Optimization of HS-SPME for GC-MS Analysis and Its Application in Characterization of Volatile Compounds in Sweet Potato
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fiber Selection
2.2. Incubation Temperature and Time
2.3. Extraction Time
2.4. Profiling of Volatile Compounds in Sweet Potato
2.4.1. Identification of Volatiles in Sweet Potato
2.4.2. Aldehydes
2.4.3. Alcohols
2.4.4. Ketones
2.4.5. Terpenes
2.4.6. Other Compounds
2.5. Multivariate PCA and PLS-DA Analyses
3. Materials and Methods
3.1. Sample Preparation
3.2. Chemical and Reagents
3.3. Fiber Selection
3.4. Selection of Incubation Conditions
3.5. Selection of Extraction Time
3.6. GC-MS Analysis
3.7. Sensory Analysis
3.8. Volatile Analysis of Four Sweet Potato Cultivars
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variety | Firmness | Aroma | Sweetness | Starchiness | Viscosity | Coarse Texture | Fibrous Texture | Overall Taste |
---|---|---|---|---|---|---|---|---|
Ayamurasaki | 2.43 a | 2.14 a | 2.86 a | 2.43 a | 2 a | 2.43 | 0.57 a,b | 88.71 a |
Anna | 1.23 b | 2.07 a | 3.43 a | 2.43 a | 2.14 a | 1.64 | 0.14 b | 89.79 a |
Jieshu95-16 | 2.05 a | 1.73 b | 1.73 b | 2.64 a | 1.55 a | 1.36 | 1.18 a | 77 b |
Shuangzai | 1.07 b | 0.8 c | 0.8 c | 0.4 b | 0.6 b | 1.2 | 0.47 a,b | 63.53 c |
References
- Albuquerque, T.M.R.; Sampaio, K.B.; de Souza, E.L. Sweet potato roots: Unrevealing an old food as a source of health promoting bioactive compounds—A review. Trends Food Sci. Technol. 2019, 85, 277–286. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://www.fao.org/faostat/zh/#data/QC (accessed on 3 July 2021).
- Kays, S.J. Sweet potato production worldwide: Assessment, trends and future. In Proceedings of the I International Symposium on Root and Tuber Crops: Food Down Under, Palmerston North, New Zealand, 9 February 2004; pp. 19–25. [Google Scholar]
- Wang, X.; Li, Q.; Cao, Q.; Ma, D. Current Status and Future Prospective of Sweet potato Production and Seed Industry in China. Sci. Agric. Sin. 2021, 54, 483–492. [Google Scholar]
- Lu, J.; Wang, X.; Qin, J.; Dai, Q.; Yi, Z. Investigation report on the development of sweet potato planting industry in China (2017) Analysis based on data from fixed observation points of industrial economy of national sweet potato industry technology system. Jiangsu Agric. Sci. 2018, 46, 393–398. [Google Scholar]
- Song, H.; Liu, J. GC-O-MS technique and its applications in food flavor analysis. Food Res. Int. 2018, 114, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Harborne, J.B. The biochemistry of fruits and their products. Phytochemistry 1971, 10, 2857. [Google Scholar] [CrossRef]
- Fratini, G.; Lois, S.; Pazos, M.; Parisi, G.; Medina, I. Volatile profile of Atlantic shellfish species by HS-SPME GC/MS. Food Res. Int. 2012, 48, 856–865. [Google Scholar] [CrossRef]
- Purcell, A.E.; Later, D.W.; Lee, M.L. Analysis of the volatile constituents of baked”Jewel” sweet potatoes. J. Agric. Food Chem. 1980, 28, 939–941. [Google Scholar] [CrossRef]
- Tiu, C.S.; Purcell, A.E.; Collins, W.W. Contribution of some volatile compounds to sweet potato aroma. J. Agric. Food Chem. 1985, 33, 223–226. [Google Scholar] [CrossRef]
