Analytical Assessment of Bioelements in Various Types of Black Teas from Different Geographical Origins in View of Chemometric Approach
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Macro- and Trace Element Content in Black Teas
3.2. Chemometric Analysis of the Obtained Data
4. Materials and Methods
4.1. Plant Material
4.2. Reagents
4.3. Elemental Analysis
4.3.1. Sample Preparation
4.3.2. Digestion Process
4.3.3. The Analytical Determinations Performed by Flame Atomic Absorption Spectrometry (FAAS)
4.3.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barua, A. Romancing the Camellia assamica (Assam and the Story of Tea). Assam Rev. Tea News 2008, 18–27. [Google Scholar]
- Yi, T.; Zhu, L.; Peng, W.-L.; He, X.-C.; Chen, H.-L.; Li, J.; Yu, T.; Liang, Z.-T.; Zhao, Z.-Z.; Chen, H.-B. Comparison of Ten Major Constituents in Seven Types of Processed Tea Using HPLC-DAD-MS Followed by Principal Component and Hierarchical Cluster Analysis. LWT-Food Sci. Technol. 2015, 62, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Daglia, M.; Antiochia, R.; Sobolev, A.P.; Mannina, L. Untargeted and Targeted Methodologies in the Study of Tea (Camellia sinensis L.). Food Res. Intern. 2014, 63, 275–289. [Google Scholar] [CrossRef]
- Cantatore, A.; Randall, S.D.; Traum, D.; Adams, S.D. Effect of Black Tea Extract on Herpes Simplex Virus-1 Infection of Cultured Cells. BMC Complement. Altern. Med. 2013, 13, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.-H.; Lai, C.-S.; Wang, H.; Lo, C.-Y.; Ho, C.-T.; Li, S. Black Tea in Chemo-Prevention of Cancer and Other Human Diseases. Food Sci. Hum. Wellness 2013, 2, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Koch, W.; Kukula-Koch, W.; Komsta, Ł. Black Tea Samples Origin Discrimination Using Analytical Investigation of Secondary Metabolites, Antiradical Scavenging Activity and Chemometric Approach. Molecules 2018, 23, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial Effects of Green Tea: A Literature Review. Chin. Med. 2010, 5, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzezicha-Cirocka, J.; Grembecka, M.; Szefer, P. Analytical Assessment of Bio- and Toxic Elements Distribution in Pu-erh and Fruit Teas in View of Chemometric Approach. Biol. Trace Elem. Res. 2016, 174, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Ming, T.; Zhang, W. The Evaluation and Distribution of Genus Camellia. Acta Botan. Yunnan 1996, 18, 1–13. [Google Scholar]
- Ahmed, S.; Unachukwu, U.; Stepp, J.R.; Peters, C.M.; Long, C.; Kennelly, E. Pu-erh Tea Tasting in Yunnan, China: Correlation of Drinkers’ Perceptions to Phytochemistry. J. Ethnopharmacol. 2010, 132, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Pauli, E.D.; Scarminio, I.S.; Tauler, R. Analytical Investigation of Secondary Metabolites Extracted from Camellia sinensis L. Leaves Using a HPLC-DAD-ESI/MS Data Fusion Strategy and Chemometric Methods. J. Chemom. 2016, 30, 75–85. [Google Scholar] [CrossRef]
