Common Factors of Alzheimer’s Disease and Rheumatoid Arthritis—Pathomechanism and Treatment
Abstract
:1. Amyloid Plaques, Structure, Importance, Factors Predisposing to Their Appearance
2. Amyloid Plaques in AD and RA
3. The Activity of the Immune System in AD and RA
4. The Role of the Blood–Brain Barrier in AD and RA
5. Therapeutic Strategies Targeting to Aggregates or Oligomers, Which Are the Most Dangerous Amyloid Forms
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siddiqi, O.K.; Ruberg, F.L. Cardiac amyloidosis: An update on pathophysiology, diagnosis, and treatment. Trends Cardiovasc. Med. 2018, 28, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Perutz, M.F. Amyloid fibrils: Mutations make enzyme polymerize. Nature. 1997, 385, 773–775. [Google Scholar] [CrossRef]
- Weatherall, D.J.; Ledingham, J.G.G.; Warell, D.A. Amyloidosi. In The Oxford Textbook of Medicine, 3rd ed.; Oxford University Press: Oxford, UK, 1996; pp. 1512–1524. [Google Scholar]
- Pauling, L.; Corey, R. Configuration of polypeptide chains with favoured orientation around single bonds: Two new pleated sheets. Proc. Natl. Acad. Sci. USA 1951, 37, 729–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawaya, M.R.; Sambashivan, S.; Nelson, R.; Ivanova, M.I.; Sievers, S.A.; Apostol, M.I.; Thompson, M.J.; Balbirnie, M.; Wiltzius, J.J.; McFarlane, H.T.; et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 2007, 447, 453–457. [Google Scholar] [CrossRef]
- Sunde, M.; Serpell, L.C.; Bartlam, M.; Fraser, P.E.; Pepys, M.B.; Blake, C.C. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 1997, 273, 729–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wininger, A.E.; Phelps, B.M.; Le, J.T.; Harris, J.D.; Trachtenberg, B.H.; Liberman, S.R. Musculoskeletal pathology as an early warning sign of systemic amyloidosis: A systematic review of amyloid deposition and orthopedic surgery. BMC Musculoskelet. Disorders 2021, 22, 51. [Google Scholar] [CrossRef] [PubMed]
- Reitz, C.; Brayne, C.; Mayeux, R.; Kelly, J.W.; Maurer, M.S. Epidemiology of Alzheimer disease. Nat. Rev. Neurol. 2011, 7, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Sperry, B.W.; Vranian, M.N.; Hachamovitch, R.; Joshi, H.; Ikram, A.; Phelan, D.; Hanna, M. Subtype-specific interactions and prognosis in cardiac amyloidosis. J. Am. Heart Assoc. 2016, 5, 002877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saraiva, M.J. Transthyretin amyloidosis: A tale of weak interactions. FEBS Lett. 2001, 498, 201–203. [Google Scholar] [CrossRef] [Green Version]
- Kozak, S.; Ulbrich, K.; Migacz, M.; Szydło, K.; Mizia-Stec, K.; Holecki, M. Cardiac Amyloidosis-Challenging Diagnosis and Unclear Clinical Picture. Medicina 2021, 57, 450. [Google Scholar] [CrossRef]
- Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science. 2002, 297, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, P.N.; Myers, M.J.; Lavender, J.P.; Pepys, M.B. Diagnostic radionuclide imaging of amyloid: Biological targeting by circulating human serum amyloid P component. Lancet 1988, 1, 1413–1418. [Google Scholar] [CrossRef]
- Tennent, G.A.; Lovat, L.B.; Pepys, M.B. Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc. Natl. Acad. Sci. USA 1995, 92, 4299–4303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snow, A.D.; Kisilevsky, R.; Stephens, C.; Anastassiades, T. Characterization of tissue and plasma glycosaminoglycans during experimental AA amyloidosis and acute inflammation: Qualitative and quantitative analysis. Lab. Investig. J. Tech. Methods Pathol. 1987, 56, 665–675. [Google Scholar]
- Stevens, F.J.; Kisilevsky, R. Immunoglobulin light chains, glycosaminoglycans, and amyloid. Cell Mol. Life Sci. 2000, 57, 441–449. [Google Scholar] [CrossRef]
