Controlling the Substrate Specificity of an Enzyme through Structural Flexibility by Varying the Salt-Bridge Density
Abstract
:1. Introduction
2. Results and Discussion
2.1. Different Structural Flexibilities between CYP101 and CYP2C9
2.2. The Role of Salt Bridges in Controlling the Flexibility of CYP101 and CYP2C9
2.3. The Generality on the Mechanism That Salt-Bridge Density Determines the Protein Flexibility and, Thus, Its Substrate Specificity across the CYP450 Family
3. Materials and Methods
3.1. Protein Expression and Purification
3.2. Neutron Scattering Experiment
3.3. Molecular Dynamics (MD) Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Tawfik, O.K.; Dan, S. Enzyme Promiscuity: A Mechanistic and Evolutionary Perspective. Annu. Rev. Biochem. 2010, 79, 471–505. [Google Scholar] [CrossRef]
- Nam, H.; Lewis, N.E.; Lerman, J.A.; Lee, D.-H.; Chang, R.L.; Kim, D.; Palsson, B.O. Network Context and Selection in the Evolution to Enzyme Specificity. Science 2012, 337, 1101–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, S.N.; Dunham, E.; Bradfield, C.A. Induction of Cytochrome P450 Enzymes. In Cytochrome P450: Structure, Mechanism, and Biochemistry; Ortiz de Montellano, P.R., Ed.; Springer: Boston, MA, USA, 2005; pp. 323–346. [Google Scholar] [CrossRef]
- Kawashima, A.; Satta, Y. Substrate-Dependent Evolution of Cytochrome P450: Rapid Turnover of the Detoxification-Type and Conservation of the Biosynthesis-Type. PLoS ONE 2014, 9, e100059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groves, J.T. Models and Mechanisms of Cytochrome P450 Action. In Cytochrome P450: Structure, Mechanism, and Biochemistry; Ortiz de Montellano, P.R., Ed.; Springer: Boston, MA, USA, 2005; pp. 1–43. [Google Scholar]
- Ortiz de Montellano, P.R. Cytochrome P450: Structure, Mechanism, and Biochemistry, 3rd ed.; Ortiz de Montellano, P.R., Ed.; Springer: Boston, MA, USA, 2005; pp. 1–689. [Google Scholar]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Mol. Biol. 2003, 10, 980. [Google Scholar] [CrossRef]
- Schuler, M.A.; Sligar, S.G. Diversities and Similarities in P450 Systems: An Introduction. In The Ubiquitous Roles of Cytochrome P450 Proteins; Wiley: Chichester, UK, 2007; pp. 1–26. [Google Scholar]
- Geisler, K.; Hughes, R.; Sainsbury, F.; Lomonossoff, G.; Rejzek, M.; Fairhurst, S.; Olsen, C.-E.; Motawia, M.; Melton, R.; Hemmings, A.; et al. Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants. Proc. Natl. Acad. Sci. USA 2013, 110, E3360–E3367. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, K.A.; Møller, B.L. Cytochrome P450s in Plants. In Cytochrome P450: Structure, Mechanism, and Biochemistry; Ortiz de Montellano, P.R., Ed.; Springer: Boston, MA, USA, 2005; pp. 553–583. [Google Scholar]
- Polic, V.; Auclair, K. Controlling substrate specificity and product regio- and stereo-selectivities of P450 enzymes without mutagenesis. Biorg. Med. Chem. 2014, 22, 5547–5554. [Google Scholar] [CrossRef] [Green Version]
- Kelly, S.L.; Kelly, D.E.; Jackson, C.J.; Warrilow, A.G.S.; Lamb, D.C. The Diversity and Importance of Microbial Cytochromes P450. In Cytochrome P450: Structure, Mechanism, and Biochemistry; Ortiz de Montellano, P.R., Ed.; Springer: Boston, MA, USA, 2005; pp. 585–617. [Google Scholar] [CrossRef]
- Sheftel, A.D.; Stehling, O.; Pierik, A.J.; Elsässer, H.-P.; Mühlenhoff, U.; Webert, H.; Hobler, A.; Hannemann, F.; Bernhardt, R.; Lill, R. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc. Natl. Acad. Sci. USA 2010, 107, 11775–11780. [Google Scholar] [CrossRef] [Green Version]