- Yao, L.H.; Jiang, Y.M.; Caffin, N.; D’Arcy, B.; Datta, N.; Liu, X.; Singanusong, R.; Xu, Y. Phenolic Compounds in Tea from Australian Supermarkets. Food Chem. 2006, 96, 614–620. [Google Scholar] [CrossRef]
- Zheng, H.; Li, J.L.; Li, H.H.; Hu, G.C.; Li, H.S. Analysis of Trace Metals and Perfluorinated Compounds in 43 Representative Tea Products from South China. J. Food Sci. 2014, 6, 1123–1129. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, J.; Yu, M.; Chen, X.; Shi, J. Lead Contamination Indifferent Varieties of Tea Plant (Camellia sinensis L.) and Factors Affecting Lead Bioavailability. J. Sci. Food Agric. 2010, 9, 1501–1507. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Overview of Antibacterial, Antitoxin, Antiviral, and Antifungal Activities of Tea Flavonoids and Teas. Mol. Nutr. Food Res. 2007, 51, 116–134. [Google Scholar] [CrossRef]
- Teixeira, A.M.; Sousa, C. A Review on the Biological Activity of Camellia Species. Molecules 2021, 26, 2178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ho, C.T.; Zhou, J.; Santos, J.S.; Armstrong, L.; Granato, D. Chemistry and Biological Activities of Processed Camellia sinensis Teas: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495. [Google Scholar] [CrossRef] [Green Version]
- Koch, W.; Kukula-Koch, W.; Komsta, Ł.; Marzec, Z.; Szwerc, W.; Głowniak, K. Green Tea Quality Evaluation Based on Its Catechins and Metals Composition in Combination with Chemometric Analysis. Molecules 2018, 23, 1689. [Google Scholar] [CrossRef] [Green Version]
- Amtmann, A.; Armengaud, P. Effects of N, P, K and S on Metabolism: New Knowledge Gained from Multi-Level Analysis. Curr. Opin. Plant Biol. 2009, 12, 275–283. [Google Scholar] [CrossRef]
- Amtmann, A.; Troufflard, S.; Armengaud, P. The Effect of K Nutrition on Pest and Disease Resistance in Plants. Physiol. Plant. 2008, 133, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Chen, S.; Hussain, N.; Cong, Y.; Liang, Z.; Chen, K. Mg Stress Signaling in Plant: Just a Beginning. Plant Signal. Behav. 2015, 10, e992287. [Google Scholar] [CrossRef]
- Sun, X.; Kay, A.D.; Kang, H.; Small, G.E.; Liu, G.; Zhou, X.; Yin, S.; Liu, C. Correlated Biogeographic Variation of Mg across Trophic Levels in a Terrestrial Food Chain. PLoS ONE 2013, 8, e78444. [Google Scholar] [CrossRef]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Mn in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, P.; Menzies, N.W.; Lombi, E.; Kopittke, P.M. Effects of Changes in Leaf Properties Mediated by Methyl Jasmonate (MeJA) on Foliar Absorption of Zn, Mn and Fe. Ann. Bot. 2017, 120, 405–415. [Google Scholar] [CrossRef]
- Gyana, R.R.; Sunita, S. Role of Fe in Plant Growth and Metabolism. Rev. Agric. Sci. 2015, 3, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Graham, D.R.; Webb, M.J. Micronutrients and Disease Resistance and Tolerance in Plants. In Micronutrients in Agriculture, 2nd ed.; Mortvedt, J.J., Cox, F.R., Shuman, L.M., Welch, R.M., Eds.; Soil Science Society of America Inc.: Madison, WI, USA, 1991; pp. 329–370. [Google Scholar]