- Sipe, J.D.; Benson, M.D.; Buxbaum, J.N.; Ikeda, S.I.; Merlini, G.; Saraiva, M.J.; Westermark, P. Nomenclature 2014: Amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid 2014, 21, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Bellotti, V.; Mangione, P.; Merlini, G. Review: Immunoglobulin light chain amyloidosis--the archetype of structural and pathogenic variability. J Struct Biol. 2000, 130, 280–289. [Google Scholar] [CrossRef]
- Merlini, G.; Westermark, P. The systemic amyloidoses: Clearer understanding of the molecular mechanisms offers hope for more effective therapies. J. Intern. Med. 2004, 255, 159–178. [Google Scholar] [CrossRef]
- Buxbaum, J.N.; Tagoe, C.E. The genetics of the amyloidoses. Annu. Rev. Med. 2000, 51, 543–569. [Google Scholar] [CrossRef]
- Westermark, P.; Picken, M.; Herrera, G.; Dogan, A. Localized amyloidoses and amyloidoses associated with aging outside the central nervous system. Amyloid Relat. Disord. Curr. Clin. Pathol. 2020, 143, 322–334. [Google Scholar]
- McLaurin, J.; Yang, D.; Yip, C.M.; Fraser, P.E. Modulating factors in amyloid-beta fibril formation. J. Struct. Biol. 2000, 130, 259–270. [Google Scholar] [CrossRef]
- Benson, M.D.; Buxbaum, J.N.; Eisenberg, D.S.; Merlini, G.; Saraiva, M.J.M.; Sekijima, Y.; Sipe, J.D.; Westermark, P. Amyloid nomenclature 2020: Update and recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid 2020, 27, 217–222. [Google Scholar] [CrossRef]
- Sipe, J.D.; Benson, M.D.; Buxbaum, J.N.; Ikeda, S.; Merlini, G.; Saraiva, M.J.M.; Westermark, P. Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 2012, 19, 167–170. [Google Scholar] [CrossRef]
- Ruberg, F.L.; Grogan, M.; Hanna, J.W.; Kelly, M.S. Maurer Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2019, 73, 2872–2891. [Google Scholar] [CrossRef]
- Prokaeva, T.; Spencer, B.; Kaut, M.; Ozonoff, A.; Doros, G.; Connors, L.H.; Skinner, M.; Seldin, C.D. Soft tissue, joint, and bone manifestations of AL amyloidosis: Clinical presentation, molecular features, and survival. Arthritis Rheum. 2007, 56, 3858–3868. [Google Scholar] [CrossRef]
- Grogan, M.; Dispenzieri, A.; Gertz, M.A. Light-chain cardiac amyloidosis: Strategies to promote early diagnosis and cardiac response. Heart 2017, 103, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Tasaki, M.; Lavatelli, F.; Obici, L.; Obayashi, K.; Miyamoto, T.; Merlini, G.; Palladini, G.; Ando, Y.; Ueda, M. Age-related amyloidosis outside the brain: A state-of-the-art review. Ageing Res. Rev. 2021, 70, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.S.; Elliott, P.; Comenzo, R.; Semigran, M.; Rappezi, C. Addressing common questions encountered in the diagnosis and Management of Cardiac Amyloidosis. Circulation 2017, 135, 1357–1377. [Google Scholar] [CrossRef] [Green Version]
- Falk, R.H.; Comenzo, R.L.; Skinner, M. The systemic amyloidoses. N. Engl. J. Med. 1997, 337, 898–909. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; Gertz, M.A. Primary systemic amyloidosis: Clinical and laboratory features in 474 cases. Semin. Hematol. 1995, 32, 45–59. [Google Scholar] [PubMed]
- Lachmann, H.J.; Goodman, H.J.; Gilbertson, J.A.; Gallimore, J.R.; Sabin, C.A.; Gallimore, J.D.; Hawkins, P.N. Natural history and outcome in systemic AA amyloidosis. N. Engl. J. Med. 2007, 356, 2361–2371. [Google Scholar] [CrossRef] [Green Version]
- Dungu, J.N.; Anderson, L.J.; Whelan, C.J.; Hawkins, P.N. Cardiac transthyretin amyloidosis. Heart 2012, 98, 1546–1554. [Google Scholar] [CrossRef]
- Drüeke, T.B.; Massy, Z.A. Beta2-microglobulin. Semin. Dial. 2009, 22, 378–380. [Google Scholar] [CrossRef] [PubMed]
- Patterson, C.; World Report on Alzheimer’s Disease 2018. ADI, London 1–48. Available online: www.alz.co.uk/research/WorldAlzheimerReport2018.pdfGoogleScholar (accessed on 8 November 2018).
- Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef] [PubMed]
- Póżyński, S. Classification of Mental and Behavioral Disorders in ICD-10. Descriptions and Recognition; UWM “Vesalius” Institute of Psychiatry and Neurology Krakow: Warsaw, Poland, 2000. [Google Scholar]
- American Psychiatric Association. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Goedert, M.; Spillantini, M.G. A century of Alzheimer’s disease. Science 2006, 314, 777–781. [Google Scholar] [CrossRef] [Green Version]
- Querfurth, H.W.; LaFerla, F.M. Alzheimer’s Disease. N. Engl. J. Med. 2010, 362, 329–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamat, P.K.; Tota, S.; Shukla, R.; Ali, S.; Najmi, A.K.; Nath, C. Mitochondrial dysfunction: A key event in okadaic acid (ICV) induced memory disorder and apoptotic cell death in the rat brain. Pharm. Biochem. Behav. 2012, 100, 311–319. [Google Scholar] [CrossRef]
- Kamat, P.K.; Rai, S.; Swarnkar, S.; Shukla, R.; Nath, C. Mechanism of synapse redox stress in okadaic acid (ICV) induced memory disorder: Role of NMDA receptor. Neurochem Int. 2014, 20, 10–15. [Google Scholar]
- Rai, S.; Kamat, P.K.; Nath, C.; Shukla, R. A study on neuroinflammation and NMDA receptor function in STZ (ICV) induced memory lord. J. Neuroimmunol. 2013, 254, 1–9. [Google Scholar] [CrossRef]
- Davies, P.; Maloney, A.J. Selective loss of central cholin- 806 ergic neurons in Alzheimer’s disease. Lancet. 1976, 2, 1403. [Google Scholar] [CrossRef]
- Kamat, P.K.; Kalani, A.; Rai, S.; Swarnkar, S.; Tota, S.; Nath, C.; Tyagi, N. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: Therapeutic strategies. Mol. Neurobiol. 2016, 53, 648–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamat, P.K.; Tota, S.; Saxena, G.; Shukla, R.; Nath, C. Okadaic acid (ICV) induced memory disorder in rats. Brain Res. 2010, 1309, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Sciacca, M.F.; Kotler, S.A.; Brender, J.R.; Chen, J.; Lee, D.K.; Ramamoorthy, A. Two-step mechanism of membrane disruption by Abeta through membrane fragmentation and pore formation. Biophys. J. 2012, 103, 702–710. [Google Scholar] [CrossRef] [Green Version]
- Capone, R.; Quiroz, F.G.; Prangkio, P.; Saluja, I.; Sauer, A.M.; Bautista, M.R.; Turner, R.S.; Yang, J.; Mayer, M. Amyloid-beta-induced ion flux in artificial lipid bilayers and neuronal cells: Resolving a controversy. Neurotox. Res. 2009, 16, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuchibhotla, K.V.; Goldman, S.T.; Lattarulo, C.R.; Wu, H.Y.; Hyman, B.T.; Bacskai, B.J. Abeta plaques lead to incorrect regulation of calcium homeostasis in vivo, causing structural and functional disruption of neural networks. Neuron 2008, 59, 214–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowen, D.M.; Smith, C.B.; White, P.; Davison, A.N. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophie. Brain 1976, 99, 459–496. [Google Scholar] [CrossRef] [Green Version]
- Mesulam, M. A horseradish peroxidase method for the identification of the efferents of acetyl cholinesterase-containing neurons. J. Histochem. Cytochem. 1976, 24, 1281–1285. [Google Scholar] [CrossRef]
- Nordberg, A.; Winblad, B. Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci. Lett. 1986, 72, 115–119. [Google Scholar] [CrossRef]
- Schroder, H.; Giacobini, E.; Struble, R.G.; Zilles, K.; Maelicke, A. Nicotinic cholinoceptive neurons of the frontal cortex are reduced in Alzheimer’s disease. Neurobiol. Aging 1991, 12, 259–262. [Google Scholar] [CrossRef]
- Mesulam, M.M. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J. Comp. Neurol. 2013, 521, 4124–4144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, E.K.; Perry, R.H.; Blessed, G.; Tomlinson, B.E. Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1977, 1, 189. [Google Scholar] [CrossRef]