- Horvat, R.J.; Arrendale, R.F.; Dull, G.G.; Chapman, G.W., Jr.; Kays, S.J. Volatile Constituents and Sugars of Three Diverse Cultivars of Sweet Potatoes [Ipomoea batatas (L.) Lam.]. J. Food Sci. 1991, 56, 714–715. [Google Scholar] [CrossRef]
- Kays, S.J.; Horvat, R.J. Comparison of the volatile constituents and sugars of representative Asian, Central American, and North American sweet potatoes. In Proceedings of the Sixth Symposium of the International Society for Tropical Root Crops, Lima, Peru, 21–26 February 1983; pp. 577–586. [Google Scholar]
- Sun, J.; Severson, R.F.; Kays, S.J. Quantitative Technique for Measuring Volatile Components of Baked Sweet potatoes. HortScience 1993, 28, 1110–1113. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q.; Sun, L.; Yang, W.; Wang, X.; Hu, Y.; Han, M.; Liu, L.; Ma, Z.; Mou, D. Differences in aroma, texture, and sensory in five varieties of sweet potatoes. Sci. Technol. Food Ind. 2020, 42, 85–92. [Google Scholar]
- Li, C.; Wang, Y.; Qiu, T.; Ye, X.; Cui, P.; Lu, G. Differences in Aroma Components of Different Varieties of Sweet Potatoes. J. Chin. Cereals Oils Assoc. 2019, 34, 45–52. [Google Scholar]
- Blanda, G.; Cerretani, L.; Comandini, P.; Toschi, T.G.; Lercker, G. Investigation of off-odour and off-flavour development in boiled potatoes. Food Chem. 2010, 118, 283–290. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Tan, F.; Wang, P.; Zhan, P.; Tian, H. Characterization of key aroma compounds in flat peach juice based on gas chromatography-mass spectrometry-olfactometry (GC-MS-O), odor activity value (OAV), aroma recombination, and omission experiments. Food Chem. 2022, 366, 130604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cao, J.; Li, Z.; Li, Q.; Lai, X.; Sun, L.; Chen, R.; Wen, S.; Sun, S.; Lai, Z. HS-SPME and GC/MS volatile component analysis of Yinghong No. 9 dark tea during the pile fermentation process. Food Chem. 2021, 357, 129654. [Google Scholar] [CrossRef]
- Flaviis, R.D.; Sacchetti, G.; Mastrocola, D. Wheat classification according to its origin by an implemented volatile organic compounds analysis. Food Chem. 2020, 341, 128217. [Google Scholar] [CrossRef]
- Jin, Y.; Cui, H.; Yuan, X.; Liu, L.; Liu, X.; Wang, Y.; Ding, J.; Xiang, H.; Zhang, X.; Liu, J.; et al. Identification of the main aroma compounds in Chinese local chicken high-quality meat. Food Chem. 2021, 359, 129930. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.; Campagnol, P.; Lorenzo, J.M. Characterization of Volatile Compounds of Dry-Cured Meat Products Using HS-SPME-GC/MS Technique. Food Anal. Methods 2019, 12, 1263–1284. [Google Scholar] [CrossRef]
- Domínguez, R.; Munekata, P.E.; Cittadini, A.; Lorenzo, J.M. Effect of the partial NaCl substitution by other chloride salts on the volatile profile during the ripening of dry-cured lacón. Grasas Y Aceites 2016, 67, e128. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Kays, S.J. Contribution of Volatile Compounds to the Characteristic Aroma of BakedJewel’ Sweetpotatoes. J. Am. Soc. Hortic. Sci. 2000, 125, 638–643. [Google Scholar] [CrossRef] [Green Version]
