Development of Methods for the Synthesis of Neopentyl Glycol by Hydrogenation of Hydroxypivaldehyde
Abstract
:1. Introduction
2. Synthesis of NPG
- -
- Improvement of the aldol condensation step by developing an active, selective, and easy to separate catalytic system;
- -
- Improvement of the intermediate HPA separation step—the impurities may deactivate the hydrogenation catalyst and promote the degradation of HPA;
- -
- Development of a selective, life span and easy to remove hydrogenation catalyst;
- -
- Improvement of NPG purification methods—high purity of NPG is required in the synthesis of many products derived from NPG;
- -
- Apparatus improvements.
2.1. Improvement of the Production and Purification of HPA
2.2. Improvement of the Production and Purification of NPG
2.3. Apparatus Improvement
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, X.; Wang, Y.; Yan, H.; Jiang, C.; Xu, T. A sustainable valorization of neopentyl glycol salt waste containing sodium formate via bipolar membrane electrodialysis. Sep. Purif. Technol. 2021, 254, 117563. [Google Scholar] [CrossRef]
- Werle, P.; Morawietz, M. Alcohols, polyhydric. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; Volume A1, pp. 4–6. [Google Scholar]
- O’Young, D.L.; Wibowo, C.; Chan, Y.C. System and Method for Producing Neopentyl Glycol. WO Patent WO/2016/022601, 11 February 2016. [Google Scholar]
- Nousiainen, H. Process for the Preparation of Neopentyl Glycol. WO Patent WO/99/35112, 15 July 1999. [Google Scholar]
- Eom, S.S.; Jung, D.W.; Kim, T.Y.; Choi, J.U.; Ko, D.H.; Kim, M.Y.; Choi, M.J. Apparatus for Preparing Glycol and Method of Preparing the Same. U.S. Patent 10,093,603, 9 October 2018. [Google Scholar]
- Steiniger, M.; Guardia, M.G.; Stehmeier, K. Process for Preparing Neopentyl Glycol. U.S. Patent 8,853,465, 7 October 2014. [Google Scholar]
- Buijssen, P.F.A.; Paauwe, J.M.; Posthuma-Van-Tent, C.; Verhoef, H.J.; Cuijpers, J. Powder coating composition comprising a polyester and a β-hydroxyalkylamide as crosslinker. U.S. Patent 9,169,419, 27 October 2015. [Google Scholar]
- O’Brien, M.E.; Janos, J.R. Polyols for Low-VOC Polyurethane Applications. WO Patent WO/2019/147575, 1 August 2019. [Google Scholar]
- Serrano, A.; Dauvergne, J.-L.; Doppiu, S.; Palomo Del Barrio, E. Neopentyl Glycol as Active Supporting Media in Shape-Stabilized PCMs. Materials 2019, 12, 3169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Chen, G.; Jiang, H. Theoretical study on a novel phase change process. Int. J. Energy Res. 1999, 23, 287–294. [Google Scholar] [CrossRef]
- Neopentyl Glycol (NPG) Market: Information by Physical Form (Flakes, Molten), Production Method (Hydrogenation of HPA), End Users (Paints & Coatings) and Regional Outlook—Forecast Till 2026. Available online: https://straitsresearch.com/report/neopentyl-glycol-market/ (accessed on 8 August 2021).