- Nebert, D.W.; Russell, D.W. Clinical importance of the cytochromes P450. Lancet 2002, 360, 1155–1162. [Google Scholar] [CrossRef]
- Guengerich, F.P. Human Cytochrome P450 Enzymes. In Cytochrome P450: Structure, Mechanism, and Biochemistry; Ortiz de Montellano, P.R., Ed.; Springer: Boston, MA, USA, 2005; pp. 377–530. [Google Scholar]
- Zou, T.; Risso, V.A.; Gavira, J.A.; Sanchez-Ruiz, J.M.; Ozkan, S.B. Evolution of Conformational Dynamics Determines the Conversion of a Promiscuous Generalist into a Specialist Enzyme. Mol. Biol. Evol. 2015, 32, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Marana, S.R. Molecular basis of substrate specificity in family 1 glycoside hydrolases. IUBMB Life 2006, 58, 63–73. [Google Scholar] [CrossRef]
- Kristiansson, H.; Timson, D.J. Increased Promiscuity of Human Galactokinase Following Alteration of a Single Amino Acid Residue Distant from the Active Site. ChemBioChem 2011, 12, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
- Auclair, K.; Moënne-Loccoz, P.; Ortiz de Montellano, P.R. Roles of the Proximal Heme Thiolate Ligand in Cytochrome P450cam. J. Am. Chem. Soc. 2001, 123, 4877–4885. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; McCullough, C.R.; Costache, A.D.; Pullela, P.K.; Sem, D.S. Structural evidence for a functionally relevant second camphor binding site in P450cam: Model for substrate entry into a P450 active site. Proteins Struct. Funct. Bioinf. 2007, 69, 125–138. [Google Scholar] [CrossRef]
- Yosca, T.H.; Green, M.T. Preparation of Compound I in P450cam: The Prototypical P450. Isr. J. Chem. 2016, 56, 834–840. [Google Scholar] [CrossRef]
- Miners, J.O.; Birkett, D.J. Cytochrome P4502C9: An enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. 1998, 45, 525–538. [Google Scholar] [CrossRef] [Green Version]
- Perticaroli, S.; Nickels, J.D.; Ehlers, G.; Sokolov, A.P. Rigidity, Secondary Structure, and the Universality of the Boson Peak in Proteins. Biophys.J. 2014, 106, 2667–2674. [Google Scholar] [CrossRef] [Green Version]
- Petridis, L.; Pingali, S.V.; Urban, V.; Heller, W.T.; O’Neill, H.M.; Foston, M.; Ragauskas, A.; Smith, J.C. Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation. Phys. Rev. E 2011, 83, 061911. [Google Scholar] [CrossRef]
- Balog, E.; Becker, T.; Oettl, M.; Lechner, R.; Daniel, R.; Finney, J.; Smith, J.C. Direct determination of vibrational density of states change on ligand binding to a protein. Phys. Rev. Lett. 2004, 93, 028103. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Huang, J.; Tyagi, M.; O’Neill, H.; Zhang, Q.; Mamontov, E.; Jain, N.; Wang, Y.; Zhang, J.; Smith, J.C.; et al. Dynamical Transition of Collective Motions in Dry Proteins. Phys. Rev. Lett. 2017, 119, 048101. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.; Glass, D.C.; Nickels, J.D.; Perticaroli, S.; Yi, Z.; Tyagi, M.; O’Neill, H.; Zhang, Q.; Sokolov, A.P.; Smith, J.C. Elastic and Conformational Softness of a Globular Protein. Phys. Rev. Lett. 2013, 110, 028104. [Google Scholar] [CrossRef]
- Durrant, J.D.; de Oliveira, C.A.F.; McCammon, J.A. POVME: An algorithm for measuring binding-pocket volumes. J. Mol. Graph. Model. 2011, 29, 773–776. [Google Scholar] [CrossRef] [Green Version]
