Photocatalytic Crystalline and Amorphous TiO2 Nanotubes Prepared by Electrospinning and Atomic Layer Deposition
Abstract
:1. Introduction
2. Results
2.1. Preparation of the Polymer Fibers
2.1.1. SEM-EDX of the Polymer Nanofibers
2.1.2. Thermal Analysis of the Polymer Nanofibers in Nitrogen
2.2. Preparation of the TiO2 Nanotubes
2.2.1. SEM-EDX of the Polymer/TiO2 Core/Shell Nanofibers
2.2.2. Thermal Analysis of the Polymer/TiO2 Core/Shell Nanofibers in Air
2.2.3. SEM-EDX of The TiO2 Nanotubes
2.2.4. FT-IR Spectroscopy of The TiO2 Nanotubes
2.2.5. Powder XRD Measurement of the TiO2 Nanotubes
2.2.6. UV-Vis Spectroscopy of the TiO2 Nanotubes
2.2.7. Photocatalysis Study of the TiO2 Nanotubes
3. Materials and Methods
3.1. Preparation of the Polymer Fibers
3.2. Thermal Analysis of the Polymer Fibers
3.3. Atomic Layer Deposition of the TiO2 Layer
3.4. Preparation of the TiO2 Nanotubes
3.5. Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wang, D. Photocatalysis: Basic Principles, Diverse Forms of Implementations and Emerging Scientific Opportunities. Adv. Energy Mater. 2017, 7, 1700841. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Assadi, M.H.N.; Hanaor, D.A.H. The effects of copper doping on photocatalytic activity at (101) planes of anatase TiO2: A theoretical study. Appl. Surf. Sci. 2016, 387, 682–689. [Google Scholar] [CrossRef] [Green Version]
- Doustkhah, E.; Assadi, M.H.N.; Komaguchi, K.; Tsunoji, N.; Esmat, M.; Fukata, N.; Tomita, O.; Abe, R.; Ohtani, B.; Ide, Y. In situ Blue titania via band shape engineering for exceptional solar H2 production in rutile TiO2. Appl. Catal. B 2021, 297, 120380. [Google Scholar] [CrossRef]
- Di Paola, A.; Bellardita, M.; Palmisano, L.; Group, S.P.; Energia, D.; Informazione, I. Brookite, the Least Known TiO2 Photocatalyst. Catalysts 2013, 3, 36–73. [Google Scholar] [CrossRef] [Green Version]
- Szilágyi, I.M.; Teucher, G.; Härkönen, E.; Färm, E.; Hatanpää, T.; Nikitin, T.; Khriachtchev, L.; Räsänen, M.; Ritala, M.; Leskelä, M. Programming nanostructured soft biological surfaces by atomic layer deposition. Nanotechnology 2013, 24, 245701. [Google Scholar] [CrossRef] [Green Version]
- Justh, N.; Firkala, T.; László, K.; Lábár, J.; Szilágyi, I.M. Photocatalytic C60-amorphous TiO2 composites prepared by atomic layer deposition. Appl. Surf. Sci. 2017, 419, 497–502. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Lu, L.; Li, L. The photocatalytic properties of amorphous TiO2 composite films deposited by magnetron sputtering. Res. Chem. Intermed. 2011, 38, 487–498. [Google Scholar] [CrossRef]
- Jallouli, N.; Pastrana-martínez, L.M.; Ribeiro, A.R.; Moreira, N.F.F.; Faria, J.L.; Hentati, O.; Silva, A.M.T.; Ksibi, M. Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system. Chem. Eng. J. 2018, 334, 976–984. [Google Scholar] [CrossRef]
- Wang, W.; Chen, H.; Fang, J.; Lai, M. Large-scale preparation of rice-husk-derived mesoporous SiO2@TiO2 as efficient and promising photocatalysts for organic contaminants degradation. Appl. Surf. Sci. 2019, 467, 1187–1194. [Google Scholar] [CrossRef]
- Sreeja, S.; Shetty, K.V. Photocatalytic water disinfection under solar irradiation by Ag@TiO2 core-shell structured nanoparticles. Sol. Energy 2017, 157, 236–243. [Google Scholar] [CrossRef]
- Baruah, S.; Najam, M.; Joydeep, K. Perspectives and applications of nanotechnology in water treatment. Environ. Chem. Lett. 2016, 14, 1–14. [Google Scholar] [CrossRef]
- Krishna, M.G.; Vinjanampati, M.; Purkayastha, D.D. Metal oxide thin films and nanostructures for self-cleaning applications: Current status and future prospects. Eur. Phys. J. Appl. Phys. 2013, 62, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gholami, A.; Alemrajabi, A.A.; Saboonchi, A. Experimental study of self-cleaning property of titanium dioxide and nanospray coatings in solar applications. Sol. Energy 2017, 157, 559–565. [Google Scholar] [CrossRef]
