Design, Synthesis, Antibacterial, and Antitumor Activity of Linear Polyisocyanide Quaternary Ammonium Salts with Different Structures and Chain Lengths
Abstract
:1. Introduction
2. Results
2.1. Structural Characteristics
2.2. Solubility and Antimicrobial Activity
2.3. The Relationship between Structure and Antibacterial Activity
2.4. Antitumor Bioactivity
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Palladium Catalyst
3.3. Synthesis of Isonitrile Monomer
3.3.1. Synthesis of Intermediate a
3.3.2. Synthesis of Intermediate b
3.3.3. Synthesis of Isonitrile Monomer
3.4. Synthesis of L-PQASs
3.5. Antibacterial Tests
3.6. Antitumor Bioactivity Tests
3.7. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhang, H.; Liu, Y.; Yao, S.; Shang, M.; Zhao, C.; Li, J.; Wang, J. A multicolor sensing system for simultaneous detection of four foodborne pathogenic bacteria based on Fe3O4/MnO2 nanocomposites and the etching of gold nanorods. Food Chem. Toxicol. 2021, 149, 112035. [Google Scholar] [CrossRef]
- Moustafa, G.O.; Shalaby, A.; Naglah, A.M.; Mounier, M.M.; El-Sayed, H.; Anwar, M.M.; Nossier, E.S. Synthesis, characterization, in vitro anticancer potentiality, and antimicrobial activities of novel peptide–glycyrrhetinic-acid-based derivatives. Molecules 2021, 26, 4573. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, M.D. Bacteria and antibiotics in wound healing. Surg. Clin. 2020, 100, 757–776. [Google Scholar]
- Dong, Z.; Sha, S.; Li, C.; Hashim, H.; Gao, Y.; Ong, P.; Lee, C.T.; Zhang, Z.; Wu, W.M. Potential risk of antibiotics pollution in aquaponic system and control approaches. Chem. Eng. Trans. 2020, 78, 265–270. [Google Scholar]
- Milala, J.; Piekarska-Radzik, L.; Sójka, M.; Klewicki, R.; Matysiak, B.; Klewicka, E. Rosa spp. Extracts as a factor that limits the growth of Staphylococcus spp. bacteria, a food contaminant. Molecules 2021, 26, 4590. [Google Scholar] [CrossRef]
- Andreica, B.I.; Cheng, X.; Marin, L. Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization. Eur. Polym. J. 2020, 139, 110016. [Google Scholar] [CrossRef]
- Wang, Z.-X.; Yang, B. Chemical transformations of quaternary ammonium salts via C–N bond cleavage. Org. Biomol. Chem. 2020, 18, 1057–1072. [Google Scholar] [CrossRef]
- Sha, D.; Xu, J.; Yang, X.; Xue, Y.; Liu, X.; Li, C.; Wei, M.; Liang, Z.; Shi, K.; Wang, B. Synthesis and antibacterial activities of quaternary ammonium salts with different alkyl chain lengths grafted on polyvinyl alcohol-formaldehyde sponges. React. Funct. Polym. 2021, 158, 104797. [Google Scholar] [CrossRef]
- Hussain, H.H.; Husin, H. Review on application of quaternary ammonium salts for gas hydrate inhibition. Appl. Sci. 2020, 10, 1011. [Google Scholar] [CrossRef] [Green Version]
- Kongkham, B.; Sharma, S.; Chaurasiya, A.; Biswal, A.K.; Hariprasad, P.; Saha, S. Development of non-leaching antibacterial coatings through quaternary ammonium salts of styrene based copolymers. J. Appl. Polym. Sci. 2021, 138, 50422. [Google Scholar]
- Xue, H.; Zhao, Z.; Chen, S.; Du, H.; Chen, R.; Brash, J.L.; Chen, H. Antibacterial coatings based on microgels containing quaternary ammonium ions: Modification with polymeric sugars for improved cytocompatibility. Colloid Interface Sci. Commun. 2020, 37, 100268. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Tan, W.; Zhang, J.; Guo, Z. Phenolic-containing chitosan quaternary ammonium derivatives and their significantly enhanced antioxidant and antitumor properties. Carbohydr. Res. 2020, 498, 108169. [Google Scholar] [CrossRef]
- Vereshchagin, A.N.; Frolov, N.A.; Egorova, K.S.; Seitkalieva, M.M.; Ananikov, V.P. Quaternary ammonium compounds (QACs) and ionic liquids (ILs) as biocides: From simple antiseptics to tunable antimicrobials. Int. J. Mol. Sci. 2021, 22, 6793. [Google Scholar] [CrossRef]
- Shurpik, D.N.; Padnya, P.L.; Stoikov, I.I.; Cragg, P.J. Antimicrobial activity of calixarenes and related macrocycles. Molecules 2020, 25, 5145. [Google Scholar] [CrossRef]
- Kwaśniewska, D.; Chen, Y.L.; Wieczorek, D. Biological activity of quaternary ammonium salts and their derivatives. Pathogens 2020, 9, 459. [Google Scholar] [CrossRef]
- Bazina, L.; Maravić, A.; Krce, L.; Soldo, B.; Odžak, R.; Popović, V.B.; Aviani, I.; Primožič, I.; Šprung, M. Discovery of novel quaternary ammonium compounds based on quinuclidine-3-ol as new potential antimicrobial candidates. Eur. J. Med. Chem. 2019, 163, 626–635. [Google Scholar] [CrossRef]
