Raman Spectroscopy, X-ray Diffraction, and Scanning Electron Microscopy as Noninvasive Methods for Microstructural Alterations in Psoriatic Nails
Abstract
:1. Introduction
2. Results and Discussion
2.1. Raman Spectroscopy
2.2. X-ray Diffraction Characterization
2.3. Scanning Electron Microscopy
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Raman Spectroscopy
3.2.2. Scanning Electron Microscopy
3.2.3. X-ray Diffraction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dogra, A.; Arora, A.K. Nail psoriasis: The journey so far. Indian J. Dermatol. 2014, 59, 319. [Google Scholar] [CrossRef] [PubMed]
- Gudjonsson, J.E.; Karason, A.; Runarsdottir, E.H.; Antonsdottir, A.A.; Hauksson, V.B.; Jónsson, H.H.; Gulcher, J.; Stefansson, K.; Valdimarsson, H. Distinct clinical differences between HLA-Cw* 0602 positive and negative psoriasis patients—An analysis of 1019 HLA-C-and HLA-B-typed patients. J. Investig. Dermatol. 2006, 126, 740–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parisi, R.; Symmons, D.P.; Griffiths, C.E.; Ashcroft, D.M. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J. Investig. Dermatol. 2013, 133, 377–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomon, J.; Szepietowski, J.C.; Proniewicz, A. Psoriatic nails: A prospective clinical study. J. Cutan. Med. Surg. 2003, 7, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Haneke, E. Nail psoriasis: Clinical features, pathogenesis, differential diagnoses, and management. Psoriasis (Auckl. NZ) 2017, 7, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alpsoy, E.; Polat, M.; FettahlıoGlu-Karaman, B.; Karadag, A.S.; Kartal-Durmazlar, P.; YalCın, B.; Emre, S.; Didar-Balcı, D.; Bilgic--Temel, A.; Arca, E. Internalized stigma in psoriasis: A multicenter study. J. Dermatol. 2017, 44, 885–891. [Google Scholar] [CrossRef]
- Malakouti, M.; Brown, G.E.; Leon, A.; Wang, E.; Naegeli, A.N.; Edson-Heredia, E.; Levin, E.; Koo, J.Y. The dermatologic intimacy scale: Quantitatively measuring the impact of skin disease on intimacy. J. Dermatol. Treat. 2017, 28, 347–352. [Google Scholar] [CrossRef]
- Baswan, S.; Kasting, G.B.; Li, S.K.; Wickett, R.; Adams, B.; Eurich, S.; Schamper, R. Understanding the formidable nail barrier: A review of the nail microstructure, composition and diseases. Mycoses 2017, 60, 284–295. [Google Scholar] [CrossRef] [Green Version]
- Gniadecka, M.; Nielsen, O.F.; Christensen, D.H.; Wulf, H.C. Structure of water, proteins, and lipids in intact human skin, hair, and nail. J. Investig. Dermatol. 1998, 110, 393–398. [Google Scholar] [CrossRef] [Green Version]
- Coroaba, A.; Pinteala, T.; Chiriac, A.; Chiriac, A.E.; Simionescu, B.C.; Pinteala, M. Degradation Mechanism Induced by Psoriasis in Human Fingernails: A Different Approach. J. Investig. Derm. 2016, 136, 311–313. [Google Scholar] [CrossRef] [Green Version]
- Saeedi, P.; Shavandi, A.; Meredith-Jones, K. Nail Properties and bone health: A review. J. Funct. Biomater. 2018, 9, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, H.; Williams, A.; Barry, B. Potential applications of FT-Raman spectroscopy for dermatological diagnostics. J. Mol. Struct. 1995, 347, 379–387. [Google Scholar] [CrossRef]
- Widjaja, E.; Garland, M. Detection of bio-constituents in complex biological tissue using Raman microscopy. Application to human nail clippings. Talanta 2010, 80, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Howard, P. The Physical Properties of Nail. J. Investig. Dermatol. 1970, 55, 115–122. [Google Scholar]