- Ramos-Rodriguez, J.J.; Pacheco-Herrero, M.; Thyssen, D.; Murillo-Carretero, M.I.; Berrocoso, E.; Spires-Jones, T.L.; Garcia-Alloza, M. Rapid β-amyloid deposition and cognitive impairment after cholinergic denervation in APP/PS1 mice. J. Neuropath Exp. Neurol. 2013, 72, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Field, R.H.; Gossen, A.; Cunningham, C. Prior pathology in the basal forebrain cholinergic system predisposes to inflammation-induced working memory deficits: Reconciling inflammatory and cholinergic hypotheses of delirium. J. Neurosci. 2012, 32, 6288–6294. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.M.; Kwan, J.; Malek-Ahmadi, M.; Maarouf, C.L.; Kokjohn, T.A.; Belden, C.; Bacskai, B.J.; Garcia- Alloza, M. Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer’s disease. PLoS ONE 2012, 7, e36893. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, B.; Carare, R.O.; Bechmann, I.; Flugel, A.; Laman, J.D.; Weller, R.O. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 2016, 132, 317–338. [Google Scholar] [CrossRef] [Green Version]
- Palmqvist, S.; Schöll, M.; Strandberg, O.; Mattsson, N.; Stomrud, E.; Zetterberg, H.; Blennow, K.; Landau, S.; Jagust, W.; Hansson, O. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 2017, 8, 1214. [Google Scholar] [CrossRef] [Green Version]
- Braak, H.; Thal, D.R.; Ghebremedhin, E.; Del Tredici, K. Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 2011, 70, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Halliday, G.; Robinson, S.R.; Shepherd, C.; Kril, J. Alzheimer’s Disease and Inflammation: A National and Country Therapeutic ReviewClin. Exp. Pharmacol. Physiol. 2000, 27, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyss-Coray, T. Inflammation in Alzheimer’s Disease: Driving Force, Witness, or Positive Response? Nat. Med. 2006, 12, 1005–1015. [Google Scholar]
- Giulian, D.; Li, J.; Li, X.; George, J.; Rutecki, P. Effect of microglia derived cytokines on gliosis in CNS Dev. Neurosci. 1994, 16, 128–136. [Google Scholar]
- McGeer, E.G.; McGeer, P.L. Inflammatory processes in Alzheimer’s disease. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2003, 27, 741–749. [Google Scholar] [CrossRef]
- Sarter, J.P. Developmental origins of the age-related decline in cortical cholinergic function and associated cognitive abilities. Neurobiol. Aging 2004, 25, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Nagele, R.G.; Wegiel, J.; Venkataraman, V.; Imaki, H.; Wang, K.C.; Wegiel, J. Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol. Aging 2004, 25, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Pozo, A.; Mielke, M.L.; Gómez-Isla, T.; Betensky, R.A.; Growdon, J.H.; Frosch, M.P.; Blennow, K.; Zetterberg, H. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am. J. Pathol. 2014, 179, 1373–1384. [Google Scholar] [CrossRef] [PubMed]
- Lyman, M.; Lloyd, D.G.; Ji, X.; Vizcaychipi, M.P.; Ma, D. Neuroinflammation: The role and consequences. Neurosci. Res. 2014, 79, 1–12. [Google Scholar] [CrossRef]
- Villemagne, V.L.; Burnham, S.; Bourgeat, P.; Brown, B.; Ellis, K.A.; Salvado, O.; Maruff, P.; Ames, D.; Rowe, C.C. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study. Lancet Neurol. 2013, 12, 357–367. [Google Scholar] [CrossRef]
- Jack, C.R.; Wiste, H.J.; Lesnick, T.G.; Weigand, S.D.; Knopman, D.S.; Vemuri, P.; Mielke, M.M.; Lowe, V.J. Brain β-amyloid load approaches a plateau. Neurology 2013, 80, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Doan, T.; Massarotti, E. Rheumatoid Arthritis: An Overview of New and Emerging Therapies. J. Clin. Pharmacol. 2005, 45, 751. [Google Scholar] [CrossRef]
- Choy, E.H.S.; Panayi, G.S. Cytokine pathways and joint inflamation in rheumatoid arthritis. N. Engl. J. Med. 2001, 344, 907–916. [Google Scholar] [CrossRef]
- Ghoryani, M.; Shariati-Sarabi, Z.; Tavakkol-Afshari, J.; Ghasemi, A.; Poursamimi, J.; Mohammadi, M. Amelioration of clinical symptoms of patients with refractory rheumatoid arthritis following treatment with autologous bone marrow-derived mesenchymal stem cells: A successful clinical trial in Iran. Biomed. Pharmacother. 2019, 109, 1834–1840. [Google Scholar] [CrossRef]
- Feldman, M.; Maini, R.N. The role of cytokines in the pathogenesis of rheumatoid arthritis. Rheumatology 1999, 38, 3–7. [Google Scholar]
- Zheng, X.; Wu, S.; Hincapie, M.; Hancock, W.D. Study of the human plasma proteome of rheumatoid arthritis. J. Chromatography 2009, 1216, 3538–3545. [Google Scholar] [CrossRef]
- Boldi, K.; Prokaeva, T.; Spencer, B.; Eberhard, M.; Connors, R.H.; Seldin, D.C. AL-Base a visual platform analysis for the study of amyloidogenic immunoglobulin light chain sequences. Amyloid: J. Protein Fold. Disord. 2009, 16, 1–8. [Google Scholar]
