Ionic Liquid-Assisted Grinding: An Electrophilic Fluorination Benchmark
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. General Procedure for Screening of Additives in Liquid-Assisted Grinding
4.2. General Procedure for Fluorination Followed by Vacuum Sublimation
4.3. General Procedure for the Scale-Up of Fluorination of 2-Naphthol with F-TEDA-BF4 Followed by Vacuum Sublimation
4.4. Fluorination of Naproxen
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem. Rev. 2016, 116, 422–518. [Google Scholar] [CrossRef]
- Lin, A.; Huehls, C.B.; Yang, J. Recent advances in C–H fluorination. Org. Chem. Front. 2014, 1, 434–438. [Google Scholar] [CrossRef]
- Zaikin, P.A.; Borodkin, G.I. Electrophilic and Oxidative Fluorination of Aromatic Compounds. In Late-Stage Fluorination of Bioactive Molecules and Biologically-Relevant Substrates; Postigo, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 105–135. ISBN 978-0-12-812958-6. [Google Scholar]
- Borodkin, G.I.; Shubin, V.G. The selectivity problem in electrophilic fluorination of aromatic compounds. Russ. Chem. Rev. 2010, 79, 259–283. [Google Scholar] [CrossRef]
- Bryan, M.C.; Dunn, P.J.; Entwistle, D.; Gallou, F.; Koenig, S.G.; Hayler, J.D.; Hickey, M.R.; Hughes, S.; Kopach, M.E.; Moine, G.; et al. Key Green Chemistry research areas from a pharmaceutical manufacturers’ perspective revisited. Green Chem. 2018, 20, 5082–5103. [Google Scholar] [CrossRef] [Green Version]
- Stavber, G.; Zupan, M.; Jereb, M.; Stavber, S. Selective and Effective Fluorination of Organic Compounds in Water Using Selectfluor F-TEDA-BF 4. Org. Lett. 2004, 6, 4973–4976. [Google Scholar] [CrossRef]
- Borodkin, G.I.; Zaikin, P.A.; Shubin, V.G. Eco-Friendly Fluorination of Aromatic Compounds with F-TEDA-BF4 Reagent in Water. Chem. Sust. Devel. 2011, 19, 593–598. [Google Scholar]
- Fields, S.C.; Lo, W.C.; Brewster, W.K.; Lowe, C.T. Electrophilic fluorination: The aminopyridine dilemma. Tetrahedron Lett. 2010, 51, 79–81. [Google Scholar] [CrossRef]
- Laali, K.K.; Borodkin, G.I. First application of ionic liquids in electrophilic fluorination of arenes; SelectfluorTM (F-TEDA-BF4) for “green” fluorination. J. Chem. Soc. Perkin Trans. 2 2002, 2, 953–957. [Google Scholar] [CrossRef]
- Baudequin, C.; Loubassou, J.F.; Plaquevent, J.C.; Cahard, D. Enantioselective electrophilic fluorinations: A study of the fluorine-transfer from achiral N-F reagents to cinchona alkaloids. J. Fluor. Chem. 2003, 122, 189–193. [Google Scholar] [CrossRef]
- Stavber, G.; Zupan, M.; Stavber, S. Solvent-free fluorination of organic compounds using N-F reagents. Tetrahedron Lett. 2007, 48, 2671–2673. [Google Scholar] [CrossRef]
- Andreev, R.V.; Borodkin, G.I.; Shubin, V.G. Fluorination of aromatic compounds with N-fluorobenzenesulfonimide under solvent-free conditions. Russ. J. Org. Chem. 2009, 45, 1468–1473. [Google Scholar] [CrossRef]
- Stavber, G.; Stavber, S. Towards greener fluorine organic chemistry: Direct electrophilic fluorination of carbonyl compounds in water and under solvent-free reaction conditions. Adv. Synth. Catal. 2010, 352, 2838–2846. [Google Scholar] [CrossRef]