- Risticevic, S.; Lord, H.; Górecki, T.; Arthur, C.L.; Pawliszyn, J. Protocol for solid-phase microextraction method development. Nat. Protoc. 2010, 5, 122. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.d.M.; Mesquita, P.R.R.; de Oliveira, L.S.; de Oliveira, F.S.; Menezes Filho, A.; Pereira, P.A.D.P.; de Andrade, J.B. Development of a headspace solid-phase microextraction/gas chromatography–mass spectrometry method for determination of organophosphorus pesticide residues in cow milk. Microchem. J. 2011, 98, 56–61. [Google Scholar] [CrossRef]
- Valentina, C.; Vincenzo, L.; Salvatore, C.; Anna, D.; Grazia, C.; Michelangelo, P.; Antonio, F.; Francesco, L. Discrimination of geographical origin of oranges (Citrus sinensis L. Osbeck) by mass spectrometry-based electronic nose and characterization of volatile compounds. Food Chem. 2019, 277, 25–30. [Google Scholar] [CrossRef]
- Dias, L.G.; Duarte, G.; Mariutti, L.; Bragagnolo, N. Aroma profile of rice varieties by a novel SPME method able to maximize 2-acetyl-1-pyrroline and minimize hexanal extraction. Food Res. Int. 2019, 123, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Jordi, T.; Montserrat, R.A.; Elvira, L.T.; Susana, B. Volatile Compounds of Red and White Wines by Headspace-Solid-Phase Microextraction Using Different Fibers. J. Chromatogr. Sci. 2004, 42, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Majcher, M.; Jeleń, H. Comparison of suitability of SPME, SAFE and SDE methods for isolation of flavor compounds from extruded potato snacks. J. Food Compost. Anal. 2009, 22, 606–612. [Google Scholar] [CrossRef]
- Sanches, S.A.; Lopez, H.; Paseiro, L.P. Profiling flavor compounds of potato crisps during storage using solid-phase microextraction. J. Chromatogr. A 2005, 1064, 239–245. [Google Scholar] [CrossRef]
- Pawliszyn, J. Solid Phase Microextraction: Theory and Practice; Wiley-VCH: Toronto, ON, Canada, 1995. [Google Scholar]
- Pawliszyn, J. Theory of Solid-Phase Microextraction. In Handbook of Solid Phase Microextraction; Pawliszyn, J., Ed.; Elsevier: Oxford, UK, 2012; pp. 13–59. [Google Scholar]
- Ma, Q.L.; Hamid, N.; Bekhit, A.; Robertson, J.; Law, T.F. Optimization of headspace solid phase microextraction (HS-SPME) for gas chromatography mass spectrometry (GC–MS) analysis of aroma compounds in cooked beef using response surface methodology. Microchem. J. 2013, 111, 16–24. [Google Scholar] [CrossRef]
- Duncan, M.W. Good mass spectrometry and its place in good science. J. Mass Spectrom. 2012, 47, 795–809. [Google Scholar] [CrossRef]
- Sun, J.; Severson, R.F.; Schlotzhauer, W.S.; Kays, S.J. Identifying Critical Volatiles in the Flavor of Baked ‘Jewel’ Sweetpotatoes [Ipomoea batatas (L.) Lam.]. J. Am. Soc. Hortic. Sci. 1995, 120, 468–474. [Google Scholar] [CrossRef]
- Wang, Y.; Kays, S.J. Effect of cooking method on the aroma consistuents of sweet potato [Ipomoea Batatas (L.) Lam.]. J. Food Qual. 2007, 24, 67–78. [Google Scholar] [CrossRef]