- Durrant, J.D.; Votapka, L.; Sørensen, J.; Amaro, R.E. POVME 2.0: An Enhanced Tool for Determining Pocket Shape and Volume Characteristics. J. Chem. Theory Comput. 2014, 10, 5047–5056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, E.E.; White, M.A.; He, Y.A.; Johnson, E.F.; Stout, C.D.; Halpert, J.R. Structure of mammalian cytochrome P450 2B4 complexed with 4-(4-chlorophenyl) imidazole at 1.9-A resolution: Insight into the range of P450 conformations and the coordination of redox partner binding. J. Biol. Chem. 2004, 279, 27294–27301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pylypenko, O.; Schlichting, I. Structural Aspects of Ligand Binding to and Electron Transfer in Bacterial and Fungal P450s. Annu. Rev. Biochem. 2004, 73, 991–1018. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Jain, N.; Cheng, X.; Bernal, A.; Tyagi, M.; Smith, J.C. Determination of functional collective motions in a protein at atomic resolution using coherent neutron scattering. Sci. Adv. 2016, 2, e1600886. [Google Scholar] [CrossRef] [Green Version]
- Scott, E.; He, Y.; Wester, M.; White, M.; Chin, C.; Halpert, J.; Johnson, E.; Stout, C. An open conformation of mammalian cytochrome P450 2B4 at 1.6-Å resolution. Proc. Natl. Acad. Sci. USA 2003, 100, 13196–13201. [Google Scholar] [CrossRef] [Green Version]
- Koshland, D.E., Jr. The Key—Lock Theory and the Induced Fit Theory. Angew. Chem. Int. Ed. Engl. 1995, 33, 2375–2378. [Google Scholar] [CrossRef]
- Hiruma, Y.; Gupta, A.; Kloosterman, A.; Olijve, C.; Ölmez, B.; Hass, M.A.S.; Ubbink, M. Cover Picture: Hot-Spot Residues in the Cytochrome P450cam–Putidaredoxin Binding Interface. ChemBioChem 2014, 15, 1. [Google Scholar] [CrossRef]
- Purdy, M.; Koo, L.; Ortiz de Montellano, P.; Klinman, J. Mechanism of O 2 Activation by Cytochrome P450cam Studied by Isotope Effects and Transient State Kinetics. Biochemistry 2007, 45, 15793–15806. [Google Scholar] [CrossRef]
- Dai, D.-P.; Wang, S.-H.; Li, C.-B.; Peiwu, G.; Cai, J.; Wang, H.; Hu, G.-X.; Cai, J.-P. Identification and Functional Assessment of a New CYP2C9 Allelic Variant CYP2C9*59. Drug Metab. Dispos. 2015, 43, 1246–1249. [Google Scholar] [CrossRef] [Green Version]
- Pauling, L.; Corey, R.B.; Branson, H.R. The Structure of Proteins: Two Hydrogen-Bonded Helical Configurations of the Polypeptide Chain. Proc. Natl. Acad. Sci. USA 1951, 37, 205–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perutz, M.F. Electrostatic effects in proteins. Science 1978, 201, 1187–1191. [Google Scholar] [CrossRef] [PubMed]
- Barlow, D.J.; Thornton, J.M. Ion-pairs in proteins. J. Mol. Biol. 1983, 168, 867–885. [Google Scholar] [CrossRef]
- Kumar, S.; Nussinov, R. Salt bridge stability in monomeric proteins. J. Mol. Biol. 1999, 293, 1241–1255. [Google Scholar] [CrossRef]
- Zhou, R.; Huang, X.; Margulis, C.J.; Berne, B.J. Hydrophobic Collapse in Multidomain Protein Folding. Science 2004, 305, 1605–1609. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lemmonds, S.; Huang, J.; Tyagi, M.; Hong, L.; Jain, N. Entropic contribution to enhanced thermal stability in the thermostable P450 CYP119. Proc. Natl. Acad. Sci. USA 2018, 115, E10049–E10058. [Google Scholar] [CrossRef] [Green Version]
- Horner, A.; Zocher, F.; Preiner, J.; Ollinger, N.; Siligan, C.; Akimov, S.A.; Pohl, P. The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues. Sci. Adv. 2015, 1, e1400083. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, C.; Dann, S.M.; Savidge, T.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv. 2016, 2, e1501240. [Google Scholar] [CrossRef] [Green Version]