- Dordas, C. Role of Nutrients in Controlling Plant Diseases in Sustainable Agriculture. A Review. Agron. Sustain. Develop. 2008, 28, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Fones, H.N.; Preston, G.M. The Impact of Transition Metals on Bacterial Plant Disease. FEMS Microbiol. Rev. 2013, 37, 495–519. [Google Scholar] [CrossRef] [Green Version]
- Hojyo, S.; Fukada, T. Roles of Zinc Signalling in the Immune System. J. Immunol. Res. 2016, 2016, 6762343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirasu, K.; Nielsen, K.; Piffanelli, P.; Oliver, R.; Schulze-Lefert, P. Cell-Autonomous Complementation of mlo Resistance Using a Biolistic Transient Expression System. Plant J. 1999, 17, 293–299. [Google Scholar] [CrossRef]
- Gupta, S.K.; Rai, A.K.; Kanwar, S.S.; Sharma, T.R. Comparative Analysis of Zn Finger Proteins Involved in Plant Disease Resistance. PLoS ONE 2012, 7, e42578. [Google Scholar] [CrossRef] [Green Version]
- Weerawatanakorn, M.; Hung, W.L.; Pan, M.H.; Li, S.; Li, D.; Wan, X.; Ho, C.T. Chemistry and Health Beneficial Effects of Oolong Tea and Theasinensins. Food Sci. Hum. Well. 2015, 4, 133–146. [Google Scholar] [CrossRef] [Green Version]
- Qi, D.; Miao, A.; Cao, J.; Wang, W.; Chen, W.; Pang, S.; Ma, C. Study on the Effects of Rapid Aging Technology on the Aroma Quality of White Tea Using GC–MS Combined with Chemometrics: In Comparison with Natural Aged and Fresh White Tea. Food Chem. 2018, 265, 189–199. [Google Scholar] [CrossRef]
- Zhou, H.; Li, H.M.; Du, Y.M.; Yan, R.A.; Ou, S.Y.; Chen, T.F.; Fu, L. C-Geranylated Flavanones from YingDe Black Tea and Their Antioxidant and α-Glucosidase Inhibition Activities. Food Chem. 2017, 235, 227–233. [Google Scholar] [CrossRef]
- Chu, D.C.; Juneja, L.R. General Chemical Composition of Green Tea and its Infusion. In Chemistry and Applications of Green Tea; CRC Press: Boca Raton, FL, USA; New York, NY, USA, 1997; pp. 13–22. [Google Scholar]
- Xie, M.; von Bohlen, A.; Klockenamper, R.; Jian, X.; Gunther, K. Multielement Analysis of Chinese Tea (Camellia sinensis) by Total-Reflection X-Ray Fluorescence. Z. Lebensm. Unters. Forsch. 1998, 207, 31–38. [Google Scholar] [CrossRef]
- Koch, W.; Kukuła-Koch, W.; Marzec, Z.; Kasperek, E.; Wyszogrodzka-Koma, L.; Szwerc, W.; Asakawa, Y. Application of Chromatographic and Spectroscopic Methods towards the Quality Assessment of Ginger (Zingiber officinalis) Rhizome from Ecological Plantations. Int. J. Mol. Sci. 2017, 18, 452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konieczynski, P.; Viapiana, A.; Wesolowski, M. Comparison of Infusions from Black and Green Teas (Camellia sinensis L. Kuntze) and Erva-Mate (Ilex paraguariensis A. St.-Hil.) Based on the Content of Essential Elements Secondary Metabolites, and Antioxidant Activity. Food Anal. Methods 2017, 10, 3063–3070. [Google Scholar] [CrossRef] [Green Version]