- Werle, P.; Morawietz, M.; Lundmark, S.; Sörensen, K.; Karvinen, E.; Lehtonen, J. Alcohols, polyhydric. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; Volume 2, pp. 266–268. [Google Scholar]
- Park, S.J.; Choi, Y.H.; Choi, S.H.; Cha, M.S.; Kim, S.M.; Yoon, C.Y. Method for the Preparation of Neopentyl Glycol. KR Patent 10-1860148, 21 May 2018. [Google Scholar]
- Dong, L.; Yuan, S.; Liu, Z.; Wang, Z.; Huang, S.; Wang, Y.; Lv, Y.; Bao, Y.; Li, Y. Method for Preparing Hydroxy T-Valeraldehyde, and Application Thereof in Preparation of Neopentyl Glycol. CN Patent 108017510, 2 February 2021. [Google Scholar]
- Frey, G.D.; Bothe, M.; Strutz, H.; Slinkard, W.E. Method for the Combined Production of Polyols in the Presence of an Inorganic Base. U.S. Patent 10,450,254, 22 October 2019. [Google Scholar]
- Hampton, K.W.; Brown, E.H.; Brown, T.K.; Paris, A.K.; Howe, K.S.; Puckete, T.A. Process for Producing Polyols. U.S. Patent 8,710,278, 29 April 2014. [Google Scholar]
- Hampton, K.W.; Brown, E.H. Method for Preparation of Hydroxy Aldehydes. U.S. Patent 9,056,824, 16 July 2015. [Google Scholar]
- Amemiya, J.; Watanabe, M.; Kuzuhara, I. Method of Producing High-Purity Hydroxypivalaldehyde and/or Dimer Thereof. U.S. Patent 7,368,612, 6 May 2008. [Google Scholar]
- Sato, Y.; Yamane, M. Process for the Preparation of Hydroxypivalaldehyde. U.S. Patent 10,392,335, 27 August 2019. [Google Scholar]
- Choi, J.U.; Jung, S.M.; Lee, K.H.; Moon, J.J.; Moon, K.I. Process for the Continuous Production of Neopentyl Glycol. WO Patent WO/98/17614, 30 April 1998. [Google Scholar]
- Hagemeyer, H.J. Mixed Aldols. GB Patent 834100, 4 May 1960. [Google Scholar]
- Tike, M.A.; Gharde, A.M.; Mahajani, V.V. Studies to aid process development for the manufacture of neopentyl glycol from isobutyraldehyde: Aldol condensation followed by hydrogenation. Asia-Pac. J. Chem. Eng. 2008, 3, 333–346. [Google Scholar] [CrossRef]
- Bing, W.; Wang, H.; Zheng, L.; Rao, D.; Yang, Y.; Zheng, L.; Wang, B.; Wang, Y.; Wei, J. A CaMnAl-hydrotalcite solid basic catalyst toward the aldol condensation reaction with a comparable level to liquid alkali catalysts. Green Chem. 2018, 20, 3071–3080. [Google Scholar] [CrossRef]
- Bing, W.; Zheng, L.; He, S.; Rao, D.; Xu, M.; Zheng, L.; Wang, B.; Wang, Y.; Wei, M. Insights on Active Sites of CaAl-Hydrotalcite as a High-Performance Solid Base Catalyst toward Aldol Condensation. ACS Catal. 2018, 8, 656–664. [Google Scholar] [CrossRef]
- Monasterska, E.; Siewniak, A.; Pankalla, E.; Chrobok, A. Synthesis and application of hydroxypivaldehyde. Przem. Chem. 2021, 100, 62–66. [Google Scholar]
- Santoro, E.; Chiavarini, M.J. 3-Hydroxy-2,2-dimethylpropionaldehyde: Equilibria and structure of its dimer. Chem. Soc. Perkin Trans. 2 1978, 189–192. [Google Scholar] [CrossRef]
- Paatero, E.; Nummi, E.; Lindfors, L.P.; Nousiainen, J.H.; Lahinen, L.; Haakana, R. Process for the Preparation of Polyvalent Alcohols. WO Patent WO/98/29374, 9 July 1998. [Google Scholar]
- Eom, S.S.; Ko, D.H.; Kim, M.Y.; Jung, D.W.; Kim, T.Y.; Choi, M.J. Highly Efficient Neopentyl Glycol Preparation Method and Device Therefor. U.S. Patent 9,914,682, 13 March 2018. [Google Scholar]
- Hausen, M.; Kaufhold, M.; Lange, E. Two Stage Hydrogenation to Make Neopentyl Glycol. U.S. Patent 4,250,337, 10 February 1981. [Google Scholar]
- Morris, D.L.; Palmer, B.W.; McAninch, T.W. Process for the Production of Neopentyl Glycol. U.S. Patent 4,855,515, 8 August 1989. [Google Scholar]