- Moll, R.; Divo, M.; Langbein, L. The human keratins: Biology and pathology. Histochem. Cell Biol. 2008, 129, 705. [Google Scholar] [CrossRef] [Green Version]
- Widjaja, E.; Lim, G.H.; An, A. A novel method for human gender classification using Raman spectroscopy of fingernail clippings. Analyst 2008, 133, 493–498. [Google Scholar] [CrossRef]
- Williams, A.; Edwards, H.; Barry, B. Raman spectra of human keratotic biopolymers: Skin, callus, hair and nail. J. Raman Spectrosc. 1994, 25, 95–98. [Google Scholar] [CrossRef]
- Widjaja, E.; Seah, R.K.H. Use of Raman Spectroscopy and Multivariate Classification Techniques for the Differentiation of Fingernails and Toenails. Appl. Spectrosc. 2006, 60, 343–345. [Google Scholar] [CrossRef]
- Pillay, I.; Lyons, D.; German, M.; Lawson, N.; Pollock, H.; Saunders, J.; Chowdhury, S.; Moran, P.; Towler, M. The use of fingernails as a means of assessing bone health: A pilot study. J. Women’s Health 2005, 14, 339–344. [Google Scholar] [CrossRef]
- Goldstein, J.; Newbury, D.E.; Echlin, P.; Joy, D.C., Jr.; Lyman, C.E.; Fiori, C.; Lifshin, E. Scanning Electron Microscopy and X-ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists, 2nd ed.; Springer: New York, NY, USA, 1992; ISBN 978-1-4612-7653-1. [Google Scholar]
- Drummond, S.P.; Allen, T.D. From live-cell imaging to scanning electron microscopy (SEM): The use of green fluorescent protein (GFP) as a common label. Methods Cell Biol. 2008, 88, 97–108. [Google Scholar]
- Gadelha, A.P.R.; Benchimol, M.; de Souza, W. Helium ion microscopy and ultra-high-resolution scanning electron microscopy analysis of membrane-extracted cells reveals novel characteristics of the cytoskeleton of Giardia intestinalis. J. Struct. Biol. 2015, 190, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Pawley, J.; Schatten, H. Biological Low-Voltage Scanning Electron Microscopy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; ISBN 978-0-387-72972-5. [Google Scholar]
- Yue, X.; Li, Q.; Wang, H.; Sun, Y.; Wang, A.; Zhang, Q.; Zhang, C. Scanning electron microscopy of the nail plate in onychomycosis patients with negative fungal culture. Scanning 2016, 38, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Wang, A.; Li, Q. The role of scanning electron microscopy in the direct diagnosis of onychomycosis. Scanning 2018, 2018, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Yang, W.; McKittrick, J.; Meyers, M.A. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 2016, 76, 229–318. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Nie, Y.; Meng, X.; Zhang, Z.; Zhang, X.; Zhang, S. DBN-based ionic liquids with high capability for the dissolution of wool keratin. RSC Adv. 2017, 7, 1981–1988. [Google Scholar] [CrossRef] [Green Version]
- Valkov, A.; Zinigrad, M.; Sobolev, A.; Nisnevitch, M. Keratin Biomembranes as a Model for Studying Onychomycosis. Int. J. Mol. Sci. 2020, 21, 3512. [Google Scholar] [CrossRef] [PubMed]
- Saengkaew, P.; Ussawawongaraya, W.; Khaweerat, S.; Rugmai, S.; Ouajai, S.; Luengviriya, J.; Sanorpim, S.; Tirarattanasompot, M.; Rhianphumikarakit, S. A Preliminary X-Ray Study on Human-Hair Microstructures for a Health-State Indicator. Int. J. Biomed. Biol. Eng. 2011, 5, 630–634. [Google Scholar]
- Gómez, E.C.; Igea, S.A.; Delgado-Charro, M.B.; Amoza, J.L.G.; Espinar, F.J.O. Microstructural alterations in the onychomycotic and psoriatic nail: Relevance in drug delivery. Eur. J. Pharm. Biopharm. 2018, 128, 48–56. [Google Scholar] [CrossRef]