- Pohl, P.; Dzimitrowicz, A.; Jedryczko, D.; Szymczycha-Madeja, A.; Welna, M.; Jamroz, P. The Determination of Elements in Herbal Teas and Medicinal Plant Formulations and Their Tisanes. J. Pharm. Biomed. Anal. 2016, 130, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Dambiec, M.; Polechońska, L.; Klink, A. Levels of Essential and Non-Essential Elements in Black Teas Commercialized in Poland and Their Transfer to Tea Infusion. J. Food Compost. Anal. 2013, 31, 62–66. [Google Scholar] [CrossRef]
- Brzezicha-Cirocka, J.; Grembecka, M.; Ciesielski, T.; Flaten, T.P.; Szefer, P. Evaluation of Macro- and Microelement Levels in Black Tea in View of Its Geographical Origin. Biol. Trace Elem. Res. 2017, 176, 429–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, J.J.; Trevor, J.B.; Thompson, R.P.H. In Vitro Mineral Availability from Digested Tea: A Rich Dietary Source of Manganese. Analyst 1998, 123, 1721–1724. [Google Scholar] [CrossRef]
- Maupenzi, J.P.; Li, L.; Ge, J.; Varenyam, A.; Habiyaremye, G.; Theoneste, N.; Emmanuel, K. Assessment of Soil Degradation and Chemical Compositions in Rwandan Tea-Growing Areas. Geosci. Front. 2011, 2, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Al-Oud, S.S. Heavy Metal Contents in Tea and Herb Leaves. Pakistan J. Biol. Sci. 2003, 6, 208–212. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, J.S.; Jurado, J.M.; Pablos, F. Characterisation of Tea Leaves According to Their Total Mineral Content by Means of Probabilistic Neural Networks. Food Chem. 2010, 123, 859–864. [Google Scholar] [CrossRef]
- Milani, R.; Morgano, M.A.; Cadore, S. Trace Elements in Camelia sinensis Marketed in Southern Brazil: Extraction from Tea Leaves to Beverages and Dietary Exposure. LWT-Food Sci. Technol. 2016, 68, 491–498. [Google Scholar] [CrossRef]
- Drivelos, S.A.; Georgiou, C.A. Multi-Element and Multi-Isotope-Ratio Analysis to Determine the Geographical Origin of Foods in the European Union. Trends Anal. Chem. 2012, 40, 38–51. [Google Scholar] [CrossRef]
- Zhang, J.; Nie, J.; Zhang, L.; Xu, G.; Zheng, H.; Shen, Y.; Kuang, L.; Gao, X.; Zhang, H. Multielement Authentication of Apples from Cold Highland in Southwest China. J. Sci. Food Agric. 2021. [Google Scholar] [CrossRef]
- Vanderschueren, R.; Montalvo, D.; De Ketelaere, B.; Delcour, J.A.; Smolders, E. The Elemental Composition of Chocolates is Related to Cacao Content and Origin: A Multi-Element Fingerprinting Analysis of Single Origin Chocolates. J. Food Compos. Anal. 2019, 83, 103277. [Google Scholar] [CrossRef]
Type of Tea | Macroelements [mg/kg] | Trace Elements [mg/kg] | ||||||
---|---|---|---|---|---|---|---|---|
Na | K | Ca | Mg | Cu | Zn | Mn | Fe | |
JO | 49.11 ± 2.41 FG | 11,158.11 ± 1167.50 BCDEF | 842.56 ± 135.68 B | 877.12 ± 45.51 ABC | 5.30 ± 0.19 A | 24.42 ± 0.91 CD | 443.46 ± 16.24 F | 26.91 ± 3.51 A |