- Zaikin, P.A.; Dyan, O.T.; Evtushok, D.V.; Usoltsev, A.N.; Borodkin, G.I.; Karpova, E.V.; Shubin, V.G. Solvent-Free Fluorination of Electron-Rich Aromatic Compounds with F-TEDA-BF 4 : Toward “Dry” Processes. Eur. J. Org. Chem. 2017, 2017, 2469–2474. [Google Scholar] [CrossRef]
- Howard, J.L.; Sagatov, Y.; Browne, D.L. Mechanochemical electrophilic fluorination of liquid beta-ketoesters. Tetrahedron 2018, 74, 3118–3123. [Google Scholar] [CrossRef]
- Howard, J.L.; Nicholson, W.; Sagatov, Y.; Browne, D.L. One-pot multistep mechanochemical synthesis of fluorinated pyrazolones. Beilstein J. Org. Chem. 2017, 13, 1950–1956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Q.; Howard, J.L.; Crawford, D.E.; James, S.L.; Browne, D.L. Translating solid state organic synthesis from a mixer mill to a continuous twin screw extruder. Green Chem. 2018, 20, 4443–4447. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.L.; Sagatov, Y.; Repusseau, L.; Schotten, C.; Browne, D.L. Controlling reactivity through liquid assisted grinding: The curious case of mechanochemical fluorination. Green Chem. 2017, 19, 2798–2802. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, N.; He, X.; Lu, X.; Zhang, X. Physical Properties of Ionic Liquids: Database and Evaluation. J. Phys. Chem. Ref. Data 2006, 35, 1475–1517. [Google Scholar] [CrossRef]
- Hashkov, M.V.; Sidelnikov, V.N.; Zaikin, P.A. Selectivity of stationary phases based on pyridinium ionic liquids for capillary gas chromatography. Russ. J. Phys. Chem. A 2014, 88, 717–721. [Google Scholar] [CrossRef]
- Borodkin, G.I.; Elanov, I.R.; Shubin, V.G. Promotional effect of ionic liquids in electrophilic fluorination of phenols. Arkivoc 2017, 2018, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Negishi, M.; Ogawa, S.; Osawa, M.; Kawara, T.; Kusumoto, T.; Takeuchi, K.; Takehara, S.; Takatsu, H. Design, Synthesis and Physical Properties of New Liquid Crystal Materials for Active Matrix LCD (2). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 2001, 364, 865–872. [Google Scholar] [CrossRef]
- Dyan, O.T.; Zaikin, P.A.; Fadeev, D.S.; Gatilov, Y.V.; Borodkin, G.I. 1,1-Difluoronaphthalen-2(1 H)-ones as building blocks for fluorinated tetraphenes. J. Fluor. Chem. 2018, 210, 88–93. [Google Scholar] [CrossRef]
- Esperança, J.M.S.S.; Canongia Lopes, J.N.; Tariq, M.; Santos, L.M.N.B.F.; Magee, J.W.; Rebelo, L.P.N. Volatility of Aprotic Ionic Liquids—A Review. J. Chem. Eng. Data 2010, 55, 3–12. [Google Scholar] [CrossRef]
- Heravi, M.R.P. Fluorination of activated aromatic systems with SelectfluorTM F-TEDA-BF4 in ionic liquids. J. Fluor. Chem. 2008, 129, 217–221. [Google Scholar] [CrossRef]
- Mai, N.L.; Ahn, K.; Koo, Y.M. Methods for recovery of ionic liquids—A review. Process Biochem. 2014, 49, 872–881. [Google Scholar] [CrossRef]
- Zhou, J.; Sui, H.; Jia, Z.; Yang, Z.; He, L.; Li, X. Recovery and purification of ionic liquids from solutions: A review. RSC Adv. 2018, 8, 32832–32864. [Google Scholar] [CrossRef] [Green Version]
- Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq. 2017, 227, 44–60. [Google Scholar] [CrossRef]
