Formation and Stabilization of W1/O/W2 Emulsions with Gelled Lipid Phases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formation of W1/O/W2 Emulsions
2.2.1. Formation of the W1/O Emulsions
2.2.2. Formation of the W1/O/W2 Emulsions
2.3. Initial Characterization of W1/O Emulsions and W1/O/W2 Emulsions
2.3.1. Droplet Size
2.3.2. Optical Microscopy Analysis
2.3.3. ζ-potential
2.3.4. Apparent Viscosity
2.4. Colloidal Stability of W1/O/W2 Emulsions
2.5. Encapsulation Efficiency of CHL in W1/O/W2 Emulsions
2.6. Statistical Analysis
3. Results and Discussion
3.1. Initial Characterization of the W1/O Emulsions
3.2. Formation of W1/O/W2 Emulsions
3.2.1. Optical Microscopy
3.2.2. Droplet Size
3.2.3. ζ-potential
3.3. Colloidal Stability of W1/O/W2 Emulsions
3.3.1. Effect of Temperature
3.3.2. Effect of Light Exposure
3.4. Encapsulation Efficiency of CHL in W1/O/W2 Emulsions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Muschiolik, G.; Dickinson, E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 532–555. [Google Scholar] [CrossRef] [Green Version]
- Aditya, N.P.; Aditya, S.; Yang, H.; Kim, H.W.; Park, S.O.; Ko, S. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food Chem. 2015, 173, 7–13. [Google Scholar] [CrossRef]
- Artiga-Artigas, M.; Molet-Rodríguez, A.; Salvia-Trujillo, L.; Martín-Belloso, O. Formation of Double (W1/O/W2) Emulsions as Carriers of Hydrophilic and Lipophilic Active Compounds. Food Bioprocess Technol. 2018, 12, 422–435. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, E. Double Emulsions Stabilized by Food Biopolymers. Food Biophys. 2011, 6, 1–11. [Google Scholar] [CrossRef]
- Liang, R.; Shoemaker, C.F.; Yang, X.; Zhong, F.; Huang, Q. Stability and bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches. J. Agric. Food Chem. 2013, 61, 1249–1257. [Google Scholar] [CrossRef]
- Teo, A.; Goh, K.K.T.; Wen, J.; Oey, I.; Ko, S.; Kwak, H.S.; Lee, S.J. Physicochemical properties of whey protein, lactoferrin and Tween 20 stabilised nanoemulsions: Effect of temperature, pH and salt. Food Chem. 2016, 197, 297–306. [Google Scholar] [CrossRef]
- Chen, H.; Zhong, Q. Thermal and UV stability of β-carotene dissolved in peppermint oil microemulsified by sunflower lecithin and Tween 20 blend. Food Chem. 2015, 197, 297–306. [Google Scholar] [CrossRef]
- Bou, R.; Cofrades, S.; Jiménez-Colmenero, F. Physicochemical properties and riboflavin encapsulation in double emulsions with different lipid sources. LWT-Food Sci. Technol. 2014, 59, 621–628. [Google Scholar] [CrossRef] [Green Version]
- Matos, M.; Gutiérrez, G.; Coca, J.; Pazos, C. Preparation of water-in-oil-in-water (W1/O/W2) double emulsions containing trans -resveratrol. Colloids Surf. A Physicochem. Eng. Asp. 2014, 442, 69–79. [Google Scholar] [CrossRef]
- Lamba, H.; Sathish, K.; Sabikhi, L. Double Emulsions: Emerging Delivery System for Plant Bioactives. Food Bioprocess Technol. 2015, 8, 709–728. [Google Scholar] [CrossRef]
- Jo, Y.J.; Kwon, Y.J. Characterization of β-carotene nanoemulsions prepared by microfluidization technique. Food Sci. Biotechnol. 2014, 23, 107–113. [Google Scholar] [CrossRef]
- Mason, T.G.; Wilking, J.N.; Meleson, K.; Chang, C.B.; Graves, S.M. Nanoemulsions: Formation, structure, and physical properties. J. Phys. Condens. Matter 2006, 18, R635–R666. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, M.; Cansell, M.; Berkaoui, A.; Ropers, M.H.; Anton, M.; Leal-Calderon, F. Release rate profiles of magnesium from multiple W/O/W emulsions. Food Hydrocoll. 2009, 23, 92–101. [Google Scholar] [CrossRef]
- Wang, Q.; Decker, E.A.; Rao, J.; Chen, B. A combination of monoacylglycerol crystalline network and hydrophilic antioxidants synergistically enhances the oxidative stability of gelled algae oil. Food Funct. 2019, 10, 315–324. [Google Scholar] [CrossRef]
- Helena de Abreu-Martins, H.; Artiga-Artigas, M.; Hilsdorf Piccoli, R.; Martín-Belloso, O.; Salvia-Trujillo, L. The lipid type affects the in vitro digestibility and β-carotene bioaccessibility of liquid or solid lipid nanoparticles. Food Chem. 2020, 311, 126024. [Google Scholar] [CrossRef]