- Yuan, J.; Meloni, B.P.; Shi, T.; Bonser, A.; Papadimitriou, J.M.; Mastaglia, F.L.; Zhang, C.; Zheng, M.; Gao, J. The potential influence of bone-derived modulators on the progression of Alzheimer’s disease. J. Alzheimer’s Dis. 2019, 69, 59–70. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Hanna, M.; Sperry, B.W.; Seitz, W.H. Carpal tunnel syndrome: A potential early, red-flag sign of amyloidosis. J. Hand Surg. Am. 2019, 44, 868–876. [Google Scholar] [CrossRef]
- Brunger, A.F.; Nienhuis, H.L.A.; Bijzet, J.; Hazenberg, B.P.C. Causes of AA amyloidosis: A systematic review. Amyloid 2020, 27, 1–12. [Google Scholar] [CrossRef]
- Hart, P.H.; Hunt, E.K.; Bonder, C.S.; Watson, C.J.; Finlay-Jones, J.J. Regulation of surface and soluble TNF receptor expression on human monocytes and synovial fluid macrophages by IL-4 and IL-10. J. Immunol. 1996, 157, 3672–3680. [Google Scholar]
- Walker, K.A.; Gottesman, R.F.; Wu, A.; Knopman, D.S.; Gross, A.L.; Mosley, T.H.; Selvin, E.; Jack, C.R.; Gottesman, R.F. Systemic inflammation during midlife and cognitive change over 20 years: The ARIC study. Neurology 2019, 92, 1256–1267. [Google Scholar]
- Lin, T.M.; Chen, W.S.; Sheu, J.J.; Chen, Y.H.; Chen, J.H.; Chang, C.C. Autoimmune rheumatic diseases increase dementia risk in middle-aged patients: A nationwide cohort study. PLoS ONE 2018, 13, e018675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallin, K.; Solomon, A.; Kreholt, I.; Tuomilehto, J.; Soininen, H.; Walin, K. Midlife rheumatoid arthritis increases the risk of cognitive impairment two decades later: A population-based study. J. Alzheimer’s Dis. 2012, 31, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, S.; Judge, A.; Batra, R.N.; Price, A.J. Development and validation of a clinical prediction model for patient-reported pain and function after primary total knee replacement surgey. Scientific Reports. 2018, 3381, 25–30. [Google Scholar]
- Zandi, P.P.; Breitner, J.C.S. Do NSAIDs prevent Alzheimer’s disease? And, if so, why? The epidemiological evidence. Neurobiol. Aging 2001, 22, 811–817. [Google Scholar] [CrossRef]
- Lebrasseur, N.K.; Tchkonia, T.; Kirkland, J.L. Cellular senescence and the biology of aging, disease, and frailty. Nestle Nutr. Inst. Workshop Ser. 2015, 83, 11–18. [Google Scholar] [PubMed] [Green Version]
- Walker, K.A.; Windham, B.G.; Power, M.C.; Hoogeveen, R.C.; Folsom, A.R.; Ballantyne, C.M.; Konopman, D.S.; Selvin, E.; Jack, C.R.; Gottesman, R.F. The association of mid to late-life systemic inflammation with white matter structure in older adults: The ARIC study. Neurobiol. Aging 2018, 68, 26–33. [Google Scholar] [CrossRef]
- Sangha, P.S.; Thakur, M.; Akhtar, Z.; Ramani, S.; Rubby, S. The Link Between Rheumatoid Arthritis and Dementia. Rev. Cureus. 2020, 12, e7855. [Google Scholar] [CrossRef]
- Juszczyk, G.; Mikulska, J.; Kasperek, K.; Pietrzak, D.; Mrozek, W.; Herbet, M. Chronic Stress and Oxidative Stress as Common Factors of the Pathogenesis of Depression and Alzheimer’s Disease: The Role of Antioxidants in Prevention and Treatment. Antioxidants 2021, 10, 1439. [Google Scholar] [CrossRef]
- Kukar, T.; Golde, T. Possible mechanisms of action of NSAIDs and related compounds that modulate gamma-secretase cleavage. Curr. Top. Med. Chem. 2008, 8, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, Y.; Wang, D.; Zhang, J.; Zhang, F. NSAID Exposure and Risk of Alzheimer’s Disease: An Updated Meta-Analysis from Cohort Studies. Front. Aging Neurosci. 2018, 10, 83. [Google Scholar] [CrossRef]
- Etminan, M.; Gill, S.; Samii, A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: Systematic review and meta-analysis of observational studies. BMJ 2003, 327, 128. [Google Scholar] [CrossRef] [Green Version]
- Meyer, P.F.; Tremblay-Mercier, J.; Leoutsakos, J.; Madjar, C.; Lafaille-Maignan, M.E.; Savard, M.; Rosa-Neto, P.; Poirier, J.; Etienne, P.; Breitner, J.; et al. INTREPAD: A randomized trial of naproxen to slow progress of presymptomatic Alzheimer disease. Neurology 2019, 92, e2070–e2080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hershey, L.A.; Lipton, R.B. Naproxen for presymptomatic Alzheimer disease: Is this the end, or shall we try again? Neurology 2019, 92, 829–830. [Google Scholar] [CrossRef]