- Bi, J.; Zhang, Z.; Liu, Q.; Zhang, G. Catalyst-free and highly selective electrophilic mono-fluorination of acetoacetamides: Facile and efficient preparation of 2-fluoroacetoacetamides in PEG-400. Green Chem. 2012, 14, 1159–1162. [Google Scholar] [CrossRef]
- Zhang, Z.; Bi, J.; Liu, Q.; Zhang, G. The synthesis of α,α-difluoroacetamides via electrophilic fluorination in the mixed-solvent of water and PEG-400. J. Fluor. Chem. 2013, 151, 45–49. [Google Scholar] [CrossRef]
- Sheldon, R.A. The E factor 25 years on: The rise of green chemistry and sustainability. Green Chem. 2017, 19, 18–43. [Google Scholar] [CrossRef]
- Borodkin, G.I.; Elanov, I.R.; Gatilov, Y.V.; Shubin, V.G. Direct electrophilic fluorination of naproxen with NF-reagents. J. Fluor. Chem. 2019, 228, 109412. [Google Scholar] [CrossRef]
Entry | Additive 1 | Products Yields 2 | Conversion of 2a, % | 4a:3a |
---|---|---|---|---|
1 | None | 4a (9%), 3a (4%) | 13 | 2.3 |
2 | PEG-400 | 4a (4%), 3a (26%) | 30 | 0.2 |
3 | DMF | 4a (20%), 3a (16%) | 36 | 1.2 |
4 | bmim BF4 | 4a (8%), 3a (17%) | 25 | 0.5 |
5 | bmim PF6 | 4a (6%), 3a (10%) | 16 | 0.6 |
6 | bmim OTf | 4a (36%), 3a (31%) | 67 | 1.2 |
7 | bmim NTf2 | 4a (28%), 3a (21%) | 49 | 1.3 |
8 | emim BF4 | 4a (9%), 3a (14%) | 23 | 0.6 |
9 | emim OTf | 4a (40%), 3a (32%) | 72 | 1.2 |
10 | emim NTf2 | 4a (35%), 3a (23%) | 58 | 1.5 |
11 | emim FSI | 4a (27%), 3a (7%) | 34 | 3.9 |
12 | bmp OTf | 4a (11%), 3a (22%) | 33 | 0.5 |
13 | bmp NTf2 | 4a (16%), 3a (16%) | 32 | 1.0 |
14 | bdmim NTf2 | 4a (22%), 3a (21%) | 43 | 1.0 |
15 | bpy NTf2 | 4a (25%), 3a (21%) | 46 | 1.2 |
Entry | Additive | IL Amount, mol% | Reaction Time, h | Products Yields 1 | 4a:3a |
---|---|---|---|---|---|
1 | emim OTf | 10 | 2 | 4a (40%), 3a (32%) | 1.2 |
2 | emim NTf2 | 10 | 2 | 4a (35%), 3a (23%) | 1.5 |
3 | emim OTf | 15 | 2 | 4a (40%), 3a (37%) | 1.1 |
4 | emim NTf2 | 15 | 2 | 4a (69%), 3a (16%) | 4.1 |
5 | emim NTf2 | 17 | 2 | 4a (77%), 3a (5%) | 14.0 |
6 | emim OTf | 10 | 4 | 4a (62%), 3a (21%) | 2.9 |
7 | emim NTf2 | 10 | 4 | 4a (59%), 3a (21%) | 2.8 |
8 | emim NTf2 | 10 | 20 | 4a (89%), 3a (2%) | 44.5 |
9 | emim NTf2 | 10 | 24 | 4a (87%), 3a (1%) | 87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaikin, P.A.; Dyan, O.T.; Elanov, I.R.; Borodkin, G.I. Ionic Liquid-Assisted Grinding: An Electrophilic Fluorination Benchmark. Molecules 2021, 26, 5756. https://doi.org/10.3390/molecules26195756
Zaikin PA, Dyan OT, Elanov IR, Borodkin GI. Ionic Liquid-Assisted Grinding: An Electrophilic Fluorination Benchmark. Molecules. 2021; 26(19):5756. https://doi.org/10.3390/molecules26195756
Chicago/Turabian StyleZaikin, Pavel A., Ok Ton Dyan, Innokenty R. Elanov, and Gennady I. Borodkin. 2021. "Ionic Liquid-Assisted Grinding: An Electrophilic Fluorination Benchmark" Molecules 26, no. 19: 5756. https://doi.org/10.3390/molecules26195756
APA StyleZaikin, P. A., Dyan, O. T., Elanov, I. R., & Borodkin, G. I. (2021). Ionic Liquid-Assisted Grinding: An Electrophilic Fluorination Benchmark. Molecules, 26(19), 5756. https://doi.org/10.3390/molecules26195756