- Nakamura, A.; Ono, T.; Yagi, N.; Miyazawa, M. Volatile compounds with characteristic aroma of boiled sweet potato (Ipomoea batatas L. cv Ayamurasaki, I. batatas L. cv Beniazuma and I. batatas L. cv Simon 1). J. Essent. Oil Res. 2013, 25, 497–505. [Google Scholar] [CrossRef]
- Van Gemert, L.J. Flavour Thresholds; Oliemans Punter & Partners BV: Utrecht, The Netherlands, 2003. [Google Scholar]
- Kaminaga, Y.; Schnepp, J.; Peel, G.; Kish, C.M.; Ben-Nissan, G.; Weiss, D.; Orlova, I.; Lavie, O.; Rhodes, D.; Wood, K. Plant phenylacetaldehyde synthase Is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J. Biol. Chem. 2006, 281, 23357–23366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhi, M.; Lavie, O.; Masci, T.; Hendel-Rahmanim, K.; Weiss, D.; Abeliovich, H.; Vainstein, A. Identification of rose phenylacetaldehyde synthase by functional complementation in yeast. Plant. Mol. Biol. 2010, 72, 235–245. [Google Scholar] [CrossRef]
- Arn, H.; Acree, T.E. Flavornet: A database of aroma compounds based on odor potency in natural products. In Food Flavors: Formation, Analysis and Packaging Influences; Contis, E.T., Ho, C.T., Mussinan, C.J., Parliment, T.H., Shahidi, F., Spanier, A.M., Eds.; Elsevier: NewYork, NY, USA, 1998; Volume 40, p. 27. [Google Scholar]
- Multari, S.; Marsol-Vall, A.; Heponiemi, P.; Suomela, J.P.; Yang, B. Changes in the volatile profile, fatty acid composition and other markers of lipid oxidation of six different vegetable oils during short-term deep-frying. Food Res. Int. 2019, 122, 318–329. [Google Scholar] [CrossRef]
- Feussner, I.; Wasternack, C. The lipoxygenase pathway. Annu. Rev. Plant. Biol. 2002, 53, 275. [Google Scholar] [CrossRef] [PubMed]
- Gigot, C.; Ongena, M.; Fauconnier, M.L.; Wathelet, J.P.; Thonart, P. The lipoxygenase metabolic pathway in plants: Potential for industrial production of natural green leaf volatiles. Biotechnol. Agron. Société Environ. 2010, 14, 451–460. [Google Scholar]
- Kammona, S.; Othman, R.; Jaswir, I.; Jamal, P. Characterisation of carotenoid content in diverse local sweet potato (Ipomoea batatas) flesh tubers. Int. J. Pharm. Pharm. Sci. 2014, 7, 347–351. [Google Scholar]
- Aharoni, A.; Giri, A.P.; Deuerlein, S.; Griepink, F.; de Kogel, W.-J.; Verstappen, F.W.; Verhoeven, H.A.; Jongsma, M.A.; Schwab, W.; Bouwmeester, H.J. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant. Cell 2003, 15, 2866–2884. [Google Scholar] [CrossRef] [Green Version]
- Cane, D.E. Sesquiterpene Biosynthesis: Cyclization Mechanisms. In Comprehensive Natural Products Chemistry Isoprenoids: Including Steroids and Carotenoids; Cane, D.E., Ed.; Pergamon: Oxford, UK, 1999; Volume 2, pp. 155–200. [Google Scholar]
- Ohnuma, S.I.; Hirooka, K.; Ohto, C.; Nishino, T. Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyl diphosphate synthase. Two amino acids before the first aspartate-rich motif solely determine eukaryotic farnesyl diphosphate synthase activity. J. Biol. Chem. 1997, 272, 5192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liat, S.-A.; Moshe, S.; Ahuva, F.; Einat, B.; Doron, H.; Etti, O.; Uri, L.; Efraim, L.; Yoram, E. Citrus fruit flavor and aroma biosynthesis: Isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene. Plant. J. 2010, 36, 664–674. [Google Scholar] [CrossRef]
