Chitinase Chit62J4 Essential for Chitin Processing by Human Microbiome Bacterium Clostridium paraputrificum J4
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterium Cultivation and Culture Fluid Treatment
2.2. Purification and Identification of Crude Enzyme crChit62J4
2.3. Recombinant Expression
2.4. DNA Isolation and Genomic Sequencing
2.5. Proteolytic Digestion and Mass Spectrometry Analysis
2.6. MALDI-TOF Analysis
2.7. Activity Assay
2.8. TLC
2.9. Dynamic Light Scattering
2.10. Determination of Protein Concentration
2.11. Sequence Analysis and Computer Modeling
3. Results
4. Discussion
4.1. Sequence and Structure of Chit62J4
4.2. Molecular and Catalytic Properties of Chit62J4
4.3. Adaptation of Clostridium Chitinase to Environment
4.4. Role of Chit62J4
4.5. Factors Influencing Activity of Chit62J4
4.6. Potential Application with Antimycotics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviation
CBM | carbohydrate binding module |
EDTA | ethylendiaminetetraacetic acid |
GH | glycosyl hydrolase |
GlcNAc | N-acetylglucosamine |
PES | polyethersulfone |
SDS | sodium dodecyl sulfate |
MALDI-TOF | Matrix-assisted laser desorption/ionization-time of flight |
CAN | acetonitrile |
TFA | trifluoroacetic acid |
MALDI-FTMS | Matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry |
PMF | peptide mass fingerprinting |
CM-chitin | carboxymethyl chitin |
MS | mass spectrometry |
DLS | Dynamic light scattering |
Fn3 | Fibronectin type 3 |
ChtBD3 | chitin-binding domain type 3 |
PDB | Protein Data Bank |
pNG | 4-nitrophenyl-N-acetyl-β-D-glucosaminide |
pNGG | 4-nitrophenyl N |
pNGGG | 4-nitrophenyl-β-d-N,N′,N′′-triacetylchitotrioside |
The nucleotide and amino acid sequences of Chit62J4 are available in the GenBank database under accession code KX353699. |
References
- Flint, H.J. Polysaccharide breakdown by anaerobic microorganisms inhabiting the mammalian gut. Adv. Appl. Microbiol. 2004, 56, 89–120. [Google Scholar] [PubMed]
- Flint, H.J.; Bayer, E.A.; Rincon, M.T.; Lamed, R.; White, B.A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 2008, 6, 121–131. [Google Scholar] [CrossRef]
- Lopez-Santamarina, A.; Mondragon, A.D.C.; Lamas, A.; Miranda, J.M.; Franco, C.M.; Cepeda, A. Animal-origin prebiotics based on chitin: An alternative for the future? A critical review. Foods 2020, 9, 782. [Google Scholar] [CrossRef]
- Simunek, J.; Kopecny, J.; Hodrova, B.; Bartonova, H. Identification and characterization of Clostridium paraputrificum, a chitinolytic bacterium of human digestive tract. Folia Microbiol. Praha 2002, 47, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Hamady, M.; Cantarel, B.L.; Coutinho, P.M.; Henrissat, B.; Gordon, J.I.; Knight, R. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc. Natl. Acad. Sci. USA 2008, 105, 15076–15081. [Google Scholar] [CrossRef] [Green Version]
- Duncan, S.H.; Louis, P.; Thomson, J.M.; Flint, H.J. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 2009, 11, 2112–2122. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Tesar, C.; Wilton, R.; Keigher, L.; Babnigg, G.; Joachimiak, A. Novel alpha-glucosidase from human gut microbiome: Substrate specificities and their switch. FASEB J. 2010, 24, 3939–3949. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, D.; Nagpure, A.; Gupta, R.K. Bacterial chitinases: Properties and potential. Crit. Rev. Biotechnol. 2007, 27, 21–28. [Google Scholar] [CrossRef]
- Hartl, L.; Zach, S.; Seidl-Seiboth, V. Fungal chitinases: Diversity, mechanistic properties and biotechnological potential. Appl. Microbiol. Biotechnol. 2012, 93, 533–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The carbohydrate-active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef]
- Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [Green Version]
- Arimori, T.; Kawamoto, N.; Shinya, S.; Okazaki, N.; Nakazawa, M.; Miyatake, K.; Fukamizo, T.; Ueda, M.; Tamada, T. Crystal structures of the catalytic domain of a novel glycohydrolase family 23 chitinase from Ralstonia sp. A-471 reveals a unique arrangement of the catalytic residues for inverting chitin hydrolysis. J. Biol. Chem. 2013, 288, 18696–18706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Jiang, X.; Yang, Q. Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol. Adv. 2020, 43, 107553. [Google Scholar] [CrossRef]
- Eijsink, V.; Hoell, I.; Vaaje-Kolstada, G. Structure and function of enzymes acting on chitin and chitosan. Biotechnol. Genet. Eng. Rev. 2010, 27, 331–366. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Zheng, T.; Homer, R.J.; Kim, Y.K.; Chen, N.Y.; Cohn, L.; Hamid, Q.; Elias, J.A. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 2004, 304, 1678–1682. [Google Scholar] [CrossRef] [PubMed]
- Duskova, J.; Tishchenko, G.; Ponomareva, E.; Simunek, J.; Koppova, I.; Skalova, T.; Stepankova, A.; Hasek, J.; Dohnalek, J. Chitinolytic enzymes from bacterium inhabiting human gastrointestinal tract—Critical parameters of protein isolation from anaerobic culture. Acta Biochim. Pol. 2011, 58, 261–263. [Google Scholar] [CrossRef]
- Sinha, V.R.; Kumria, R. Microbially triggered drug delivery to the colon. Eur. J. Pharm. Sci. 2003, 18, 3–18. [Google Scholar] [CrossRef]
- Simunek, J.; Tishchenko, G.; Hodrova, B.; Bartonova, H. Effect of chitosan on the growth of human colonic bacteria. Folia Microbiol. Praha 2006, 51, 306–308. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Arachchi, J.K.V.; Jeon, Y.J. Food applications of chitin and chitosans. Trends Food Sci. Tech. 1999, 10, 37–51. [Google Scholar] [CrossRef]
- Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [Green Version]
- Prashanth, K.V.H.; Tharanathan, R.N. Chitin/chitosan: Modifications and their unlimited application potential—An overview. Trends Food Sci. Tech. 2007, 18, 117–131. [Google Scholar] [CrossRef]
- Villapol, S. Gastrointestinal symptoms associated with COVID-19: Impact on the gut microbiome. Transl. Res. 2020, 226, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Simunek, J.; Koppova, I.; Tiscenko, G.; Dohnalek, J.; Duskova, J. Excretome of the chitinolytic bacterium Clostridium paraputrificum J4. Folia Microbiol. Praha 2012, 57, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Kopecny, J.; Hodrova, B.; Stewart, C.S. The isolation and characterization of a rumen chitinolytic bacterium. Lett. Appl. Microbiol. 1996, 23, 195–198. [Google Scholar] [CrossRef]
- Tishchenko, G.; Simunek, J.; Bartonova, H.; Duskova, J.; Dohnalek, J.; Ponomareva, E.; Tennikova, T. Sample preparation in separation of the extracellular chitinolytic enzymes of the human intestinal bacterium Clostridium paraputrificum J4 from the culture fluids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 2175–2178. [Google Scholar] [CrossRef]
- Inglis, P.W.; Peberdy, J.F. Production and purification of a chitinase from Ewingella americana, a recently described pathogen of the mushroom, Agaricus bisporus. FEMS Microbiol. Lett. 1997, 157, 189–194. [Google Scholar] [CrossRef]