- Molina, E.; Del Rincon, I.; Restrepo, J.F.; Battafarano, D.F.; Escalante, A. Association of socioeconomic status with treatment delays, disease activity, joint damage, and disability in rheumatoid arthritis. Arthritis Care Res. 2015, 67, 940–946. [Google Scholar] [CrossRef]
- Chou, R.C.; Kane, M.; Ghimire, S.; Gautam, S.; Gui, J. Treatment for rheumatoid arthritis and risk of Alzheimer’s disease: A nested case-control analysis. CNS Drugs 2016, 30, 1111–1120. [Google Scholar] [CrossRef] [Green Version]
- Ungprasert, P.; Wijarnpreecha, K.; Thongprayoon, C. Rheumatoid arthritis and the risk of dementia: A systematic review and meta-analysis. Neurol. India 2016, 64, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Dufouil, C.; Seshadri, S.; Chêne, G. Cardiovascular risk profile in women and dementia. J. Alzheimers Dis. 2014, 42 (Suppl. S4), 353–363. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.L.; Wolfe, F.; Huizinga, T.W. Rheumatoid arthritis. Lancet 2010, 376, 1094–1108. [Google Scholar] [CrossRef]
- Turesson, C.; O’Fallon, W.M.; Crowson, C.S.; Gabriel, S.E.; Matteson, E.L. Extra-articular disease manifestations in rheumatoid arthritis: Incidence trends and risk factors over 46 years. Ann. Rheum Dis. 2003, 62, 722–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, S.C.; Lee, Y.H. Causal association between rheumatoid arthritis and a decreased risk of Alzheimer’s disease: A Mendelian randomization study. Z. Rheumatol. 2019, 78, 359–364. [Google Scholar] [CrossRef]
- Judge, A.; Garriga, C.; Arden, N.K.; Lovestone, S.; Prieto-Alhambra, D.; Cooper, C.; Edwards, C.J. Protective effect of antirheumatic drugs on dementia in rheumatoid arthritis patients. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2017, 3, 612–621. [Google Scholar] [CrossRef]
- Zhou, M.; Xu, R.; Kaelber, D.C.; Gurney, M.E. Tumor Necrosis Factor (TNF) blocking agents are associated with lower risk for Alzheimer’s disease in patients with rheumatoid arthritis and psoriasis. PLoS ONE 2020, 15, e0229819. [Google Scholar] [CrossRef] [Green Version]
- McGeer, P.L.; Schulzer, M.; McGeer, E.G. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: A review of 17 epidemiologic studies. Neurology 1996, 47, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Kao, L.T.; Kang, J.H.; Lin, H.C.; Huang, C.C.; Lee, H.C.; Chung, S.D. Rheumatoid arthritis was negatively associated with Alzheimer’s disease: A population-based case-control study. PLoS ONE 2016, 11, e0168106. [Google Scholar] [CrossRef] [Green Version]
- Policicchio, S.; Ahmad, A.N.; Powell, J.F.; Proitsi, P. Rheumatoid arthritis and risk for Alzheimer’s disease: A systematic review and meta-analysis and a Mendelian Randomization study. Sci. Rep. 2017, 7, 12861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorelick, P.B. Role of inflammation in cognitive impairment: Results of observational epidemiological studies and clinical trials. Ann. NY Acad Sci. 2010, 1207, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Jin, S.; Jiang, Y.; Liao, M.; Feng, R.; Zhang, L.; Lui, B.; Cai, Q. Alzheimer’s disease variants with the genome-wide significance are significantly enriched in immune pathways and active in immune cells. Mol. Neurobiol. 2017, 54, 594–600. [Google Scholar] [CrossRef]
- Le Page, A.; Dupuis, G.; Frost, E.H.; Larbi, A.; Pawelec, G.; Witkowski, J.M.; Fulop, T. Role of the peripheral innate immune system in the development of Alzheimer’s disease. Exp. Gerontol. 2018, 107, 59–66. [Google Scholar] [CrossRef]
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018, 14, 133–150. [Google Scholar] [CrossRef]
- Banks, W.A.; Kastin, A.J.; Broadwell, R.D. Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 1995, 2, 241–248. [Google Scholar] [CrossRef]
- Roth, J.; Harre, E.M.; Rummel, C.; Gerstberger, R.; Hubschle, T. Signaling the brain in systemic inflammation: Role of sensory circumventricular organs. Front. Biosci. 2004, 9, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Das, U.N. Vagus nerve stimulation, depression, and inflammation. Neuropsychopharmacology 2007, 32, 2053–2054. [Google Scholar] [CrossRef] [PubMed]
