Adsorption of Mussel Protein on Polymer Antifouling Membranes: A Molecular Dynamics Study
Abstract
:1. Introduction
2. Simulation Method
3. Results and Discussions
3.1. Adsorption Process
3.2. Properties of Hydration Layer on Membrane Surface
3.3. Adsorption Mechanism
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clare, A.S.; Evans, L.V. Marine Biofouling: Introduction. Biofouling 2000, 16, 81–82. [Google Scholar] [CrossRef]
- Puleo, D.A.; Rena, B. Biological Interactions on Materials Surfaces: Understanding and Controlling Protein, Cell, and Tissue Response; Springer: New York, NY, USA, 2009; pp. 1–17. [Google Scholar]
- Dee, K.C.; Puleo, D.A.; Bizios, R. An Introduction to Tissue-Biomaterial Interactions; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Zheng, J.; Li, L.; Tsao, H.-K.; Sheng, Y.-J.; Chen, S.F.; Jiang, S.Y. Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: A molecular simulation study. Biophys. J. 2005, 89, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowmi, U.; Michael, P. Analysis of Cooperativity and Group Additivity in the Hydration of 1,2-Dimethoxyethane. J. Phys. Chem. B 2021, 125, 1660–1666. [Google Scholar]
- Vanderah, D.J.; La, H.; Naff, J.; Silin, V.; Rubinson, K.A. Control of protein adsorption: Molecular level structural and spatial variables. J. Am. Chem. Soc. 2004, 126, 13639–13641. [Google Scholar] [CrossRef]
- Liu, Y.L.; Zhang, Y.X.; Ren, B.P.; Sun, Y.; He, Y.; Cheng, F.; Xu, J.X.; Zheng, J. Molecular dynamics simulation of the effect of carbon space lengths on the antifouling properties of hydroxyalkyl acrylamides. Langmuir 2019, 35, 3576–3584. [Google Scholar] [CrossRef] [PubMed]
- Cedervall, T.; Lynch, I.; Foy, M.; Berggard, T.; Donnelly, S.C.; Cagney, G.; Linse, S.; Dawson, K.A. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 5754–5756. [Google Scholar] [CrossRef]
- Aggarwal, P.; Hall, J.B.; McLeland, C.B.; Dobrovolskaia, M.A.; McNeil, S.E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 2009, 61, 428–437. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.; Jin, J.; Park, S.; Kim, J.-Y.; Lee, M.-J.; Sun, H.; Kwon, J.-S.; Lee, H.; Choi, S.-H.; Hong, J. Quantitative interpretation of hydration dynamics enabled the fabrication of a zwitterionic antifouling surface. ACS Appl. Mater. Interfaces 2020, 12, 7951–7965. [Google Scholar] [CrossRef]
- Zheng, H.-R.; Wang, X.-W.; Lin, X.-H.; Geng, Q.; Chen, X.; Dai, W.-X.; Wang, X.-X. Promoted Effect of Polyethylene Glycol on the Photo-Induced Hydrophilicity of TiO2 Films. Chim. Sin.-Acta Phys. 2012, 28, 1764–1770. [Google Scholar]
- Lüsse, S.; Arnold, K. The interaction of poly (ethylene glycol) with water studied by 1H and 2H NMR relaxation time measurements. Macromolecules 1996, 29, 4251–4257. [Google Scholar] [CrossRef]
- Peng, C.; Liu, J.; Zhao, D.; Zhou, J. Adsorption of hydrophobin on different self-assembled monolayers: The role of the hydrophobic dipole and the electric dipole. Langmuir 2014, 30, 11401–11411. [Google Scholar] [CrossRef]
- Liu, J.; Liao, C.; Zhou, J. Multiscale simulations of protein G B1 adsorbed on charged self-assembled monolayers. Langmuir 2013, 29, 11366–11374. [Google Scholar] [CrossRef]