- Peng, K.; Wang, X.; Lu, L.; Liu, J.; Guan, X.; Huang, X. Insights into the Evolution of an Emulsion with Demulsifying Bacteria Based on Turbiscan. Ind. Eng. Chem. Res. 2016, 55, 7021–7029. [Google Scholar] [CrossRef]
- Teixé-Roig, J.; Oms-Oliu, G.; Velderrain-Rodríguez, G.R.; Odriozola-Serrano, I.; Martín-Belloso, O. The Effect of Sodium Carboxymethylcellulose on the Stability and Bioaccessibility of Anthocyanin Water-in-Oil-in-Water Emulsions. Food Bioprocess Technol. 2018, 11, 2229–2241. [Google Scholar] [CrossRef]
- Tabibiazar, M.; Hamishehkar, H. Formulation of a Food Grade Water-In-Oil Nanoemulsion: Factors Affecting on Stability. Pharm. Sci. 2015, 21, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Weiss, J.; Muschiolik, G. Factors affecting the droplet size of water-in-oil emulsions (W/O) and the oil globule size in Water-in-oil-in-water emulsions (W/O/W). J. Dispers. Sci. Technol. 2007, 28, 703–716. [Google Scholar] [CrossRef]
- Zhao, B.; Gu, S.; Du, Y.; Shen, M.; Liu, X.; Shen, Y. Solid lipid nanoparticles as carriers for oral delivery of hydroxysafflor yellow A. Int. J. Pharm. 2018, 535, 164–171. [Google Scholar] [CrossRef]
- Ghosh, S.; Tran, T.; Rousseau, D. Comparison of pickering and network stabilization in water-in-oil emulsions. Langmuir 2011, 27, 6589–6597. [Google Scholar] [CrossRef] [PubMed]
- Schmidts, T.; Dobler, D.; Guldan, A.C.; Paulus, N.; Runkel, F. Multiple W/O/W emulsions-Using the required HLB for emulsifier evaluation. Colloids Surf. A Physicochem. Eng. Asp. 2010, 372, 48–54. [Google Scholar] [CrossRef]
- Herzi, S.; Essafi, W. Different magnesium release profiles from W/O/W emulsions based on crystallized oils. J. Colloid Interface Sci. 2018, 509, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kharat, M.; Tan, Y.; Zhou, H.; Muriel Mundo, J.L.; McClements, D.J. Impact of fat crystallization on the resistance of W/O/W emulsions to osmotic stress: Potential for temperature-triggered release. Food Res. Int. 2020, 134, 109273. [Google Scholar] [CrossRef] [PubMed]
- Nelis, V.; Declerck, A.; Vermeir, L.; Balcaen, M.; Dewettinck, K.; Van der Meeren, P. Fat crystals: A tool to inhibit molecular transport in W/O/W double emulsions. Magn. Reson. Chem. 2019, 57, 707–718. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.; McClements, D.J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocoll. 2011, 25, 1000–1008. [Google Scholar] [CrossRef]
- Kralova, I.; Sjöblom, J. Surfactants used in food industry: A review. J. Dispers. Sci. Technol. 2009, 30, 1363–1383. [Google Scholar] [CrossRef]
- Artiga-Artigas, M.; Lanjari-Pérez, Y.; Martín-Belloso, O. Curcumin-loaded nanoemulsions stability as affected by the nature and concentration of surfactant. Food Chem. 2018, 266, 466–474. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Tehrany, E.A.; Kahn, C.J.F.; Ponc, M.; Linder, M.; Cleymand, F. Effects of nanoliposomes based on soya, rapeseed and fish lecithins on chitosan thin films designed for tissue engineering. Carbohydr. Polym. 2012, 88, 618–627. [Google Scholar] [CrossRef]
- McCLmenets, D.J. Food Emulsions Principles, Practices, and Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9781498726696. [Google Scholar]
- Gaonkar, A.G.; Borwankar, R.P. Competitive adsorption of monoglycerides and lecithin at the vegetable oil-water interface. Colloids Surf. 1991, 59, 331–343. [Google Scholar] [CrossRef]
- Nash, J.J.; Erk, K.A. Colloids and Surfaces A: Physicochemical and Engineering Aspects Stability and interfacial viscoelasticity of oil-water nanoemulsions stabilized by soy lecithin and Tween 20 for the encapsulation of bioactive carvacrol. Colloids Surf. A Physicochem. Eng. Asp. 2017, 517, 1–11. [Google Scholar] [CrossRef]
- Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev. 2001, 47, 165–196. [Google Scholar] [CrossRef]