- Lai, P.; Wang, T.; Zhang, N.; Wu, K.; Yao, C.J.; Lin, C. Changes of blood-brain-barrier function and transfer of amyloid beta in rats with collagen-induced arthritis. J. Neuroinflamm. 2021, 18, 174–182. [Google Scholar] [CrossRef]
- Nishioku, T.; Yamauchi, A.; Takata, F.; Watanabe, T.; Furusho, K.; Shuto, H.; Dohgu, S.; Kataoka, Y. Disruption of the blood–brain barrier in collagen-induced arthritic mice. Neurosci. Lett. 2010, 482, 208–211. [Google Scholar] [CrossRef]
- Arbustini, E.; Morbini, P.; Verga, L.; Anesi, E.; Merlini, G. Light and electron microscopy immunohistochemical characterization of amyloid deposits. Amyloid 1997, 4, 157–170. [Google Scholar] [CrossRef]
- Murphy, C.L.; Eulitz, M.; Hrncic, R.; Wal, C.; Weis, L.; Deborah, T. Chemical typing of amyloid protein contained in formalin-fixed paraffin-embedded biopsy specimens. Am. J. Clin. Pathol. 2001, 116, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Lachmann, H.J.; Booth, D.R.; Booth, S.E.; Pepys, M.B.; Hawkins, P.N. Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis. N. Engl. J. Med. 2002, 346, 1786–1791. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, M.J. Sporadic cases of hereditary systemic amyloidosis. N. Engl. J. Med. 2002, 346, 1818–1819. [Google Scholar] [CrossRef]
- Merlini, G.; Bellotti, V. Molecular Mechanisms of Amyloidosis. N. Engl. J. Med. 2003, 349, 583–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohno, S.; Yoshimoto, M.; Honda, S.; Myiachi, S. The antisense approach in amyloid light chain amyloidosis: Identification of monoclonal Ig and inhibition of its production by antisense oligonucleotides in in vitro and in vivo models. J. Immunol. 2002, 169, 4039–4045. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Mao, Q.; Paulson, H.L.; Davidson, B.L. siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol. 2002, 20, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Jick, H.; Zornberg, G.L.; Jick, S.S.; Seshadri, S.; Drachman, D.A. Statins and the risk of dementia. Lancet 2000, 356, 1627–1631. [Google Scholar] [CrossRef]
- Weggen, S.; Eriksen, J.L.; Das, P.; Sagi, S.A.; Wang, R.; Pietrzik, C.U.; Findlav, K.A.; Smith, T.E.; Murphy, M.P.; Bulter, T.; et al. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 2001, 414, 212–216. [Google Scholar] [CrossRef]
- Eriksen, J.L.; Sagi, S.A.; Smith, T.E.; Weggen, S.; Das, P.; McLendon, D.C.; Ozols, V.V.; Jessing, K.W.; Zavitz, K.H.; Koo, E.H.; et al. NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo. J. Clin. Investig. 2003, 112, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.K.; Shin, D.; Downs, D.; Koelsch, G.; Lin, X.; Ermolieff, J.; Tang, I. Design of potent inhibitors for human brain memapsin 2 (β-secretase). J. Am. Chem. Soc. 2000, 122, 3522–3523. [Google Scholar] [CrossRef]
- Green, R.C.; Schneider, L.S.; Amato, D.A.; Beelen, A.P.; Wilcock, G.; Swabb, E.A.; Zawitz, K.H. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: A randomized controlled trial. JAMA. 2009, 302, 2557–2564. [Google Scholar] [CrossRef] [Green Version]
- Walker, L.C.; Rosen, R.F. Alzheimer therapeutics—What after the cholinesterase inhibitors? Age Ageing 2006, 35, 332–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jevotovsky, D.S.; Alfonso, A.R.; Einhorn, T.A.; Chiu, E.S. Osteoarthritis and stem cell therapy in humans: A systematic review. Osteoarthr. Cartil. 2018, 26, 711–729. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Nan, W.; Zhang, X.; Sun, Y.; Yang, J.; Lu, K.; Zhao, Y. Umbilical cord mesenchymal stem cells conditioned medium promoted AB25-35 phagocytosis by modulating autophagy and AB-degrading enzymes in BV2 cells. J. Mol. Neurosci. 2018, 65, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Duncan, T.; Valenzuela, M. Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res. 2017, 8, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Biogen. Biogen Plans to Submit a Regulatory Application for Aducanumab in Alzheimer’s Disease Based on a New Analysis of a Larger Dataset from Phase 3 Trials. 2019. Available online: http://investors.biogen.com/news-releases/news-release-details/biogen-plans-regulatory-filing-aducanumab-alzheimers-disease (accessed on 10 November 2020).