- Aluigi, A.; Sotgiu, G.; Torreggiani, A.; Zamboni, R.; Guerrini, A.; Varchi, G.; Orlandi, V. Raman spectroscopic characterisation of photo-active keratin doped with Methylene Blue for wound dressings and tissue engineering. Biomed. Spectrosc. Imaging 2016, 5, 207–215. [Google Scholar] [CrossRef]
- Sakudo, A.; Kuratsune, H.; Kato, Y.H.; Ikuta, K. Secondary structural changes of proteins in fingernails of chronic fatigue syndrome patients from Fourier-transform infrared spectra. Clin. Chim. Acta 2009, 402, 75–78. [Google Scholar] [CrossRef]
- Baraldi, A.; Jones, S.A.; Guesné, S.; Traynor, M.J.; McAuley, W.J.; Brown, M.B.; Murdan, S. Human Nail Plate Modifications Induced by Onychomycosis: Implications for Topical Therapy. Pharm. Res. 2015, 32, 1626–1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Repka, M.A.; O’Haver, J.; See, C.H.; Gutta, K.; Munjal, M. Nail morphology studies as assessments for onychomycosis treatment modalities. Int. J. Pharm. 2002, 245, 25–36. [Google Scholar] [CrossRef]
- Jiang, Z.; Yuan, J.; Wang, P.; Fan, X.; Xu, J.; Wang, Q.; Zhang, L. Dissolution and regeneration of wool keratin in the deep eutectic solvent of choline chloride-urea. Int. J. Biol. Macromol. 2018, 119, 423–430. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Sex | Age | |
---|---|---|---|
Healthy volunteers | 87F1988 | F | 32 |
86M1979 | M | 41 | |
85M1979 | M | 41 | |
79M1984 | M | 36 | |
59M1987 | M | 33 | |
57F1956 | F | 64 | |
30F1974 | F | 46 | |
Non-treated psoriatic patients | 90M1974 | M | 46 |
89F1954 | F | 66 | |
88M1936 | M | 84 | |
84M1998 | M | 22 | |
39F1981 | F | 39 | |
38F1981 | F | 39 | |
37M1985 | M | 35 | |
36F1987 | F | 33 | |
35M1983 | M | 37 | |
32F1981 | F | 39 | |
31M1985 | M | 35 | |
29F1982 | F | 38 | |
28F1987 | F | 33 | |
25M1982 | M | 38 | |
24M1983 | M | 37 | |
23M1990 | M | 30 | |
Biologics-treated psoriatic patients | 80M1966 | M | 54 |
56M1940 | M | 80 |
Sample | 2θ (°) | D Value (Å) | Intensity % | C.I. (%) |
---|---|---|---|---|
Healthy fingernail | 9.7 | 9.1 | 82.5 | 34.6 |
20.2 | 4.4 | 100 | ||
Psoriatic fingernail | 9.4 | 9.4 | 55.7 | 22.6 |
19.8 | 4.5 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiriac, A.E.; Azoicai, D.; Coroaba, A.; Doroftei, F.; Timpu, D.; Chiriac, A.; Pertea, M.; Ursu, E.-L.; Pinteala, M. Raman Spectroscopy, X-ray Diffraction, and Scanning Electron Microscopy as Noninvasive Methods for Microstructural Alterations in Psoriatic Nails. Molecules 2021, 26, 280. https://doi.org/10.3390/molecules26020280
Chiriac AE, Azoicai D, Coroaba A, Doroftei F, Timpu D, Chiriac A, Pertea M, Ursu E-L, Pinteala M. Raman Spectroscopy, X-ray Diffraction, and Scanning Electron Microscopy as Noninvasive Methods for Microstructural Alterations in Psoriatic Nails. Molecules. 2021; 26(2):280. https://doi.org/10.3390/molecules26020280
Chicago/Turabian StyleChiriac, Anca E., Doina Azoicai, Adina Coroaba, Florica Doroftei, Daniel Timpu, Anca Chiriac, Mihaela Pertea, Elena-Laura Ursu, and Mariana Pinteala. 2021. "Raman Spectroscopy, X-ray Diffraction, and Scanning Electron Microscopy as Noninvasive Methods for Microstructural Alterations in Psoriatic Nails" Molecules 26, no. 2: 280. https://doi.org/10.3390/molecules26020280
APA StyleChiriac, A. E., Azoicai, D., Coroaba, A., Doroftei, F., Timpu, D., Chiriac, A., Pertea, M., Ursu, E. -L., & Pinteala, M. (2021). Raman Spectroscopy, X-ray Diffraction, and Scanning Electron Microscopy as Noninvasive Methods for Microstructural Alterations in Psoriatic Nails. Molecules, 26(2), 280. https://doi.org/10.3390/molecules26020280