrens, P.W.; Parsi, M.A.; Carey, W.D.; Connor, J.T.; Grealis, M.; Barnes, D.S. The utility of the 13C-galactose breath test as a measure of liver function. Aliment. Pharm. Ther. 2003, 18, 995–1002. [Google Scholar] [CrossRef]
- Rubin, T.M.; Heyne, K.; Luchterhand, A.; Bednarsch, J.; Vondran, F.W.; Polychronidis, G.; Malinowski, M.; Nikolic, A.; Tautenhahn, H.M.; Jara, M. Kinetic validation of the LiMAx test during 10 000 intravenous 13C-methacetin breath tests. J. Breath Res. 2017, 12, 016005. [Google Scholar] [CrossRef]
- Gould, O.; Ratcliffe, N.; Król, E.; de Lacy Costello, B. Breath analysis for detection of viral infection, the current position of the field. J. Breath Res. 2020, 14, 041001. [Google Scholar] [CrossRef]
- Giovannini, G.; Haick, H.; Garoli, D. Detecting COVID-19 from Breath: A Game Changer for a Big Challenge. ACS Sens. 2021, 6, 1408–1417. [Google Scholar] [CrossRef]
- Davis, C.E.; Schivo, M.; Kenyon, N.J. A breath of fresh air–the potential for COVID-19 breath diagnostics. EBioMedicine 2021, 63, 103183. [Google Scholar] [CrossRef]
- Chen, H.; Qi, X.; Ma, J.; Zhang, C.; Feng, H.; Yao, M. Breath-borne VOC biomarkers for COVID-19. MedRxiv 2020. [Google Scholar] [CrossRef]
- Grassin-Delyle, S.; Roquencourt, C.; Moine, P.; Saffroy, G.; Carn, S.; Heming, N.; Fleuriet, J.; Salvator, H.; Naline, E.; Couderc, L.J.; et al. Metabolomics of exhaled breath in critically ill COVID-19 patients: A pilot study. EBioMedicine 2021, 63, 103154. [Google Scholar] [CrossRef]
- Shan, B.; Broza, Y.Y.; Li, W.; Wang, Y.; Wu, S.; Liu, Z.; Wang, J.; Gui, S.; Wang, L.; Zhang, Z. Multiplexed nanomaterial-based sensor array for detection of COVID-19 in exhaled breath. ACS Nano 2020, 14, 12125–12132. [Google Scholar] [CrossRef]
- Sawano, M.; Takeshita, K.; Ohno, H.; Oka, H. RT-PCR diagnosis of COVID-19 from exhaled breath condensate: A clinical study. J. Breath Res. 2021, 15, 037103. [Google Scholar] [CrossRef]
- Fernández del Río, R.; O’Hara, M.E.; Holt, A.; Pemberton, P.; Shah, T.; Whitehouse, T.; Mayhew, C.A. Volatile Biomarkers in Breath Associated With Liver Cirrhosis—Comparisons of Pre- and Post-liver Transplant Breath Samples. EBioMedicine 2015, 2, 1243–1250. [Google Scholar] [CrossRef] [Green Version]
- Ferrandino, G.; Orf, I.; Smith, R.; Calcagno, M.; Thind, A.K.; Debiram-Beecham, I.; Williams, M.; Gandelman, O.; de Saedeleer, A.; Kibble, G.; et al. Breath Biopsy assessment of liver disease using an exogenous volatile organic compound—Toward improved detection of liver impairment. Clin. Transl. Gastroenterol. 2020, 11, 1–7. [Google Scholar] [CrossRef]
- O’Hara, M.E.; Fernández Del Río, R.; Holt, A.; Pemberton, P.; Shah, T.; Whitehouse, T.; Mayhew, C.A. Limonene in exhaled breath is elevated in hepatic encephalopathy. J. Breath Res. 2016, 10, 046010. [Google Scholar] [CrossRef]
- De Vries, R.; Dagelet, Y.W.F.; Spoor, P.; Snoey, E.; Jak, P.M.C.; Brinkman, P.; Dijkers, E.; Bootsma, S.K.; Elskamp, F.; De Jongh, F.H.C. Clinical and inflammatory phenotyping by breathomics in chronic airway diseases irrespective of the diagnostic label. Eur. Respir. J. 2018, 51, 1701817. [Google Scholar] [CrossRef] [Green Version]
- Schleich, F.N.; Zanella, D.; Stefanuto, P.H.; Bessonov, K.; Smolinska, A.; Dallinga, J.W.; Henket, M.; Paulus, V.; Guissard, F.; Graff, S. Exhaled volatile organic compounds are able to discriminate between neutrophilic and eosinophilic asthma. Am. J. Respir. Crit. Care Med. 2019, 200, 444–453. [Google Scholar] [CrossRef]
- Ahmed, W.; Brinkman, P.; Fowler, S. Clinical phenotyping. In Breathborne Biomarkers and the Human Volatilome; Elsevier: Amsterdam, The Netherlands, 2020; pp. 321–334. [Google Scholar]