- Dorfner, R.; Ferge, T.; Kettrup, A.; Zimmermann, R.; Yeretzian, C. Real-time monitoring of 4-vinylguaiacol, guaiacol, and phenol during coffee roasting by resonant laser ionization time-of-flight mass spectrometry. J. Agric. Food Chem. 2003, 51, 5768–5773. [Google Scholar] [CrossRef]
- Teng, J.; Gong, Z.; Deng, Y.; Chen, L.; Li, Q.; Shao, Y.; Lin, L.; Xiao, W. Purification, characterization and enzymatic synthesis of theaflavins of polyphenol oxidase isozymes from tea leaf (Camellia sinensis). LWT 2017, 84, 263–270. [Google Scholar] [CrossRef]
- Haratl, K.; Huang, F.C.; Giri, A.P.; Katrin, F.O.; Frotscher, J.; Shao, Y.; Hoffmann, T.; Schwab, W. Glucosylation of Smoke-Derived Volatiles in Grapevine (Vitis vinifera) is Catalyzed by a Promiscuous Resveratrol/Guaiacol Glucosyltransferase. J. Agric. Food Chem. 2017, 65, 5681–5689. [Google Scholar] [CrossRef]
- Choi, S.; Seo, H.-S.; Lee, K.R.; Lee, S.; Lee, J. Effect of milling degrees on volatile profiles of raw and cooked black rice (Oryza sativa L. cv. Sintoheugmi). Appl. Biol. Chem. 2018, 61, 91–105. [Google Scholar] [CrossRef]
- Nakamura, Y. Maltose Generation in Sweet Potato Cultivar “Quick Sweet” Containing Starch with Low Pasting Temperature. J. Brew. Soc. Jpn. 2014, 109, 720–725. [Google Scholar] [CrossRef] [Green Version]
Class | RT 1 | RI 2 | Compound | CAS | MF 3 | ID Method 4 | Flavor | Odor Thresholds (μg/g) 5 | Relative Content (μg/g) 6 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Anna | Jieshu95-16 | Ayamursaki | Shuangzai | |||||||||
Aldehydes | 3.44 | 676 | Pentanal | 000110-62-3 | C5H10O | MS,RI | almond, malt, pungent | 0.2 | - | 0.12 ± 0.05 | - | - |
4.62 | 748 | (E)-2-Pentenal | 001576-87-0 | C5H8O | MS,RI | strawberry, fruit, tomato | 0.1 | 0.09 ± 0 | - | - | - | |
5.71 | 796 | Hexanal | 000066-25-1 | C6H12O | MS,RI | grass, tallow, fat | 0.21 | 1.29 ± 0.34 | 1.84 ± 0.47 | 1.12 ± 0.14 | 1.78 ± 0.24 | |
7.19 | 854 | (E)-2-Hexenal | 006728-26-3 | C6H10O | MS,RI | apple, green | 0.04 | 0.16 ± 0.01 c | 1.28 ± 0.34 a | 0.84 ± 0.23 a,b | 0.67 ± 0.13 b | |
8.67 | 901 | Heptanal | 000111-71-7 | C7H14O | MS,RI | fat, citrus, rancid | 0.031 | 0.62 ± 0.11 a | 0.4 ± 0.07 b | 0.16 ± 0.01 c | 0.59 ± 0.06 a | |
10.38 | 959 | (E)-2-Heptenal | 018829-55-5 | C7H12O | MS,RI | soap, fat, almond | 0.75 | 0.17 ± 0.01 | 0.24 ± 0.03 | 0.12 ± 0.01 | 0.33 ± 0.05 | |
10.49 | 963 | Benzaldehyde | 000100-52-7 | C7H6O | MS,RI | almond, burnt sugar | 1 | 0.85 ± 0.17 b | 1.08 ± 0.19 a,b | 1.32 ± 0.13 a | 0.75 ± 0.13 b | |
12.09 | 1012 | (E,E)-2,4-Heptadienal | 004313-03-5 | C7H10O | MS,RI | nut, fat | 0.03 | 0.15 ± 0.01 b | 0.36 ± 0.08 a | 0.22 ± 0.02 b | 0.19 ± 0.03 b | |
13.16 | 1048 | Benzeneacetaldehyde | 000122-78-1 | C8H8O | MS,RI | honey, sweet | 0.04 | 1.87 ± 0.52 b | 1.85 ± 0.49 b | 3.95 ± 0.64 a | 0.64 ± 0.15 c | |
13.61 | 1062 | (E)-2-Octenal | 002548-87-0 | C8H14O | MS,RI | green, nut, fat | 0.125 | 1.23 ± 0.06 c | 1.59 ± 0.03 b | 0.56 ± 0.09 d | 1.93 ± 0.2 a | |
15.01 | 1106 | Nonanal | 000124-19-6 | C9H18O | MS,RI | fat, citrus, green | 0.0035 | - | 0.2 ± 0.01 | 0.12 ± 0.01 | 0.97 ± 0.65 | |