- Salvi, N.; Abyzov, A.; Blackledge, M. Solvent-dependent segmental dynamics in intrinsically disordered proteins. Sci. Adv. 2019, 5, eaax2348. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.E.; Becktel, W.J.; Dahlquist, F.W. pH-Induced denaturation of proteins: A single salt bridge contributes 3–5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry 1990, 29, 2403–2408. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Nussinov, R. Relationship between Ion Pair Geometries and Electrostatic Strengths in Proteins. Biophys. J. 2002, 83, 1595–1612. [Google Scholar] [CrossRef] [Green Version]
- Finney, J.L.; Gellatly, B.J.; Golton, I.C.; Goodfellow, J. Solvent effects and polar interactions in the structural stability and dynamics of globular proteins. Biophys.J. 1980, 32, 17–33. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.R. Cytochrome P450 Nomenclature. In Cytochrome P450 Protocols; Phillips, I.R., Shephard, E.A., Eds.; Humana Press: Totowa, NJ, USA, 1998; pp. 15–24. [Google Scholar]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Cohen, I., Huang, Y., Chen, J., Benesty, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Shan, X.; Wang, X.; Li, C.-d.; Chu, Y.; Zhang, Y.; Xiong, Y.; Wei, D.-Q. Prediction of CYP450 Enzyme–Substrate Selectivity Based on the Network-Based Label Space Division Method. J. Chem. Inf. Model. 2019, 59, 4577–4586. [Google Scholar] [CrossRef] [PubMed]
- Režen, T.; Debeljak, N.; Kordiš, D.; Rozman, D. New Aspects on Lanosterol 14α-Demethylase and Cytochrome P450 Evolution: Lanosterol/Cycloartenol Diversification and Lateral Transfer. J. Mol. Evol. 2004, 59, 51–58. [Google Scholar] [CrossRef]
- Poulos, T.L.; Meharenna, Y.T. Structures of P450 Proteins and Their Molecular Phylogeny. In The Ubiquitous Roles of Cytochrome P450 Proteins; Wiley: Chichester, UK, 2007; pp. 57–96. [Google Scholar] [CrossRef]
- Biundo, A.; Subagia, R.; Maurer, M.; Ribitsch, D.; Syrén, P.-O.; Guebitz, G.M. Switched reaction specificity in polyesterases towards amide bond hydrolysis by enzyme engineering. RSC Adv. 2019, 9, 36217–36226. [Google Scholar] [CrossRef]
- Raag, R.; Poulos, T.L. Crystal structures of cytochrome P-450CAM complexed with camphane, thiocamphor, and adamantane: Factors controlling P-450 substrate hydroxylation. Biochemistry 1991, 30, 2674–2684. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, C.; Zhang, L.; Yu, Y.; Yu, M.; García Sakai, V.; Tyagi, M.; Yamada, T.; He, L.; Zhang, X.; et al. Heterogeneity of Water Molecules on the Free Surface of Thin Reduced Graphene Oxide Sheets. J. Phys. Chem. C 2020, 124, 11064–11074. [Google Scholar] [CrossRef]
- Khodadadi, S.; Roh, J.H.; Kisliuk, A.; Mamontov, E.; Tyagi, M.; Woodson, S.A.; Briber, R.M.; Sokolov, A.P. Dynamics of Biological Macromolecules: Not a Simple Slaving by Hydration Water. Biophys. J. 2010, 98, 1321–1326. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.; Miao, Y.; Baudry, J.; Jain, N.; Smith, J.C. Derivation of Mean-Square Displacements for Protein Dynamics from Elastic Incoherent Neutron Scattering. J. Phys. Chem. B 2012, 116, 5028–5036. [Google Scholar] [CrossRef]
- Scott, W.R.P.; Hünenberger, P.H.; Tironi, I.G.; Mark, A.E.; Billeter, S.R.; Fennen, J.; Torda, A.E.; Huber, T.; Krüger, P.; van Gunsteren, W.F. The GROMOS Biomolecular Simulation Program Package. J. Phys. Chem. A 1999, 103, 3596–3607. [Google Scholar] [CrossRef]