46.10–52.80 | 10,133.00–13,142.00 | 711.90–1088.00 | 820.30–965.60 | 5.15–5.77 | 23.20–26.10 | 421.20–465.20 | 22.30–32.20 | |
JS | 18.74 ± 1.79 B | 10,577.44 ± 1888.93 BCD | 503.44 ± 70.52 A | 821.64 ± 76.10 A | 8.94 ± 0.74 B | 21.94 ± 1.34 BC | 302.52 ± 18.69 D | 32.92 ± 4.26 AB |
16.20–21.20 | 8112.00–13,298.00 | 411.40–628.40 | 711.40–907.90 | 7.55–9.95 | 20.20–23.50 | 278.00–326.50 | 27.40–39.00 | |
NI1 | 53.24 ± 3.70 G | 15,323.11 ± 1231.67 H | 1150.33 ± 73.42 CD | 1068.08 ± 107.31 FG | 12.46 ± 0.18 DE | 35.81 ± 1.61 G | 395.22 ± 29.98 E | 94.94 ± 12.56 E |
48.90–59.50 | 13,991.00–17,878.00 | 1021.00–1226.00 | 922.60–1219.00 | 12.20–12.70 | 34.00–38.00 | 347.30–435.00 | 78.90–117.10 | |
NI2 | 21.31 ± 1.54 BC | 12,195.33 ± 624.88 DEFG | 994.20 ± 139.99 BC | 1041.76 ± 108.42 EFG | 11.97 ± 0.38 DE | 25.73 ± 1.27 DE | 224.11 ± 14.70 AB | 36.08 ± 3.83 AB |
18.90–23.20 | 11,259.00–13,258.00 | 812.40–1189.00 | 914.40–1218.00 | 11.30–12.40 | 24.20–27.80 | 201.20–244.60 | 30.70–41.30 | |
NI3 | 27.42 ± 3.48 CD | 11,199.44 ± 1497.08 BCDEF | 838.77 ± 77.81 B | 842.08 ± 68.49 AB | 11.10 ± 0.47 CD | 25.28 ± 1.52 DE | 359.41 ± 15.17 E | 79.42 ± 5.77 D |
23.30–33.60 | 9211.00–13,711.00 | 709.20–951.00 | 705.40–922.00 | 10.50–11.80 | 22.60–27.60 | 332.40–378.40 | 71.10–87.70 | |
NI4 | 53.44 ± 5.17 G | 12,752.67 ± 1448.30 EFG | 1532.00 ± 132.332 FGH | 1022.39 ± 118.45 DEFG | 11.78 ± 0.43 DE | 22.42 ± 1.14 BCD | 301.14 ± 20.63 D | 103.86 ± 11.98 EF |
47.60–62.30 | 10,125.00–14,587.00 | 1311.00–1668.00 | 818.40–1195.00 | 11.10–12.40 | 20.50–24.20 | 265.40–328.40 | 85.50–120.20 | |
K1 | 30.14 ± 2.96 D | 12,192.78 ± 1232.96 DEFG | 857.28 ± 95.68 B | 996.16 ± 101.34 CDEFG | 22.08 ± 2.64 I | 23.38 ± 1.69 CD | 824.72 ± 25.08 I | 99.52 ± 13.81 EF |
25.40–34.80 | 10,545.00–13,685.00 | 719.40–980.20 | 889.40–1158.00 | 17.30–26.20 | 20.70–25.20 | 780.20–865.30 | 74.80–111.90 | |
K2 | 45.19 ± 3.90 EF | 10,969.11 ± 715.67 BCDE | 1556.11 ± 131.55 GH | 932.21 ± 47.25 ABCDE | 12.57 ± 0.63 DE | 20.31 ± 1.35 B | 459.44 ± 15.13 F | 64.39 ± 8.25 C |
39.70–50.70 | 10,115.00–12,547.00 | 1327.00–1693.00 | 878.40–1022.00 | 11.80–13.40 | 18.40–22.40 | 428.60–478.90 | 56.20–80.30 | |
Ir | 41.20 ± 3.40 E | 8344.56 ± 451.28 A | 1417.33 ± 30.48 F G | 1017.43 ± 68.03 DEFG | 23.87 ± 0.94 J | 24.10 ± 0.63 CD | 730.14 ± 15.35 H | 179.53 ± 12.92 H |
36.10–45.80 | 7719.00–9211.00 | 1368.00–1455.00 | 932.80–1123.00 | 22.10–25.10 | 23.10–25.30 | 707.40–752.30 | 160.20–194.60 | |
SLC | 109.72 ± 8.18 H | 10,222.33 ± 807.93 BC | 1478.56 ± 75.68 FGH | 1097.82 ± 60.23 G | 21.57 ± 0.96 I | 23.51 ± 1.10 CD | 285.81 ± 17.38 CD | 131.06 ± 6.64 G |
97.80–123.30 | 9218.00–11,422.00 | 1387.00–1570.00 | 984.60–1181.00 | 20.30–23.20 | 21.90–25.50 | 250.40–306.40 | 120.30–139.00 | |