- Xiong, M.; Jiang, H.; Serrano, J.R.; Gonzales, E.R.; Wang, C.; Gratuze, M.; Hoyle, R.; Bien-Ly, N.; Silverman, A.P.; Sullivan, P.M.; et al. APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function. Sci. Transl. Med. 2021, 13, eabd7522. [Google Scholar] [CrossRef] [PubMed]
- NIH US National Library of Medicine. Study to Confirm the Safety and Efficacy of BAN2401 in Subjects with Early Alzheimer’s Disease (clarity AD) (2019). Available online: https://clinicaltrials.gov/ct2/show/NCT03887455 (accessed on 20 November 2020).
Systemic Organs | Amyloid |
---|---|
Brain | Aβ α-Synuclein Tau |
Lung | Transthyretin |
Heart | Transthyretin Atrial natriuretic factor |
Aorta | Apolipoprotein AI |
Vein | EGF-containing fibulin-like extracellular matrix protein 1 |
Tendons and Ligaments | Transthyretin Apolipoprotein AI |
Knee joint | Transthyretin Apolipoprotein AI |
Kind of Amyloidosis | Cause | Precursor | Clinical Manifestation | Literature |
---|---|---|---|---|
AL | clonal plasma cell dyscrasia multiple myeloma non-Hodgkin lymphoma Waldenström disease | lambda or kappa immunoglobulin free light chain | -cardiomyopathy -nephrotic syndrome -renal failure -hepatomegaly -splenomegaly -diarrhea -arthropathy -bleeding -adrenal dysfunction | [31] |
AA | longstanding inflammation (rheumatoid arthritis, inflammatory bowel disease) chronic infections (e.g., tuberculosis, osteomyelitis, leprosy) hereditary autoinflammatory diseases (e.g., familial Mediterranean fever, which is called FMF) | HDL3-associated apolipoprotein SAA (serum amyloid A protein) cute phase reactant | -proteinuria (progressing to nephrotic syndrome) -loss of renal function (progressing to renal failure) -bowel involvement -splenomegaly -hepatomegaly -cardiomyopathy | [32] |
ATTR | autosomal dominantly inherited point mutations of the precursor protein transthyretin (TTR) | TTR | -peripheral -autonomic neuropathy -cardiomyopathy -renal failure -eye involvement (vitreous opacities) | [33] |
Aβ2M | end-stage renal disease in which highly increased serum levels of β2-microglobulin | β2-microglobulin | -shoulder pains as a first manifestation - autonomic neuropathy -gastrointestinal symptoms | [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trzeciak, P.; Herbet, M.; Dudka, J. Common Factors of Alzheimer’s Disease and Rheumatoid Arthritis—Pathomechanism and Treatment. Molecules 2021, 26, 6038. https://doi.org/10.3390/molecules26196038
Trzeciak P, Herbet M, Dudka J. Common Factors of Alzheimer’s Disease and Rheumatoid Arthritis—Pathomechanism and Treatment. Molecules. 2021; 26(19):6038. https://doi.org/10.3390/molecules26196038
Chicago/Turabian StyleTrzeciak, Paulina, Mariola Herbet, and Jarosław Dudka. 2021. "Common Factors of Alzheimer’s Disease and Rheumatoid Arthritis—Pathomechanism and Treatment" Molecules 26, no. 19: 6038. https://doi.org/10.3390/molecules26196038
APA StyleTrzeciak, P., Herbet, M., & Dudka, J. (2021). Common Factors of Alzheimer’s Disease and Rheumatoid Arthritis—Pathomechanism and Treatment. Molecules, 26(19), 6038. https://doi.org/10.3390/molecules26196038