17.12 | 1178 | 2,4-dimethylBenzaldehyde | 015764-16-6 | C9H10O | MS,RI | cherry almond vanilla | - | 0.1 ± 0.04 | - | - | - | |
18.23 | 1216 | (E,E)-2,4-Nonadienal | 005910-87-2 | C9H14O | MS,RI | fat, wax, green | 0.0006 | 0.13 ± 0.01 b | 0.12 ± 0.02 b | 0.09 ± 0.01 b | 0.25 ± 0.05 a | |
18.47 | 1225 | β-cyclocitral | 000432-25-7 | C10H16O | MS,RI | mint | - | 0.08 ± 0.01 | - | - | 0.28 ± 0.02 | |
19.01 | 1244 | Cuminaldehyde | 000122-03-2 | C10H12O | MS,RI | acid, sharp | 0.4 | 0.24 ± 0.02 b | 0.16 ± 0.02 c | 0.35 ± 0.01 a | 0.23 ± 0.01 b | |
19.84 | 1274 | Citral | 005392-40-5 | C10H16O | MS,RI | lemon | 0.005 | 0.28 ± 0.02 a | 0.27 ± 0.05 a | 0.17 ± 0.04 b | 0.33 ± 0.04 a | |
19.97 | 1278 | (−)-Perillaldehyde | 002111-75-3 | C10H14O | MS,RI | spicy, sweet, lime | 0.0253 | - | - | 0.08 ± 0 | - | |
20.48 | 1295 | (E,Z)-2,4-Decadienal | 025152-83-4 | C10H16O | MS,RI | fried fatty geranium | 0.004 | - | 0.9 ± 0.21 | 0.76 ± 0.32 | 1.1 ± 0.28 | |
21.11 | 1320 | (E,E)-2,4-Decadienal | 025152-84-5 | C10H16O | MS,RI | fried, wax, fat | 0.0005 | 1.63 ± 0.29 a,b | 2.77 ± 0.91 a | 1.27 ± 0.26 b | 2.36 ± 0.68 a,b | |
23.26 | 1400 | Vanillin | 000121-33-5 | C8H8O3 | MS,RI | vanilla | 0.03 | 0.1 ± 0.02 b | 0.14 ± 0.02 b | 0.24 ± 0.06 a | 0.13 ± 0.02 b | |
30.66 | 1715 | Pentadecanal | 002765-11-9 | C15H30O | MS,RI | fresh waxy | - | - | 0.17 ± 0.02 | - | - | |
Alcohols | 7.7 | 871 | 1-Hexanol | 000111-27-3 | C6H14O | MS,RI | flower, green | 0.2 | 0.15 ± 0.03 b | 0.34 ± 0.12 a | 0.41 ± 0.04 a | 0.3 ± 0.02a |
11.13 | 982 | 1-Octen-3-ol | 003391-86-4 | C8H16O | MS,RI | mushroom | 0.002 | 0.32 ± 0.04 | - | - | - | |
12.46 | 1025 | 3-Ethyl-4-methylpentan-1-ol | 038514-13-5 | C8H18O | MS,RI | - | - | 0.08 ± 0.01 | - | 0.2 ± 0.01 | - | |
12.86 | 1038 | Benzyl alcohol | 000100-51-6 | C7H8O | MS,RI | sweet, flower | 5.5 | 0.27 ± 0.02 | - | 0.09 ± 0 | 0.18 ± 0 | |
15.28 | 1115 | Phenylethyl Alcohol | 000060-12-8 | C8H10O | MS,RI | honey, rose, lilac | 0.045 | 0.17 ± 0 | 0.09 ± 0.01 | 0.13 ± 0.02 | - | |
17.2 | 1181 | Terpinen-4-ol | 000562-74-3 | C10H18O | MS,RI | turpentine, nutmeg, must | - | 0.36 ± 0.06 a,b | 0.34 ± 0.15 a,b | 0.18 ± 0.08 b | 0.55 ± 0.06 a | |
17.59 | 1193 | α-Terpineol | 000098-55-5 | C10H18O | MS,RI | lilac floral | 0.3 | - | - | 0.24 ± 0 | 0.13 ± 0.02 | |
17.77 | 1199 | (−)-Myrtenol | 019894-97-4 | C10H16O | MS,RI | pine balsam mint | - | 0.58 ± 0.02 b | 0.19 ± 0.03 c | 0.82 ± 0.05 a | 0.17 ± 0.03c | |
20.44 | 1294 | p-Cymen-7-ol | 000536-60-7 | C10H14O | MS,RI | caraway-like herb | - | 2.18 ± 0.14 | - | 0.66 ± 0.19 | - | |
20.64 | 1301 | Perillyl alcohol | 000536-59-4 | C10H16O | MS,RI | orange peel floral | 0.7 | 0.21 ± 0.01 | - | 0.11 ± 0.01 | - | |
Ketones | 3.27 | 662 | 1-Penten-3-one | 001629-58-9 | C5H8O | MS,RI | fish, pungent | 0.001 | - | 0.11 ± 0.04 | - | - |
8.35 | 891 | 2-Heptanone | 000110-43-0 | C7H14O | MS,RI | soap | 0.68 | 0.11 ± 0.04 | 0.1 ± 0.03 | - | 0.1 ± 0.01 | |
11.1 | 981 | 1-Hepten-3-one | 002918-13-0 | C7H12O | MS,RI | metal | 0.00004 | - | 0.28 ± 0.04 | 0.43 ± 0.06 | - | |