- Padnya, P.; Terenteva, O.; Akhmedov, A.; Iksanova, A.; Shtyrlin, N.; Nikitina, E.; Krylova, E.; Shtyrlin, Y.G.; Stoikov, I. Thiacalixarene based quaternary ammonium salts as promising antibacterial agents. Bioorg. Med. Chem. 2021, 29, 115905. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Chen, Y.; Wang, L.; Yang, Z.G.; Ma, X.D.; Zhao, Z.G.; Yang, H.J. Synthesis of diosgenyl quaternary ammonium derivatives and their antitumor activity. Steroids 2021, 166, 108774. [Google Scholar] [CrossRef] [PubMed]
- Fanfoni, L.; Marsich, E.; Turco, G.; Breschi, L.; Cadenaro, M. Development of di-methacrylate quaternary ammonium monomers with antibacterial activity. Acta Biomater. 2021, 129, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Kopiasz, R.J.; Tomaszewski, W.; Kuźmińska, A.; Chreptowicz, K.; Mierzejewska, J.; Ciach, T.; Jańczewski, D. Hydrophilic quaternary ammonium ionenes—is there an influence of backbone flexibility and topology on antibacterial properties? Macromol. Biosci. 2020, 20, 2000063. [Google Scholar] [CrossRef]
- Jung, J.; Bae, Y.; Cho, Y.K.; Ren, X.; Sun, Y. Structural insights into conformation of amphiphilic quaternary ammonium chitosans to control fungicidal and anti-biofilm functions. Carbohydr. Polym. 2020, 228, 115391. [Google Scholar] [CrossRef] [PubMed]
- Jimaja, S.; Varlas, S.; Xie, Y.; Foster, J.C.; Taton, D.; Dove, A.P.; O’Reilly, R.K.J. Nickel-catalyzed coordination polymerization-induced self-assembly of helical poly(aryl isocyanide)s. ACS Macro Lett. 2020, 9, 226–232. [Google Scholar] [CrossRef]
- Takei, F.; Yanai, K.; Onitsuka, K.; Takahashi, S.J. Screw-Sense-selective polymerization of aryl isocyanides initiated by a Pd-Pt μ-ethynediyl dinuclear complex: A novel method for the synthesis of single-handed helical poly(isocyanide)s with the block copolymerization technique. Chem. A Eur. J. 2000, 6, 983–993. [Google Scholar] [CrossRef]
- Schwartz, E.; Koepf, M.; Kitto, H.J.; Nolte, R.J.; Rowan, A.E.J. Helical poly (isocyanides): Past, present and future. Polym. Chem. 2011, 2, 33–47. [Google Scholar] [CrossRef]
- Lv, X.; Liu, C.; Song, S.; Qiao, Y.; Hu, Y.; Li, P.; Li, Z.; Sun, S. Construction of a quaternary ammonium salt platform with different alkyl groups for antibacterial and biosensor applications. RSC Adv. 2018, 8, 2941–2949. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.X.; Zhu, Y.Y.; Gao, L.M.; He, X.Y.; Liu, N.; Zhang, W.Y.; Yin, J.; Ding, Y.; Zhou, H.; Wu, Z.Q. Air-stable (phenylbuta-1, 3-diynyl) palladium (II) complexes: Highly active initiators for living polymerization of isocyanides. J. Am. Chem. Soc. 2014, 136, 4706–4713. [Google Scholar] [CrossRef] [PubMed]
Entry | [Monomer]0/[Catalyst]0 | Solvent | Polymer | Mn | Mw/Mn | Yield |
---|---|---|---|---|---|---|
1 | 50 | THF | L-P-M50 | 10,125 | 1.12 | 88.2% |
2 | 100 | THF | L-P-M100 | 21,310 | 1.09 | 92.1% |
Entry | Compound | Solubility | MIC (µg/mL ) | |
---|---|---|---|---|
E. coli | S. aureus | |||
1 | L-PBnQAS-M50 | + | 53 | 63 |
2 | L-PBuQAS-M50 | + + | 40 | 37 |
3 | L-PQcQAS-M50 | + + | 27 | 32 |
4 | L-PDBQAS-M50 | − | 105 | 125 |
5 | L-PBnQAS-M100 | − | 261 | 375 |
6 | L-PBuQAS-M100 | + | 42 | 71 |
7 | L-PQcQAS-M100 | + + | 33 | 43 |
8 | L-PDBQAS-M100 | − − | 313 | 500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Liu, L.; Hou, P.; Liu, J.; Fu, S. Design, Synthesis, Antibacterial, and Antitumor Activity of Linear Polyisocyanide Quaternary Ammonium Salts with Different Structures and Chain Lengths. Molecules 2021, 26, 5686. https://doi.org/10.3390/molecules26185686
Zhang H, Liu L, Hou P, Liu J, Fu S. Design, Synthesis, Antibacterial, and Antitumor Activity of Linear Polyisocyanide Quaternary Ammonium Salts with Different Structures and Chain Lengths. Molecules. 2021; 26(18):5686. https://doi.org/10.3390/molecules26185686
Chicago/Turabian StyleZhang, Hongguang, Lijia Liu, Peng Hou, Jun Liu, and Shuang Fu. 2021. "Design, Synthesis, Antibacterial, and Antitumor Activity of Linear Polyisocyanide Quaternary Ammonium Salts with Different Structures and Chain Lengths" Molecules 26, no. 18: 5686. https://doi.org/10.3390/molecules26185686
APA StyleZhang, H., Liu, L., Hou, P., Liu, J., & Fu, S. (2021). Design, Synthesis, Antibacterial, and Antitumor Activity of Linear Polyisocyanide Quaternary Ammonium Salts with Different Structures and Chain Lengths. Molecules, 26(18), 5686. https://doi.org/10.3390/molecules26185686