- Pelletier, A.; Sygusch, J. Purification and characterization of three chitosanase activities from Bacillus megaterium P1. Appl. Environ. Microbiol. 1990, 56, 844–848. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST plus: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benkert, P.; Biasini, M.; Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011, 27, 343–350. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sonderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.B.; Chou, K.C. Signal-3L: A 3-layer approach for predicting signal peptides. Biochem. Bioph. Res. Co. 2007, 363, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, K.; Yoshimoto, M.; Karita, S.; Kimura, T.; Ohmiya, K.; Sakka, K. Characterization of the third chitinase Chi18C of Clostridium paraputrificum M-21. Appl. Microbiol. Biot. 2007, 73, 1106–1113. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Wu, Y.J.; Chiang, T.Y.; Kuo, C.Y.; Shrestha, K.L.; Chao, C.F.; Huang, Y.C.; Chuankhayan, P.; Wu, W.G.; Li, Y.K.; et al. Crystal structures of Bacillus cereus NCTU2 chitinase complexes with chitooligomers reveal novel substrate binding for catalysis A chitinase without chitin binding and insertion domains. J. Biol. Chem. 2010, 285, 31603–31615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punta, M.; Coggill, P.C.; Eberhardt, R.Y.; Mistry, J.; Tate, J.; Boursnell, C.; Pang, N.; Forslund, K.; Ceric, G.; Clements, J.; et al. The Pfam protein families database. Nucleic Acids Res. 2012, 40, D290–D301. [Google Scholar] [CrossRef]
- Ikegami, T.; Okada, T.; Hashimoto, M.; Seino, S.; Watanabe, T.; Shirakawa, M. Solution structure of the chitin-binding domain of Bacillus circulans WL-12 chitinase A1. J. Biol. Chem. 2000, 275, 13654–13661. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, M.; Ikegami, T.; Seino, S.; Ohuchi, N.; Fukada, H.; Sugiyama, J.; Shirakawa, M.; Watanabe, T. Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. J. Bacteriol. 2000, 182, 3045–3054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morimoto, K.; Karita, S.; Kimura, T.; Sakka, K.; Ohmiya, K. Characterization of Clostridium paraputrificum chitinase A from a recombinant Escherichia coli. J. Biosci. Bioeng. 2001, 92, 466–468. [Google Scholar] [CrossRef]
- Morimoto, K.; Karita, S.; Kimura, T.; Sakka, K.; Ohmiya, K. Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin binding domain. J. Bacteriol. 1997, 179, 7306–7314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Morimoto, K.; Katagiri, N.; Kimura, T.; Sakka, K.; Lun, S.; Ohmiya, K. A novel beta-N-acetylglucosaminidase of Clostridium paraputrificum M-21 with high activity on chitobiose. Appl. Microbiol. Biot. 2002, 60, 420–427. [Google Scholar]
- Wen, C.M.; Tseng, C.S.; Cheng, C.Y.; Li, Y.K. Purification, characterization and cloning of a chitinase from Bacillus sp NCTU2. Biotechnol. Appl. Biochem. 2002, 35, 213–219. [Google Scholar] [CrossRef]
- Van Aalten, D.M.; Komander, D.; Synstad, B.; Gaseidnes, S.; Peter, M.G.; Eijsink, V.G. Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc. Natl. Acad. Sci. USA 2001, 98, 8979–8984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papanikolau, Y.; Prag, G.; Tavlas, G.; Vorgias, C.E.; Oppenheim, A.B.; Petratos, K. High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry 2001, 40, 11338–11343. [Google Scholar] [CrossRef]
- Dahiya, N.; Tewari, R.; Hoondal, G.S. Biotechnological aspects of chitinolytic enzymes: A review. Appl. Microbiol. Biotechnol. 2006, 71, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H.; Macfarlane, G.T. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 1991, 70, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Koval, T.; Dohnalek, J. Characteristics and application of S1–P1 nucleases in biotechnology and medicine. Biotechnol. Adv. 2018, 36, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Muegge, B.D.; Kuczynski, J.; Knights, D.; Clemente, J.C.; Gonzalez, A.; Fontana, L.; Henrissat, B.; Knight, R.; Gordon, J.I. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 2011, 332, 970–974. [Google Scholar] [CrossRef] [Green Version]
- Frankowski, J.; Lorito, M.; Scala, F.; Schmid, R.; Berg, G.; Bahl, H. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch. Microbiol. 2001, 176, 421–426. [Google Scholar] [CrossRef]