SLU | 50.57 ± 6.32 FG | 13,794.22 ± 432.53 GH | 1856.11 ± 65.52 I | 1229.56 ± 43.17 H | 12.26 ± 0.27 DE | 27.64 ± 3.10 E | 453.46 ± 19.88 F | 37.93 ± 5.65 AB |
43.20–61.10 | 13,204.00–14,571.00 | 1770.00–1990.00 | 1169.00–1290.00 | 11.80–12.60 | 24.40–32.60 | 431.20–487.20 | 31.00–47.50 | |
SLR | 29.97 ± 2.66 D | 11,289.67 ± 674.11 BCDEF | 1380.33 ± 120.13 EF | 997.88 ± 48.76 CDEFG | 10.91 ± 0.81 CD | 12.54 ± 0.79 A | 224.78 ± 13.30 AB | 28.97 ± 1.67 A |
26.30–34.20 | 10,114.00–12,345.00 | 1234.00–1577.00 | 920.80–1090.00 | 10.10–12.30 | 11.20–13.70 | 210.20–247.20 | 27.20–32.40 | |
BCHI | 44.83 ± 5.08 EF | 10,576.78 ± 684.39 BCD | 1027.32 ± 94.02 C | 901.47 ± 56.72 ABCD | 16.56 ± 0.82 G | 31.08 ± 3.76 F | 525.49 ± 35.74 G | 80.86 ± 4.08 D |
35.60–50.00 | 9218.00–11,471.00 | 916.30–1178.50 | 812.40–975.60 | 15.20–17.80 | 26.70–37.20 | 470.10–569.80 | 72.40–85.70 | |
CHY1 | 14.47 ± 0.60 AB | 12,705.11 ± 1089.62 EFG | 1232.67 ± 163.91 DE | 905.68 ± 65.17 ABCD | 12.39 ± 0.44 DE | 31.19 ± 2.03 F | 846.29 ± 22.18 I | 61.27 ± 6.50 C |
13.60–15.30 | 11,519.00–14,678.00 | 1055.00–1508.00 | 821.30–988.70 | 11.80–13.10 | 28.20–34.60 | 818.40–879.40 | 55.30–72.20 | |
CHY2 | 54.00 ± 7.88 G | 11,693.56 ± 1165.32 CDEF | 1518.78 ± 76.23 FGH | 1040.59 ± 59.43 EFG | 10.11 ± 0.79 BC | 22.11 ± 1.56 BC | 465.11 ± 24.21 F | 109.81 ± 12.03 F |
46.30–68.70 | 10,258.00–13,211.00 | 1391.00–1611.00 | 955.60–1118.00 | 9.17–11.30 | 20.40–24.50 | 420.80–492.20 | 89.40–120.40 | |
CHY3 | 11.24 ± 0.76 A | 11,905.33 ± 1247.29 CDEF | 1115.00 ± 52.92 CD | 951.72 ± 80.38 BCDEF | 10.08 ± 0.41 BC | 21.73 ± 2.31 BC | 513.97 ± 33.17 G | 29.24 ± 1.80 A |
10.20–12.20 | 10,122.00–13,318.00 | 1021.00–1181.00 | 840.60–1052.00 | 9.36–10.60 | 18.40–24.90 | 470.10–563.20 | 27.40–32.40 | |
CHF | 113.97 ± 7.53 H | 9635.33 ± 933.76 AB | 1588.00 ± 47.34 H | 990.81 ± 82.01 CDEFG | 13.67 ± 1.32 EF | 22.98 ± 1.64 BCD | 711.44 ± 25.45 H | 108.82 ± 6.13 F |
102.00–124.40 | 8325.00–10,812.00 | 1511.00–1645.00 | 871.50–1071.00 | 11.40–14.80 | 20.50–25.10 | 672.40–755.20 | 101.40–120.50 | |
IA1 | 19.22 ± 2.21 B | 12,805.33 ± 951.79 FG | 1602.67 ± 41.79 H | 1233.44 ± 68.09 H | 19.48 ± 1.94 H | 23.61 ± 1.29 CD | 202.77 ± 12.48 A | 33.56 ± 2.48 AB |
15.40–21.60 | 11,401.00–13,934.00 | 1540.00–1656.00 | 1133.00–1335.00 | 17.00–23.20 | 21.80–25.50 | 185.40–220.10 | 28.80–36.50 | |
IA2 | 17.87 ± 1.52 AB | 12,146.67 ± 1447.65 DEFG | 1465.00 ± 119.20 FGH | 1035.662 ± 80.96 EFG | 15.34 ± 0.62 FG | 35.03 ± 2.28 G | 434.61 ± 35.96 F | 42.42 ± 4.24 B |
16.20–21.30 | 9762.00–13,920.00 | 1229.00–1588.00 | 909.50–1155.00 | 14.50–16.30 | 31.90–38.10 | 380.40–472.50 | 36.10–49.10 | |
ID | 49.00 ± 3.31 FG | 11,498.67 ± 701.82 CDEF | 1482.67 ± 97.36 FGH | 961.62 ± 26.55 BCDEF | 14.88 ± 1.41 FG | 27.48 ± 1.81 E | 250.64 ± 15.26 BC | 34.32 ± 3.79 AB |
44.20–54.40 | 10,218.00–12,545.00 | 1325.00–1591.00 | 920.30–991.90 | 12.90–16.90 | 24.30–29.10 | 228.10–272.50 | 28.80–38.20 | |