- Fredrick, E.; Walstra, P.; Dewettinck, K. Factors governing partial coalescence in oil-in-water emulsions. Adv. Colloid Interface Sci. 2010, 153, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Helgason, T.; Salminen, H.; Kristbergsson, K.; McClements, D.J.; Weiss, J. Formation of transparent solid lipid nanoparticles by microfluidization: Influence of lipid physical state on appearance. J. Colloid Interface Sci. 2015, 448, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Impact of lipid nanoparticle physical state on particle aggregation and β-carotene degradation: Potential limitations of solid lipid nanoparticles. Food Res. Int. 2013, 52, 342–349. [Google Scholar] [CrossRef]
- Fernández-Martín, F.; Freire, M.; Bou, R.; Cofrades, S.; Jiménez-Colmenero, F. Olive oil based edible W/O/W emulsions stability as affected by addition of some acylglycerides. J. Food Eng. 2017, 196, 18–26. [Google Scholar] [CrossRef]
- McClements, D.J.; Decker, E.A.; Weiss, J. Emulsion-based delivery systems for lipophilic bioactive components. J. Food Sci. 2007, 72, 109–124. [Google Scholar] [CrossRef]
- Ozturk, B.; Argin, S.; Ozilgen, M.; McClements, D.J. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chem. 2015, 188, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Kharat, M.; Zhang, G.; Mcclements, D.J. Stability of curcumin in oil-in-water emulsions: Impact of emulsi fi er type and concentration on chemical degradation. Food Res. Int. 2018, 111, 178–186. [Google Scholar] [CrossRef]
- Weiss, J.; Decker, E.A.; McClements, D.J.; Kristbergsson, K.; Helgason, T.; Awad, T. Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys. 2008, 3, 146–154. [Google Scholar] [CrossRef]
- Freitas, C.; Müller, R.H. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN®) dispersions. Int. J. Pharm. 1998, 168, 221–229. [Google Scholar] [CrossRef]
- Genuino, H.C.; Horvath, D.T.; King’Ondu, C.K.; Hoag, G.E.; Collins, J.B.; Suib, S.L. Effects of visible and UV light on the characteristics and properties of crude oil-in-water (O/W) emulsions. Photochem. Photobiol. Sci. 2012, 11, 692–702. [Google Scholar] [CrossRef] [PubMed]
Lipid Type | 4 °C | 25 °C | 35 °C |
---|---|---|---|
MCT | |||
CO |
W1/O Emulsions | |||
---|---|---|---|
Lipid Type | Droplet Size (nm) | Apparent Viscosity (mPa·s) 1 | |
Liquid lipids | MCT | 587.47 ± 52.77 A,a | 68.7 ± 1.5 A,a |
CO | 475.90 ± 63.22 B,a | 150.3 ± 1.5 B,a | |
Solid lipids | MCT-GS | 447.10 ± 120.80 A,b | 116.0 ± 2.6 A,b |
CO-GS | 433.53 ± 235.80 A,a | 308.5 ± 14.4 B,b |
Lipid Type | W1/O Emulsions | W1/O/W2 Emulsions—Day 0 | W1/O/W2 Emulsions—Day 12 | ||
---|---|---|---|---|---|
PGPR | T80 | Lecithin | T80 | Lecithin | |
MCT | |||||
CO | |||||
MCT-GS | |||||
CO-GS |
W1/O/W2 Emulsions | |||
---|---|---|---|
Lipid-Emulsifier Type | D[4;3] (µm) | ζ-Potential (mV) | |
Liquid lipids | MCT-T80 | 9.90 ± 0.15 A,a,x | −24.65 ± 3.44 A,a,x |
CO-T80 | 13.14 ± 1.51 B,a,x | −26.92 ± 5.02 A,a,x | |
CO-Lecithin | 14.54 ±0.14 B,a,x | −70.95 ± 4.81 B,b,x | |
Solid lipids | MCT-GS-T80 | 11.09 ± 5.71 A,a,x | −25.06 ± 1.64 A,a,x |
CO-GS-T80 | 9.06 ± 1.96 A,a,y | −30.01 ± 5.72 B,a,x | |
MCT-GS-Lecithin | 7.35 ± 0.68 A,b,y | −63.52 ± 2.90 A,b,y | |
CO-GS-Lecithin | 7.64 ± 0.45 A,b,y | −57.52 ± 7.61 B,b,y |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molet-Rodríguez, A.; Martín-Belloso, O.; Salvia-Trujillo, L. Formation and Stabilization of W1/O/W2 Emulsions with Gelled Lipid Phases. Molecules 2021, 26, 312. https://doi.org/10.3390/molecules26020312
Molet-Rodríguez A, Martín-Belloso O, Salvia-Trujillo L. Formation and Stabilization of W1/O/W2 Emulsions with Gelled Lipid Phases. Molecules. 2021; 26(2):312. https://doi.org/10.3390/molecules26020312
Chicago/Turabian StyleMolet-Rodríguez, Anna, Olga Martín-Belloso, and Laura Salvia-Trujillo. 2021. "Formation and Stabilization of W1/O/W2 Emulsions with Gelled Lipid Phases" Molecules 26, no. 2: 312. https://doi.org/10.3390/molecules26020312
APA StyleMolet-Rodríguez, A., Martín-Belloso, O., & Salvia-Trujillo, L. (2021). Formation and Stabilization of W1/O/W2 Emulsions with Gelled Lipid Phases. Molecules, 26(2), 312. https://doi.org/10.3390/molecules26020312