- Yuli, P.E.; Suhartono, M.T.; Rukayadi, Y.; Hwang, J.K.; Pyun, Y.R. Characteristics of thermostable chitinase enzymes from the indonesian Bacillus sp 13.26. Enzyme Microb. Technol. 2004, 35, 147–153. [Google Scholar] [CrossRef]
- Tsuji, H.; Nishimura, S.; Inui, T.; Kado, Y.; Ishikawa, K.; Nakamura, T.; Uegaki, K. Kinetic and crystallographic analyses of the catalytic domain of chitinase from Pyrococcus furiosus—The role of conserved residues in the active site. FEBS J. 2010, 277, 2683–2695. [Google Scholar] [CrossRef]
- Laribi-Habchi, H.; Dziril, M.; Badis, A.; Mouhoub, S.; Mameri, N. Purification and characterization of a highly thermostable chitinase from the stomach of the red scorpionfish Scorpaena scrofa with bioinsecticidal activity toward cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). Biosci. Biotech. Biochem. 2012, 76, 1733–1740. [Google Scholar] [CrossRef] [Green Version]
- Park, J.K.; Morita, K.; Fukumoto, I.; Yamasaki, Y.; Nakagawa, T.; Kawamukai, M.; Matsuda, H. Purification and characterization of the chitinase (ChiA) from Enterobacter sp. G-1. Biosci. Biotech. Biochem. 1997, 61, 684–689. [Google Scholar] [CrossRef]
- Vaidya, R.; Roy, S.; Macmil, S.; Gandhi, S.; Vyas, P.; Chhatpar, H.S. Purification and characterization of chitinase from Alcaligenes xylosoxydans. Biotechnol. Lett. 2003, 25, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B.; Hoondal, G.S. Isolation, purification and properties of a thermostable chitinase from an alkalophilic Bacillus sp. BG-11. Biotechnol. Lett. 1998, 20, 157–159. [Google Scholar] [CrossRef]
- Simunek, J.; Tishchenko, G.; Koppova, I. Chitinolytic activities of Clostridium sp JM2 isolated from stool of human administered per orally by chitosan. Folia Microbiol. 2008, 53, 249–254. [Google Scholar] [CrossRef]
- Davies, D.A.L.; Pope, A.M.S. Mycolase, a new kind of systemic anti-mycotic. Nature 1978, 273, 235–236. [Google Scholar] [CrossRef]
- Cabral, V.; Znaidi, S.; Walker, L.A.; Martin-Yken, H.; Dague, E.; Legrand, M.; Lee, K.; Chauvel, M.; Firon, A.; Rossignol, T.; et al. Targeted changes of the cell wall proteome influence Candida albicans ability to form single- and multi-strain biofilms. PLoS Pathog. 2014, 10, e1004542. [Google Scholar] [CrossRef] [Green Version]
- Jimenezbarbero, J.; Prieto, A.; Gomezmiranda, B.; Leal, J.A.; Bernabe, M. Chemical-structure of fungal cell-wall polysaccharides isolated from Microsporum gypseum and related species of Microsporum and Trychophyton. Carbohydr. Res. 1995, 272, 121–128. [Google Scholar] [CrossRef]
- Takeda, T.; Kawarasaki, I.; Ogihara, Y. Studies on the structure of a polysaccharide from Epidermophyton floccosum and approach to a synthesis of the basic trisaccharide repeating units. Carbohydr. Res. 1981, 89, 301–308. [Google Scholar] [CrossRef]
Enzyme | Compound Added into the Reaction Trial | kcat (s−1) | Km (mM) |
---|---|---|---|
rChit62J4 | none | 31.5 ± 0.9 | 0.24 ± 0.02 |
rChit62J4 | 5 mM glucosamine | 30.2 ± 0.9 | 0.36 ± 0.04 |
5 mM glucose | 31.2 ± 0.9 | 0.36 ± 0.04 | |
5 mM MgCl2 | 29.6 ± 0.6 | 0.18 ± 0.02 | |
5 mM EDTA | 31.9 ± 0.8 | 0.19 ± 0.02 | |
5 mM ZnSO4 | 31.1 ± 0.6 | 0.16 ± 0.01 | |
5 mM CaCl2 | 30.3 ± 0.6 | 0.14 ± 0.01 | |
rChit62J4cat | none | 31.4 ± 0.8 | 0.19 ± 0.02 |
Enzyme | Organism | Mr kDa | Stability Range pH | Optimal pH, Temperature | Substrate Type and Assay Conditions | Km (μM) | Vmax (μmol/min/mg) | Activity Type | Inhibitors | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Chitinase A | Clostridium paraputrificum M-21 | 89.0 | 6–9 | 6, 45 °C | pNGG, pH 6, 37 °C | 6.9 | 43.0 | Exo | 1 mM HgCl2 Partly: AlCl3, CaCl2, CuCl2, FeCl3, MnCl2 Enhanced: MgCl2 | Morimoto et al. [40] |