Total | 42.73 ± 27.42 | 11,649.88 ± 1794.61 | 1272.95 ± 347.65 | 998.25 ± 127.71 | 13.87 ± 4.73 | 25.12 ± 5.44 | 447.73 ± 193.97 | 70.79 ± 41.90 |
10.20–124.40 | 7719.00–17,878.00 | 411.40–1990.00 | 705.40–1335.00 | 5.15–26.20 | 11.20–34.00 | 185.40–879.40 | 22.30–194.60 |
Type of Tea | Classification Tree Structure [mg/kg] |
---|---|
Ir | Mn ≤ 766.25; Cu > 16.05; Mn > 621.1 |
CHY1 | Zn > 26.65; Cu ≤ 16.05; Mn > 621.1 |
SLC | Fe > 79.25; Cu > 12.65; Ca > 1211.5; Mn ≤ 330.4 and ≤ 621.1 |
SLR | Zn ≤ 17.1; Cu ≤ 12.26; Ca > 1211.5; Mn ≤ 330.4 and ≤ 621.1 |
Voucher Specimen Number | Country | Region/Type | Origin | Form |
---|---|---|---|---|
JO | Japan | Organic | original | loose |
JS | Japan | Shizuoka Prefecture | original | loose |
NI1 | Nepal | Ilam | original | loose |
NI2 | Nepal | Ilam | original | loose |
NI3 | Nepal | Ilam | original | loose |
NI4 | Nepal | Ilam | original | loose |
K1 | Kenya | Marinyn | original | loose |
K2 | Kenya | Mount Kenya | original | loose |
Ir | Iran | Lahijan | original | loose |
SLC | Sri Lanka | Central Province | original | loose |
SLU | Sri Lanka | Uva | original | loose |
SLR | Sri Lanka | Ruhuna | original | loose |
BCHI | China/India | Not provided | blended | loose |
CHY1 | China | Yunnan | original | loose |
CHY2 | China | Yunnan | original | loose |
CHY3 | China | Yunnan | original | loose |
CHF | China | Fuijan | original | loose |
IA1 | India | Assam | original | loose |
IA2 | India | Assam | original | loose |
ID | India | Darjeeling | original | loose |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koch, W.; Kukula-Koch, W.; Czop, M.; Baj, T.; Kocki, J.; Bawiec, P.; Casasnovas, R.O.; Głowniak-Lipa, A.; Głowniak, K. Analytical Assessment of Bioelements in Various Types of Black Teas from Different Geographical Origins in View of Chemometric Approach. Molecules 2021, 26, 6017. https://doi.org/10.3390/molecules26196017
Koch W, Kukula-Koch W, Czop M, Baj T, Kocki J, Bawiec P, Casasnovas RO, Głowniak-Lipa A, Głowniak K. Analytical Assessment of Bioelements in Various Types of Black Teas from Different Geographical Origins in View of Chemometric Approach. Molecules. 2021; 26(19):6017. https://doi.org/10.3390/molecules26196017
Chicago/Turabian StyleKoch, Wojciech, Wirginia Kukula-Koch, Marcin Czop, Tomasz Baj, Janusz Kocki, Piotr Bawiec, Roser Olives Casasnovas, Anna Głowniak-Lipa, and Kazimierz Głowniak. 2021. "Analytical Assessment of Bioelements in Various Types of Black Teas from Different Geographical Origins in View of Chemometric Approach" Molecules 26, no. 19: 6017. https://doi.org/10.3390/molecules26196017
APA StyleKoch, W., Kukula-Koch, W., Czop, M., Baj, T., Kocki, J., Bawiec, P., Casasnovas, R. O., Głowniak-Lipa, A., & Głowniak, K. (2021). Analytical Assessment of Bioelements in Various Types of Black Teas from Different Geographical Origins in View of Chemometric Approach. Molecules, 26(19), 6017. https://doi.org/10.3390/molecules26196017