11.38 | 989 | 6-methyl-5-Hepten-2-one | 000110-93-0 | C8H14O | MS,RI | pepper, mushroom | 0.1 | - | - | - | 0.1 ± 0.03 | |
13.97 | 1074 | 3,5-Octadien-2-one | 038284-27-4 | C8H12O | MS,RI | fruity fatty mushroom | 0.3 | - | 0.11 ± 0.01 | - | - | |
16.07 | 1143 | 3-Nonen-2-one | 014309-57-0 | C9H16O | MS,RI | oily spicy waxy | - | - | 0.15 ± 0.06 | - | 0.12 ± 0.02 | |
16.5 | 1158 | (+)-Dihydrocarvone | 005948-04-9 | C10H16O | MS,RI | warm herbal | - | - | - | 0.34 ± 0.08 | - | |
16.77 | 1167 | Pinocarvone | 030460-92-5 | C10H14O | MS,RI | minty | - | - | 0.06 ± 0 | - | - | |
24.62 | 1456 | Geranylacetone | 003796-70-1 | C13H22O | MS,RI | floral fruity banana | 0.01 | - | - | - | 0.31 ± 0.01 | |
25.48 | 1490 | β-Ionone epoxide | 023267-57-4 | C13H20O2 | MS,RI | fruit, sweet, wood | - | - | - | 0.2 ± 0.06 | - | |
25.49 | 1490 | Trans-β-Ionone | 000079-77-6 | C13H20O | MS,RI | violet, flower, raspberry | 0.0005 | 0.51 ± 0.14 | - | - | 1.28 ± 0.13 | |
Terpenes | 12.53 | 1027 | p-Cymene | 000099-87-6 | C10H14 | MS,RI | Mild, pleasant; aromatic | 0.0133 | 0.09 ± 0.02 | - | - | 0.17 ± 0.03 |
12.75 | 1035 | 3-ethyl-2-methyl-1,3-Hexadiene | 061142-36-7 | C9H16 | MS,RI | - | - | 1.33 ± 0.17 a | 1.56 ± 0.17 a | 0.29 ± 0.04 b | 1.26 ± 0.16 a | |
14.88 | 1101 | Linalool | 000078-70-6 | C10H18O | MS,RI | flower, lavender | 0.0015 | - | 0.09 ± 0.02 | 0.08 ± 0.01 | 0.16 ± 0.02 | |
18.09 | 1210 | Camphene | 000076-22-2 | C10H16O | MS,RI | Camphoraceous | 0.88 | 2.34 ± 0.11 a | 0.43 ± 0.04 c | 1.69 ± 0.04 b | 0.62 ± 0.27 c | |
18.67 | 1232 | Nerol | 000106-25-2 | C10H18O | MS,RI | sweet | 0.08 | 0.71 ± 0.04 a | 0.16 ± 0.03 d | 0.41 ± 0.04 c | 0.58 ± 0.08 b | |
19.38 | 1258 | Geraniol | 000106-24-1 | C10H18O | MS,RI | rose, geranium | 0.0075 | 0.3 ± 0.01 | 0.26 ± 0.01 | 0.5 ± 0.03 | - | |
22.47 | 1372 | (+)-Cyclosativene | 022469-52-9 | C15H24 | MS,RI | - | - | 0.29 ± 0.01 | 0.1 ± 0 | - | - | |
23.39 | 1406 | Cyperene | 002387-78-2 | C15H24 | MS,RI | - | - | 0.11 ± 0 | - | 0.26 ± 0.05 | 0.08 ± 0 | |
24.33 | 1444 | α-Guaiene | 003691-12-1 | C15H24 | MS,RI | wood, balsamic | - | 0.08 ± 0 | - | - | - | |
24.74 | 1461 | Humulene | 006753-98-6 | C15H24 | MS,RI | woody | 0.16 | 0.12 ± 0 | - | - | - | |
25.55 | 1492 | β-Selinene | 017066-67-0 | C15H24 | MS,RI | herbal | - | - | 0.14 ± 0.02 | - | - | |
Acids | 17.1 | 1177 | Octanoic acid | 000124-07-2 | C8H16O2 | MS,RI | rancid soapy fatty | 0.8 | - | 0.38 ± 0.31 | - | - |
27.25 | 1565 | Dodecanoic acid | 000143-07-7 | C12H24O2 | MS,RI | metal | - | 0.14 ± 0.04 | 0.1 ± 0.02 | - | 0.11 ± 0.03 | |
34.72 | 1977 | n-Hexadecanoic acid | 000057-10-3 | C16H32O2 | MS,RI | odorless | - | 3.88 ± 1.24 a | 2.92 ± 0.96 a,b | 1.75 ± 0.36 b | 3.03 ± 0.24 a,b | |
Esters | 26.58 | 1536 | Dihydroactinidiolide | 015356-74-8 | C11H16O2 | MS,RI | ripe apricot | 0.5 | 0.38 ± 0.12 | - | 0.35 ± 0.13 | 0.21 ± 0.04 |
34.26 | 1929 | Hexadecanoic acid, methyl ester | 000112-39-0 | C17H34O2 | MS,RI | oily waxy orris | - | 0.17 ± 0.02 | 0.23 ± 0.06 | 0.11 ± 0.01 | - | |
Alkanes | 25.74 | 1500 | Pentadecane | 000629-62-9 | C15H32 | MS,RI | sweet creamy vanilla | - | - | - | 0.09 ± 0 | - |