- Yu, G.; Liu, J.; Zhou, J. Mesoscopic coarse-grained simulations of lysozyme adsorption. J. Phys. Chem. B 2014, 118, 4451–4460. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Peng, C.; Zhou, J. Lipase adsorption on different nanomaterials: A multi-scale simulation study. Phys. Chem. Chem. Phys. 2015, 17, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Herrera, A.; Nordstrand, K.; Berndt, K.D.; Nilsson, L. Effect of urea on peptide conformation in water: Molecular dynamics and experimental characterization. Biophys. J. 2005, 89, 842–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Wang, Q.; Lin, Y.; Zhao, J.; Zhao, C.; Zheng, J. Structure, orientation, and surface interaction of Alzheimer amyloid-β peptides on the graphite. Langmuir 2012, 28, 6595–6605. [Google Scholar] [CrossRef]
- Schuler, L.D.; Daura, X.; Van Gunsteren, W.F. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem. 2001, 22, 1205–1218. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; Hermans, J. Interaction Models for Water in Relation to Protein Hydration; Pullman, B., Ed.; Springer: Dordrecht, The Netherlands, 1981; pp. 331–342. [Google Scholar]
- Essmann, U.; Perera, L.; Berkowitz, M.L. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Dismer, F.; Hubbuch, J. A novel approach to characterize the binding orientation of lysozyme on ion-exchange resins. J. Chromatogr. A 2007, 1149, 312–320. [Google Scholar] [CrossRef]
- Clifton, L.A.; Paracini, N.; Hughes, A.V.; Lakey, J.H.; Steinke, N.-J.; Cooper, J.K.; Gavutis, M.; Skoda, M.W.A. Self-Assembled fluid phase floating membranes with tunable water interlayers. Langmuir 2019, 35, 13735–13744. [Google Scholar] [CrossRef]
- Shao, Q.; He, Y.; White, A.D.; Jiang, S.Y. Difference in hydration between carboxybetaine and sulfobetaine. J. Phys. Chem. B 2010, 114, 16625–16631. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Zhang, D.; Ren, B.P.; Gong, X.; Liu, A.; Chang, Y.; He, Y.; Zheng, J. Computational investigation of antifouling property of polyacrylamide brushes. Langmuir 2020, 36, 2757–2766. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Tanaka, Y.; Koide, Y.; Tanaka, M.; Hara, M. Mechanism underlying bioinertness of self-assembled monolayers of oligo(ethyleneglycol)-terminated alkanethiols on gold: Protein adsorption, platelet adhesion, and surface forces. Phys. Chem. Chem. Phys. 2012, 14, 10196–10206. [Google Scholar] [CrossRef] [PubMed]
System | Polar (%) | Nonpolar (%) |
---|---|---|
CH3-SAM | 21.05 ± 0.05 | 78.95 ± 0.05 |
COOH-SAM | 71.42 ± 0.05 | 28.75 ± 0.05 |
System | Diffusion Coefficients (Ds) × 10−5 (cm2 s−1) | HBs Life (ps) | HBs Num (nm2) | τμ (ps) | ||
---|---|---|---|---|---|---|
D | D⊥ | D// | ||||
CH3-SAM | 3.21 ± 0.20 | 0.24 ± 0.43 | 3.99 ± 0.01 | 74.34 | 0.13 | 46.78 |
COOH-SAM | 2.56 ± 0.09 | 0.19 ± 0.43 | 3.73 ± 0.13 | 129.88 | 0.25 | 68.82 |
Bulk water | 3.66 ± 0.04 | 3.58 ± 0.19 | 3.69 ± 0.04 | - | - | 23.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F. Adsorption of Mussel Protein on Polymer Antifouling Membranes: A Molecular Dynamics Study. Molecules 2021, 26, 5660. https://doi.org/10.3390/molecules26185660
Gao F. Adsorption of Mussel Protein on Polymer Antifouling Membranes: A Molecular Dynamics Study. Molecules. 2021; 26(18):5660. https://doi.org/10.3390/molecules26185660
Chicago/Turabian StyleGao, Fengfeng. 2021. "Adsorption of Mussel Protein on Polymer Antifouling Membranes: A Molecular Dynamics Study" Molecules 26, no. 18: 5660. https://doi.org/10.3390/molecules26185660
APA StyleGao, F. (2021). Adsorption of Mussel Protein on Polymer Antifouling Membranes: A Molecular Dynamics Study. Molecules, 26(18), 5660. https://doi.org/10.3390/molecules26185660