- Yu, H.; Song, L.; Hao, Y.; Lu, N.; Quan, X.; Chen, S.; Zhang, Y.; Feng, Y. Fabrication of pilot-scale photocatalytic disinfection device by installing TiO2 coated helical support into UV annular reactor for strengthening sterilization. Chem. Eng. J. 2016, 283, 1506–1513. [Google Scholar] [CrossRef]
- Chen, L.; He, F.; Huang, Y.; Meng, Y.; Guo, R. Hydrogenated nanoporous TiO2 film on Ti-25Nb-3Mo-2Sn-3Zr alloy with enhanced photocatalytic and sterilization activities driven by visible light. J. Alloys Compd. 2016, 678, 5–11. [Google Scholar] [CrossRef]
- Kite, S.V.; Sathe, D.J.; Patil, S.S.; Bhosale, P.N.; Garadkar, K.M. Nanostructured TiO2 thin films by chemical bath deposition method for high photoelectrochemical performance. Mater. Res. Express 2018, 6, 026411. [Google Scholar] [CrossRef]
- Krysiak, O.A.; Barczuk, P.J.; Bienkowski, K.; Wojciechowski, T.; Augustynski, J. The photocatalytic activity of rutile and anatase TiO2 electrodes modified with plasmonic metal nanoparticles followed by photoelectrochemical measurements. Catal. Today 2019, 321, 52–58. [Google Scholar] [CrossRef]
- Gleiter, H. Nanostructured Materials: Basic Concepts and Mictrostructure. Acta Mater. 2000, 48, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Dhand, C.; Dwivedi, N.; Loh, J.; Jie, N. Methods and strategies for the synthesis of diverse nanoparticles and their applications. RSC Adv. 2015, 5, 105003–105037. [Google Scholar] [CrossRef]
- Mussa Farkhani, S.; Valizadeh, A. Electrospinning and electrospun nanofibres. IET Nanobiotechnol. 2014, 8, 83–92. [Google Scholar] [CrossRef]
- Thenmozhi, S.; Dharmaraj, N.; Kadirvelu, K.; Kim, H.Y. Electrospun nanofibers: New generation materials for advanced applications. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2017, 217, 36–48. [Google Scholar] [CrossRef]
- Boyadjiev, S.I.; Kéri, O.; Bárdos, P.; Firkala, T.; Gáber, F.; Nagy, Z.K.; Baji, Z.; Takács, M.; Szilágyi, I.M. TiO2/ZnO and ZnO/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition for photocatalysis and gas sensing. Appl. Surf. Sci. 2017, 424, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Szilágyi, I.M.; Santala, E.; Heikkilä, M.; Pore, V.; Kemell, M.; Nikitin, T.; Teucher, G.; Firkala, T.; Khriachtchev, L.; Räsänen, M.; et al. Photocatalytic Properties of WO3/TiO2 Core/Shell Nanofibers prepared by Electrospinning and Atomic Layer Deposition. Chem. Vap. Depos. 2013, 19, 149–155. [Google Scholar] [CrossRef]
- Kéri, O.; Kocsis, E.; Nagy, Z.K.; Parditka, B.; Erdélyi, Z.; Szilágyi, I.M. Preparation of Al2O3 coated PVA and PVP nanofibers and Al2O3 nanotubes by electrospinning and atomic layer deposition. Rev. Roum. Chim. 2018, 63, 401–406. [Google Scholar]
- George, S.M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; Karuturi, S.K.; Tok, A.I.Y.; Fan, H.J. Atomic layer deposition for nanofabrication and interface engineering. Nanoscale 2012, 4, 1522–1528. [Google Scholar] [CrossRef]
- Szilágyi, I.M.; Nagy, D. Review on one-dimensional nanostructures prepared by electrospinning and atomic layer deposition. J. Phys. Conf. Ser. 2014, 559, 012010. [Google Scholar] [CrossRef]
- Betti, N.A. Thermogravimetric Analysis on PVA/PVP Blend Under Air Atmosphere. Eng. Technol. J. 2016, 34, 2433–2441. [Google Scholar]
- Alghunaim, N.S. Optimization and spectroscopic studies on carbon nanotubes/PVA nanocomposites. Results Phys. 2016, 6, 456–460. [Google Scholar] [CrossRef] [Green Version]
- Szilágyi, I.M.; Santala, E.; Kemell, M.; Nikitin, T.; Khriachtchev, L.; Räsänen, M.; Ritala, M. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: Optimising the annealing conditions for obtaining WO3 nanofibers. J. Therm. Anal. Calorim. 2011, 105, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Jovanocic, Z.; Radosavljevic, A.; Siljegovic, M.; Bibic, N.; Miskovic-Stankovic, V.Z. Kacarevic-Popovic, Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by g-irradiation. Radiat. Phys. Chem. 2012, 81, 1720–1728. [Google Scholar] [CrossRef]