35.71 | 2099 | Heneicosane | 000629-94-7 | C21H44 | MS,RI | waxy | - | 0.06 ± 0.01 | - | 0.12 ± 0.05 | - | |
Ethers | 16.28 | 1150 | 1,2-dimethoxyBenzene | 000091-16-7 | C8H10O2 | MS,RI | waxy | - | - | - | 0.07 ± 0.01 | - |
Furan | 11.52 | 993 | 2-pentylFuran | 003777-69-3 | C9H14O | MS,RI | green bean, butter | 0.0048 | 0.74 ± 0.24 a | 0.64 ± 0.21 a,b | 0.33 ± 0.05 b | 0.88 ± 0.13 a |
Phenols | 14.55 | 1091 | Guaiacol | 000090-05-1 | C7H8O2 | MS,RI | smoke, sweet, medicine | 0.00017 | 0.43 ± 0.12 b | 0.1 ± 0.03 c | 0.97 ± 0.15 a | 0.36 ± 0.09 b |
22.19 | 1361 | Eugenol | 000097-53-0 | C10H12O2 | MS,RI | clove, honey | 0.001 | 0.07 ± 0 | - | - | - | |
Others | 4.57 | 745 | 1-chloroPentane | 000543-59-9 | C5H11Cl | MS,RI | sweet | 640 | - | - | - | 0.1 ± 0.01 |
16.52 | 1158 | Nerol oxide | 001786-08-9 | C10H16O | MS,RI | oil, flower | 0.08 | - | - | - | 0.37 ± 0.03 | |
17.67 | 1195 | 4-(1-methylethyl)-1,5-Cyclohexadiene-1-methanol | 019876-45-0 | C10H16O | MS,RI | - | - | - | 0.09 ± 0.01 | - | 0.3 ± 0.05 | |
24.8 | 1463 | 6-pentyl-2H-Pyran-2-one | 027593-23-3 | C10H14O2 | MS,RI | sweet creamy coconut | - | - | 0.15 ± 0.04 | - | - |
Class | Anna | Jieshu95-16 | Ayamurasaki | Shuangzai |
---|---|---|---|---|
Aldehydes | 8.95 ± 0.56 c | 13.27 ± 0.93 a | 11.09 ± 0.417 b | 12.23 ± 0.97 a,b |
Alcohols | 4.31 ± 0.23 a | 0.95 ± 0.24c | 2.19 ± 0.32 b | 1.32 ± 0.07 c |
Ketones | 0.62 ± 0.19 b | 0.70 ± 0.16 b | 0.9 ± 0.0.21 b | 1.9 ± 0.12 a |
Terpenes | 5.23 ± 0.16 a | 2.62 ± 0.19 b | 3.24 ± 0.08 b | 2.87 ± 0.38 b |
Acids | 4.02 ± 1.23 a | 3.28 ± 0.66 a,b | 1.75 ± 0.36 b | 3.14 ± 0.21 a,b |
Esters | 0.55 ± 0.1 a | 0.23 ± 0.05 b | 0.46 ± 0.13 a | 0.21 ± 0.03 b |
Furan | 0.74 ± 0.0.23 a | 0.64 ± 0.21 a,b | 0.33 ± 0.0.05 b | 0.88 ± 0.13 a |
Phenols | 0.47 ± 0.08 b | 0.1 ± 0.03 c | 0.97 ± 0.14 a | 0.36 ± 0.09 b |
Alkanes | 0.06 ± 0 | - | 0.21 ± 0.05 | - |
Ethers | - | - | 0.07 ± 0 | - |
Others | 0.08 ± 0.01 c | 0.21 ± 0.08 b | 0.11 ± 0.01 c | 0.77 ± 0.02 a |
Total content | 24.98 ± 0.21 a | 21.67 ± 0.42 c | 21.33 ± 0.55 c | 23.4 ± 0.4 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Tang, C.; Jiang, B.; Mo, X.; Wang, Z. Optimization of HS-SPME for GC-MS Analysis and Its Application in Characterization of Volatile Compounds in Sweet Potato. Molecules 2021, 26, 5808. https://doi.org/10.3390/molecules26195808
Zhang R, Tang C, Jiang B, Mo X, Wang Z. Optimization of HS-SPME for GC-MS Analysis and Its Application in Characterization of Volatile Compounds in Sweet Potato. Molecules. 2021; 26(19):5808. https://doi.org/10.3390/molecules26195808
Chicago/Turabian StyleZhang, Rong, Chaochen Tang, Bingzhi Jiang, Xueying Mo, and Zhangying Wang. 2021. "Optimization of HS-SPME for GC-MS Analysis and Its Application in Characterization of Volatile Compounds in Sweet Potato" Molecules 26, no. 19: 5808. https://doi.org/10.3390/molecules26195808
APA StyleZhang, R., Tang, C., Jiang, B., Mo, X., & Wang, Z. (2021). Optimization of HS-SPME for GC-MS Analysis and Its Application in Characterization of Volatile Compounds in Sweet Potato. Molecules, 26(19), 5808. https://doi.org/10.3390/molecules26195808