- Eisenacher, M.; Schalapski, K.; Strutz, M. Method for the Production of Neopentyl Glycol. WO Patent WO/2014/067600, 8 May 2014. [Google Scholar]
- Yoneoka, M.; Watabe, K.; Matsuda, G. Process for Producing Neopentyl Glycol. U.S. Patent 5,395,989, 7 March 1995. [Google Scholar]
- Mahmud, M.; Faizi, A.K.; Anchoori, V.; Al-Qahtani, A. Liquid-Phase Hydrogenation Process and Catalyst System for Converting Amine- or Quaternary-Ammonium-Compound-Contaminated Aldehydes into the Corresponding Alcohols. U.S. Patent 6,600,078, 29 July 2003. [Google Scholar]
- Jin, S.; Jiang, W.; Zhang, J.; Chen, J. Two-Step Hydrogenation Process for Preparing Neopentyl Glycol. CN Patent 102249854, 19 February 2014. [Google Scholar]
- Jin, S.; Jiang, W.; Zhang, J.; Chen, J. Process for Preparation of Neopentyl Glycol by Hydrogenation with Cu-Zn-Al Catalyst. CN Patent 102311313, 10 September 2014. [Google Scholar]
- Wei, C.; Jiang, J.; Xu, F. Cu-Based Catalyst for Preparing Neopentyl Glycol by Hydrogenation Method, and Its Preparation Method. CN Patent 102513107, 18 September 2013. [Google Scholar]
- Cao, S.; Jiang, Q.; Yang, Z.; Song, J.; Hu, B.; Yang, K.; Li, X.; Hu, X. Process for Preparation of Neopentyl Glycol. CN Patent 103351277, 31 December 2014. [Google Scholar]
- Wang, Z.; Lin, K.; Wang, Q.; Liu, Y.; Li, C.; Jin, F.; Chi, X.; Jiang, H.; Zhao, X. Catalyst Applied in Neopentyl Glycol Production Through Hydrogenation. CN Patent 103447044, 13 April 2016. [Google Scholar]
- Jiang, W.; Jin, S.; Zhang, J.; Chen, J. Method for Preparing Neopentyl Glycol. CN Patent 102304021, 19 February 2014. [Google Scholar]
- Sun, Y.; Yuan, H.; Sun, Z.; Wu, J.; Zhang, H.; Zhang, M. Catalyst for Preparing Neopentyl Glycol by Hydroxypivalaldehyde Hydrogenation and Its Preparation Method. CN Patent 105727958A, 6 July 2016. [Google Scholar]
- Wei, C.; Jiang, J.; Xu, F.; Liu, J. Preparation of Neopentyl Glycol. CN Patent 101863738, 16 October 2013. [Google Scholar]
- Schalapski, K.; Kretz, T.; Kreickmann, T.; Heymanns, P.; Lukas, R.; Schulz, R.P. Method of Producing Neopentyl Glycol. WO Patent WO/2010/000382, 7 January 2010. [Google Scholar]
- Reimer, J.; Schalapski, K.; Rahe, J.H.; Arnold, J.; Musenbrock, M. Method for Continuously Producing Diols from Aldehydes by Means of Raney Cobalt Catalysis. WO Patent WO/2020/245101, 10 December 2020. [Google Scholar]
- Teruyuki, N.; Tomiyoshi, F.; Seiji, K.; Yoshimi, F. Process for Producing Neopentyl Glycol. U.S. Patent 4,933,473, 12 June 1990. [Google Scholar]
- Salek, J.S.; Pugach, J.; Elias, C.L.; Cullo, L.A. Manufacture of Neopentyl Glycol (IV). U.S. Patent 5,532,417, 2 July 1996. [Google Scholar]
- Eisenacher, M.; Schalapski, K.; Heymanns, P.; Lukas, R.; Strutz, H. Continuous Method for the Production of Neopentyl Glycol. U.S. Patent 9,133,083, 15 September 2015. [Google Scholar]
- Hsu, S.H.; Tsai, C.R.; Chuang, J.J. Method for the manufacture of Neopentyl Glycol by the Hydrogenation of Aldol Condensation-Produced Hydroxypivaldehyde. U.S. Patent 6,268,539, 31 July 2001. [Google Scholar]
- Yu, Q.; Liu, G.; Liu, Z.; Li, Z. Method for Preparing Neopentyl Glycol Via Hydrogenation of Hydroxy Neopentyl Aldehyde. CN Patent 107540521, 5 January 2018. [Google Scholar]
- Schulz, R.P.; Scholz, H.; Hupperich, T.; Heymanns, P.; Kretz, T.; Kaufmann, A.; Schalapski, K.; Strutz, H. Process for Producing Neopentyl Glycol by Hydrogenative Cracking of High Boilers Occurring in the Production Process. WO Patent WO/2010/006688, 21 October 2010. [Google Scholar]