- Tauc, J.; Scott, T.A. The Optical Propeties of Solids. Phys. Today 1967, 20, 105–107. [Google Scholar] [CrossRef]
- Hannula, M.; Ali-Löytty, H.; Lahtonen, K.; Sarlin, E.; Saari, J.; Valden, M. Improved stability of atomic layer deposited amorphous TiO2 photoelectrode coatings by thermally induced oxygen defects. Chem. Mater. 2018, 30, 1199–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valencia, S.; Marín, J.M.; Restrepo, G. Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment. Open Mater. Sci. J. 2010, 4, 9–14. [Google Scholar] [CrossRef]
- Deskins, T.N.A.; Dub, J.; Raoc, P. The structural and electronic properties of reduced amorphous titania. Phys. Chem. Chem. Phys. 2017, 19, 18671–18684. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, J.C.; Yu, J.; Kwok, Y.; Che, Y.; Zhao, J.; Ding, L.; Ge, W.; Wong, P. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A Gen. 2005, 289, 186–196. [Google Scholar] [CrossRef]
- Hsu, L.; Lee, L.; Lin, C. Adsorption and photocatalytic degradation of polyvinyl alcohol in aqueous solutions using P-25 TiO2. Chem. Eng. J. 2011, 173, 698–705. [Google Scholar] [CrossRef]
- Justh, N.; Mikula, G.J.; Bakos, L.P.; Nagy, B.; László, K.; Parditka, B.; Erdélyi, Z.; Takáts, V.; Mizsei, J.; Szilágyi, I.M. Photocatalytic properties of polymer/TiO2 and carbon/TiO2 aerogel composites prepared by atomic layer deposition. Carbon 2019, 146, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Kéri, O.; Kócs, L.; Hórvölgyi, Z.; Kárpáti, L.; Baji, Z.; Szilágyi, I.M. Photocatalytic amorphous and crystalline TiO2 prepared by atomic layer deposition. Period. Polytech. Chem. Eng. 2019, 63, 378–387. [Google Scholar] [CrossRef]
- Hussien, M.S.A.; Shenouda, S.S.; Parditka, B.; Csík, A.; Erdélyi, Z. Enhancement of Urbach’s energy and non-lattice oxygen content of TiO1.7 ultra-thin films for more photocatalytic activity. Ceram. Int. 2020, 46, 15236–15241. [Google Scholar] [CrossRef]
- Shenouda, S.S.; Hussien, M.S.A.; Parditka, B.; Csík, A.; Takats, V.; Erdélyi, Z. Novel amorphous Al-rich Al2O3 ultra-thin films as active photocatalysts for water treatment from some textile dyes. Ceram. Int. 2020, 46, 7922–7929. [Google Scholar] [CrossRef]
Samples Containing PVA | Samples Containing PVA | ||||||
---|---|---|---|---|---|---|---|
PVA/TiO2 | TiO2 NTs Dissolution | TiO2 NTs Annealing | PVP/TiO2 | TiO2 NTs Dissolution | TiO2 NTs Annealing | ||
C | % | 36.4 | 15.7 | 6.0 | 39.0 | 7.5 | 4.6 |
N | - | - | - | 7.5 | 3.3 | 2.1 | |
O | 38.3 | 45.6 | 59.1 | 28.8 | 49.2 | 46.5 | |
Cl | 2.6 | 4.3 | 1.0 | 3.3 | 5.1 | 1.3 | |
Ti | 22.7 | 34.4 | 33.9 | 21.4 | 34.9 | 45.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kéri, O.; Kocsis, E.; Karajz, D.A.; Nagy, Z.K.; Parditka, B.; Erdélyi, Z.; Szabó, A.; Hernádi, K.; Szilágyi, I.M. Photocatalytic Crystalline and Amorphous TiO2 Nanotubes Prepared by Electrospinning and Atomic Layer Deposition. Molecules 2021, 26, 5917. https://doi.org/10.3390/molecules26195917
Kéri O, Kocsis E, Karajz DA, Nagy ZK, Parditka B, Erdélyi Z, Szabó A, Hernádi K, Szilágyi IM. Photocatalytic Crystalline and Amorphous TiO2 Nanotubes Prepared by Electrospinning and Atomic Layer Deposition. Molecules. 2021; 26(19):5917. https://doi.org/10.3390/molecules26195917
Chicago/Turabian StyleKéri, Orsolya, Eszter Kocsis, Dániel Attila Karajz, Zsombor Kristóf Nagy, Bence Parditka, Zoltán Erdélyi, Anna Szabó, Klára Hernádi, and Imre Miklós Szilágyi. 2021. "Photocatalytic Crystalline and Amorphous TiO2 Nanotubes Prepared by Electrospinning and Atomic Layer Deposition" Molecules 26, no. 19: 5917. https://doi.org/10.3390/molecules26195917
APA StyleKéri, O., Kocsis, E., Karajz, D. A., Nagy, Z. K., Parditka, B., Erdélyi, Z., Szabó, A., Hernádi, K., & Szilágyi, I. M. (2021). Photocatalytic Crystalline and Amorphous TiO2 Nanotubes Prepared by Electrospinning and Atomic Layer Deposition. Molecules, 26(19), 5917. https://doi.org/10.3390/molecules26195917