- MacKerell, A.D.; Bashford, D.; Bellott, M.; Dunbrack, R.L.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B 1998, 102, 3586–3616. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 116–122. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef] [Green Version]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Karshikoff, A.; Jelezarov, I. Salt Bridges and Conformational Flexibility: Effect on Protein Stability. Biotechnol. Biotechnol. Equip. 2008, 22, 606–611. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Burley, S.K.; Petsko, G.A. Aromatic-aromatic interaction: A mechanism of protein structure stabilization. Science 1985, 229, 23. [Google Scholar] [CrossRef] [PubMed]
- Aravinda, S.; Shamala, N.; Das, C.; Sriranjini, A.; Karle, I.L.; Balaram, P. Aromatic—Aromatic Interactions in Crystal Structures of Helical Peptide Scaffolds Containing Projecting Phenylalanine Residues. J. Am. Chem. Soc. 2003, 125, 5308–5315. [Google Scholar] [CrossRef] [PubMed]
CYP450s | CYP101 (PDB 1DZ9) | Life Time (%) | CYP2C9 (PBD 5XXI) | Life Time (%) |
---|---|---|---|---|
Salt bridge | ASP89-LYS84 | 0.40 | ASP89-LYS84 | 3.06 |
pairs | GLU155-LYS158 | 0.78 | GLU155-LYS158 | 3.86 |
ASP341-ARG335 | 1.04 | ASP341-ARG335 | 13.84 | |
ASP224-HIS230 | 1.74 | ASP224-HIS230 | 14.66 | |
GLU325-ARG329 | 2.02 | GLU325-ARG329 | 14.70 | |
GLU274-LYS270 | 2.72 | GLU274-LYS270 | 16.06 | |
GLU122-ARG125 | 6.76 | GLU122-ARG125 | 18.72 | |
ASP143-ARG139 | 8.52 | ASP143-ARG139 | 26.40 | |
GLU354-ARG357 | 13.40 | GLU354-ARG357 | 27.86 | |
ASP262-HIS251 | 14.38 | ASP262-HIS251 | 41.10 | |
GLU147-ARG139 | 15.68 | GLU147-ARG139 | 45.02 | |
GLU405-HIS396 | 17.40 | GLU405-HIS396 | 49.74 | |
GLU354-HIS411 | 19.50 | GLU354-HIS411 | 52.62 | |
GLU85-ARG377 | 22.12 | GLU85-ARG377 | 65.72 | |
GLU92-LYS121 | 24.62 | GLU92-LYS121 | 98.64 | |
GLU148-ARG186 | 31.38 | GLU148-ARG186 | 98.66 | |
ASP316-HIS17 | 32.78 | |||
GLU237-ARG231 | 36.02 | |||
GLU287-ARG342 | 38.04 | |||
ASP25-ARG57 | 39.34 | |||
ASP218-ARG211 | 43.46 | |||
GLU286-ARG364 | 48.28 | |||
ASP251-LYS178 | 49.74 | |||
GLU273-ARG280 | 52.28 | |||
GLU262-LYS266 | 58.90 | |||
GLU331-ARG72 | 60.94 | |||
GLU140-ARG143 | 69.22 | |||
ASP236-ARG240 | 77.78 | |||
ASP380-ARG271 | 87.16 | |||
ASP77-HIS80 | 95.50 | |||
sum | 30 | 16 | ||
Salt-bridge density | 7.4 | 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Xu, Q.; Liu, Z.; Jain, N.; Tyagi, M.; Wei, D.-Q.; Hong, L. Controlling the Substrate Specificity of an Enzyme through Structural Flexibility by Varying the Salt-Bridge Density. Molecules 2021, 26, 5693. https://doi.org/10.3390/molecules26185693
Huang J, Xu Q, Liu Z, Jain N, Tyagi M, Wei D-Q, Hong L. Controlling the Substrate Specificity of an Enzyme through Structural Flexibility by Varying the Salt-Bridge Density. Molecules. 2021; 26(18):5693. https://doi.org/10.3390/molecules26185693
Chicago/Turabian StyleHuang, Juan, Qin Xu, Zhuo Liu, Nitin Jain, Madhusudan Tyagi, Dong-Qing Wei, and Liang Hong. 2021. "Controlling the Substrate Specificity of an Enzyme through Structural Flexibility by Varying the Salt-Bridge Density" Molecules 26, no. 18: 5693. https://doi.org/10.3390/molecules26185693
APA StyleHuang, J., Xu, Q., Liu, Z., Jain, N., Tyagi, M., Wei, D. -Q., & Hong, L. (2021). Controlling the Substrate Specificity of an Enzyme through Structural Flexibility by Varying the Salt-Bridge Density. Molecules, 26(18), 5693. https://doi.org/10.3390/molecules26185693