- Cui, L.; Zhao, L.; Yu, H. Preparation and Purification Process of 2,2-Dimethyl-1,3-Propanediol. WO Patent WO/2021/022831, 11 February 2021. [Google Scholar]
Catalyst | Temperature, °C | Pressure, MPa | Solvent | HPA Conversion, % | Yield, % | Selectivity, % | Ref. |
---|---|---|---|---|---|---|---|
manganese oxide-promoted copper chromite | 150–220 | 2.0–10.3 | - | - | 90.6 | - | [30] |
copper chromite | 100–200 | 3.5–20.7 | aliphatic alcohol (20–90 wt%) water (0–40%) | - | - | 99 (purity) | [45] |
copper chromite with barium and manganese as activators | 80–140 | 2.0–18.0 | aliphatic alcohol (20–90 wt%) water (15–25 wt%) | 99.4–99.9 | - | 94–100 | [31] |
copper chromite with barium as activator | I stage: 120–160 II stage: 170–200 | 20.0–30.0 | water 3–8 wt% | - | >99 | - | [29] |
copper chromite with barium and manganese as activators | 125–180 | 0.03–0.12 | water (15–25 wt%) | >99.8 | - | 97.3–98.6 | [46] |
copper, zinc, and zirconium | 60–250 | 0.1–14.7 | alcohol, ether or saturated hydrocarbons | 99.7–100 | - | 97.6–99.0 | [32] |
copper chromite or ruthenium activated carbon (containing Cu, Co, Mn) copper chromite or ruthenium activated carbon (containing Cu, Co, Mn) | 110–170 | 2–6 | - | 98.1 | - | 99.3 | [3] |
copper-based catalyst, e.g., CuO/BaO | 100–250 | 1.0–25.0 | NPG (35–70 wt%), alcohol (10–30 wt%) and water (10–30 wt%) | 99.2–99.8 | 99.2–99.7 | - | [28] |
copper chromite, oxides of cobalt, manganese, nickel, Pt, Ru, W, Pd | 50–200 | 0.1–20 | alcohol, ether, ketone (1–70 wt%) | 98.1 | - | 90.7 | [27] |
copper oxide and zinc oxide with aluminum as a promoter | 110–180 | 0.1–3.45 | alcohol | 100 | 100 | - | [33] |
nickel-containing catalyst | <100 | aliphatic alcohol or ether or their mixture (1–70 wt%) water (0–15 wt%) | 91.0–93.2 | - | 98.5–99.7 | [4] | |
molybdenum promoted Raney nickel | 70–120 | 0.6–12.4 | aliphatic alcohol (16–54 wt%) | 99.8 | - | -- | [47] |
nickel-based catalyst, e.g., Raney nickel | 120–180 | 0.7–10.3 | - | - | - | 98 (purity) | [20] |
Raney cobalt | 60–220 | 2.0–15.0 | linear or branched alcohol | >99.9 | - | - | [43] |
Ru/Al2O3 | 120 | 5.4 | water and isopropanol (1:2 w/w ratio) | - | - | >99 | [22] |
metals from transition groups, such as Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, and most often Ni and Cu, on a support, e.g., titanium oxides | 50–180 | 1.0–25.0 | water, cyclic or acyclic ethers, lower alcohols | 99.9 | - | 97.9 | [6] |
Pt-Ru-W | 60–150 | 0.1–4.9 | water | 98.0–100 | 100 | [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monasterska, E.; Chrobok, A.; Pankalla, E.; Siewniak, A. Development of Methods for the Synthesis of Neopentyl Glycol by Hydrogenation of Hydroxypivaldehyde. Molecules 2021, 26, 5822. https://doi.org/10.3390/molecules26195822
Monasterska E, Chrobok A, Pankalla E, Siewniak A. Development of Methods for the Synthesis of Neopentyl Glycol by Hydrogenation of Hydroxypivaldehyde. Molecules. 2021; 26(19):5822. https://doi.org/10.3390/molecules26195822
Chicago/Turabian StyleMonasterska, Edyta, Anna Chrobok, Ewa Pankalla, and Agnieszka Siewniak. 2021. "Development of Methods for the Synthesis of Neopentyl Glycol by Hydrogenation of Hydroxypivaldehyde" Molecules 26, no. 19: 5822. https://doi.org/10.3390/molecules26195822
APA StyleMonasterska, E., Chrobok, A., Pankalla, E., & Siewniak, A. (2021). Development of Methods for the Synthesis of Neopentyl Glycol by Hydrogenation of Hydroxypivaldehyde. Molecules, 26(19), 5822. https://doi.org/10.3390/molecules26195822