- Henderson, B.; Ruszkiewicz, D.M.; Wilkinson, M.; Beauchamp, J.D.; Cristescu, S.M.; Fowler, S.J.; Salman, D.; Di Francesco, F.; Koppen, G.; Langejürgen, J. A benchmarking protocol for breath analysis: The peppermint experiment. J. Breath Res. 2020, 14, 046008. [Google Scholar] [CrossRef]
- Wilkinson, M.; White, I.; Hamshere, K.; Holz, O.; Schuchardt, S.; Bellagambi, F.G.; Lomonaco, T.; Biagini, D.; Di, F.F.; Fowler, S.J. The peppermint breath test: A benchmarking protocol for breath sampling and analysis using GC-MS. J. Breath Res. 2021, 15, 026006. [Google Scholar]
- Gisler, A.; Lan, J.; Singh, K.D.; Usemann, J.; Frey, U.; Zenobi, R.; Sinues, P. Real-time breath analysis of exhaled compounds upon peppermint oil ingestion by secondary electrospray ionization-high resolution mass spectrometry: Technical aspects. J. Breath Res. 2020, 14, 046001. [Google Scholar] [CrossRef]
- Lan, J.; Gisler, A.; Bruderer, T.; Sinues, P.; Zenobi, R. Monitoring peppermint washout in the breath metabolome by secondary electrospray ionization-high resolution mass spectrometry. J. Breath Res. 2021, 15, 026003. [Google Scholar] [CrossRef]
- Henderson, B.; Slingers, G.; Pedrotti, M.; Pugliese, G.; Ghimenti, S.; Moreno, S.; Harren, F.; Schubert, J.; Mayhew, C.A.; Wilde, M.; et al. The peppermint breath test benchmark for PTR-MS and SIFT-MS. J. Breath Res. 2021, 15, 046005. [Google Scholar] [CrossRef]
Application or Disease Target | Test Name | Target Compound | Detection Method | Unit of Measurement | Determinant and Setting * of Use | |
---|---|---|---|---|---|---|
Endogenous compounds | Ventilation/breathing | Capnography | Carbon dioxide (CO2) | Colorimetric CO2 detector, mainstream and sidestream CO2 monitoring (IR spectroscopy) | mmHg | Routine, clinical |
Asthma | FENO | (Fraction of exhaled) nitric oxide (NO) | Chemiluminescence analyser, electrochemical sensors and laser-based technology | ppb | Symptomatic, clinical/surgery | |
Neonatal jaundice | CO | Carbon monoxide (CO) | CO monitor with integrated IR breathing sensor and electrochemical sensor | ppm | Symptomatic, clinical | |
Grade 3 heart transplant rejection | Heartsbreath | Alkanes | TD-GC-MS | Breath methylated alkane contour | Targeted, clinical | |
Exogenous compounds | Alcohol intake | Breath alcohol test (Breathalyser) | Ethanol (CH3CH2OH) | IR spectroscopy, electrochemical fuel cells, dual sensor devices (electrochemical oxidation and IR absorption) | mg/L, ‰ | Targeted, mobile |
Lactase deficiency | Hydrogen breath test | Hydrogen (H2) | Hydrogen breath analyser with integrated electrochemical gas sensor | ppm | Symptomatic/targeted, surgery | |
Helicobacter pylori infection | Urea breath test (UBT) | 13CO2 | Isotope ratio mass spectrometry | ppm, ‰ | Symptomatic/targeted, surgery | |
Gastroparesis | Gastric emptying breath test (GEBT) | 13CO2 | Isotope ratio mass spectrometry | µmol/L/min | Symptomatic/targeted, surgery | |
Liver function | Maximum liver function capacity (LiMAx) | 13CO2 | Isotope ratio mass spectrometry | µg/kg/h | Targeted, surgery |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, Y.L.; Beauchamp, J. Breath Biomarkers in Diagnostic Applications. Molecules 2021, 26, 5514. https://doi.org/10.3390/molecules26185514
Pham YL, Beauchamp J. Breath Biomarkers in Diagnostic Applications. Molecules. 2021; 26(18):5514. https://doi.org/10.3390/molecules26185514
Chicago/Turabian StylePham, Y Lan, and Jonathan Beauchamp. 2021. "Breath Biomarkers in Diagnostic Applications" Molecules 26, no. 18: 5514. https://doi.org/10.3390/molecules26185514
APA StylePham, Y. L., & Beauchamp, J. (2021). Breath Biomarkers in Diagnostic Applications. Molecules, 26(18), 5514. https://doi.org/10.3390/molecules26185514