Chitinase B | Clostridium paraputrificum M-21 | 86.5 | 6–9 | 6, 45 °C | pNGG, pH 7, 37 °C | 6.3 | 46.0 | Exo | 1 mM HgCl2 Partly: AlCl3, CuCl2, FeCl3, No Effect: MgCl2, CaCl2, EDTA | Morimoto et al. [41] |
Chitinase C | Clostridium paraputrificum M-21 | 72.0 | NA | 6, 60 °C | pNGGG, pH 6, 50 °C | 0.44 | 26.6 | Endo | Morimoto et al. [35] | |
N-acetylglucosaminidase | Clostridium paraputrificum M-21 | 45.5 | 6–9 | 7, 50 °C | pNG, pH 7, 37 °C | 7.9 | 21.8 | NAGase | Li et al. [42] | |
rChit62J4 | Clostridium paraputrificum J4 | 62.3 | 5.5, 60 °C | pNGG, pH 5.5, 37 °C | 240 | 29.0 | Exo | 5 mM MnSO4, ZnSO4, FeCl2, HgCl2 | This work | |
ChiNCTU2 | Bacillus cereus NCTU2 | 36.2 | 6–8 | 7.0, 50–60 °C | pNGG, pH 6.5, 25 °C | 74 | 34.6 | Exo | 10 mM Hg2+, Cu2+, Zn2+ | Hsieh et al., Wen et al., [36,43] |
Inhibitor | % Activity | ||
---|---|---|---|
5 mM MnSO4·H2O | 52 | ± | 6 |
5 mM CuSO4·5H2O | 89 | ± | 10 |
5 mM FeCl2·4H2O | 58 | ± | 9 |
5 mM HgCl2 | 3 | ± | 4 |
5 mM Griseofulvin | 104 | ± | 4 |
5 mM Amfotericine | 119 | ± | 27 |
5 mM Clotrimazole | 102 | ± | 4 |
Organism, Reference | Serratia plymuthica HR0-C48 [50] | Serratia plymuthica HR0-C48 [50] | Scorpaena scrofa [53] | Bacillus cereus NCTU2 [43] | Enterobacter sp. G-1 [54] | Alcaligenes xylosoxydans [55] | Bacillus sp. 13.26 [51] | Bacillus sp. BG-11 [56] | Clostridium sp. JM2 [57] | Clostridium sp. JM2 [57] | This Work |
---|---|---|---|---|---|---|---|---|---|---|---|
Enzyme, MW (kDa) | Chit60, 60 | Chit100, 100 | Chit50, 50 | ChiNCTU2, 36 | ChiA, 60 | Chitinase, 45 | Chitinase, 60 | Chitinase, not given | Purified chitinolytic complex | Purified chitinolytic complex | Chit62J4, 62 |
Substrate, (concentration if known, mM) | pNGG (10) | pNG (10) | Chitin (5) | Chitin (10) | Chitin (10) | Chitin | Chitin | Chitin | pNG (10) | Colloidal chitin (10) | pNGG (2) |
Mn2+ | 250 | 55 | 145 | 100 | 0 | 10 | 10 | 52 | |||
Ca2+ | 120 | 50 | 66 | 200 | 105 | 100 | 50 | 120 | 97 * | ||
Cu2+ | 10 | 0 | 103 | 5 | 25 | 20 | 12 | 89 | |||
Mg2+ | 115 | 90 | 61 | 100 | 100 | 131 | 110 | 77 | 89 * | ||
Hg2+ | 0 | 5 | 0 | 50 | 0 | 0 | 3 | ||||
Co2+ | 150 | 5 | 325 | 50 | |||||||
Zn2+ | 111 | 10 | 27 | 98 * | |||||||
Ba2+ | 90 | 100 | 100 | ||||||||
Cr2+ | 100 | ||||||||||
Fe | 85 | 0 | 0 | 58 | |||||||
K+ | 128 | 100 | 75 | ||||||||
Ag+ | 15 | 50 | 14 | 6 | |||||||
Na+ | 100 < 0.5 M> | 100 < 0.5 M> | 100 | 25 | |||||||
Ni2+ | 116 | 120 | |||||||||
EDTA | 58 | 50 | 0 | 40 | 97 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dohnálek, J.; Dušková, J.; Tishchenko, G.; Kolenko, P.; Skálová, T.; Novák, P.; Fejfarová, K.; Šimůnek, J. Chitinase Chit62J4 Essential for Chitin Processing by Human Microbiome Bacterium Clostridium paraputrificum J4. Molecules 2021, 26, 5978. https://doi.org/10.3390/molecules26195978
Dohnálek J, Dušková J, Tishchenko G, Kolenko P, Skálová T, Novák P, Fejfarová K, Šimůnek J. Chitinase Chit62J4 Essential for Chitin Processing by Human Microbiome Bacterium Clostridium paraputrificum J4. Molecules. 2021; 26(19):5978. https://doi.org/10.3390/molecules26195978
Chicago/Turabian StyleDohnálek, Jan, Jarmila Dušková, Galina Tishchenko, Petr Kolenko, Tereza Skálová, Petr Novák, Karla Fejfarová, and Jiří Šimůnek. 2021. "Chitinase Chit62J4 Essential for Chitin Processing by Human Microbiome Bacterium Clostridium paraputrificum J4" Molecules 26, no. 19: 5978. https://doi.org/10.3390/molecules26195978
APA StyleDohnálek, J., Dušková, J., Tishchenko, G., Kolenko, P., Skálová, T., Novák, P., Fejfarová, K., & Šimůnek, J. (2021). Chitinase Chit62J4 Essential for Chitin Processing by Human Microbiome Bacterium Clostridium paraputrificum J4. Molecules, 26(19), 5978. https://doi.org/10.3390/molecules26195978