Tin, Titanium, Tantalum, Vanadium and Niobium Oxide Based Sensors to Detect Colorectal Cancer Exhalations in Blood Samples
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Used Nanostructured MOX Sensors
- A substrate, a stiff and insulating layer (here made of sintered alumina), hosting two interdigitated gold contacts, necessary to connect the sensor to the transduction circuit;
- A sensitive material (or active material), a porous thick film (~20 µm of thickness) of semiconducting MOX nanoparticles (spherical nanograins with size ranging between 50 and 200 nm).
- A heater, a platinum coil necessary to activate the sensor at the proper working temperature which is controlled by means of the current flowing in the coil.
4.2. SCENT B1 Prototype Working Principle
4.3. SCENT B1 Hosted Sensors
- ST 25 + 1%Au, based on tin and titanium (25%) oxides and enriched with gold nanoparticles (1%);
- W11, based on pure tungsten oxide;
- STN, based on the same percentage of tin, titanium, and niobium oxides;
- TiTaV, based on titanium, tantalum and vanadium oxides.
4.4. Patient Recruitment and Sample Analysis
- Age over eighteen years old;
- Both sexes;
- No any neoadjuvant therapy;
- No pregnant women.
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Brenner, H.; Stock, C.; Hoffmeister, M. Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: systematic review and meta-analysis of randomised controlled trials and observational studies. BMJ 2014, 348, g2467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute Cancer Statistics. Available online: https://www.cancer.gov/about-cancer/understanding/statistics (accessed on 22 December 2019).
- Amaro, A.; Chiara, S.; Pfeffer, U. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang. Cancer Metastasis Rev. 2016, 35, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Linee Guida AIOM 2018 Tumore al colon. Available online: https://www.aiom.it/linee-guida-aiom-2018-tumori-del-colon/ (accessed on 24 November 2020).
- Colorectal Cancer Screening Tests. Available online: https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/screening-tests-used.html (accessed on 23 December 2020).
- Hewitson, P.; Glasziou, P.; Irwig, L.; Towler, B.; Watson, E. Screening for colorectal cancer using the faecal occult blood test, Hemoccult. Cochrane Database Syst. Rev. 2007, 2007, CD001216. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; A Leighton, J.; Sharma, V.K. Capsule endoscopy: a comprehensive review. Minerva Gastroenterol. Dietol. 2007, 53, 257–272. [Google Scholar] [PubMed]
- Scalise, P.; Mantarro, A.; Pancrazi, F.; Neri, E. Computed tomography colonography for the practicing radiologist: A review of current recommendations on methodology and clinical indications. World J. Radiol. 2016, 8, 472–483. [Google Scholar] [CrossRef]
- A Issa, I.; Noureddine, M. Colorectal cancer screening: An updated review of the available options. World J. Gastroenterol. 2017, 23, 5086–5096. [Google Scholar] [CrossRef]
- Chan, W.P.; Ngu, J.H.; Poh, Z.; Soetikno, R. Colorectal cancer screening. Singap. Med J. 2017, 58, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Navarro, M.; Nicolas, A.; Ferrandez, A. Lanas, Ángel Colorectal cancer population screening programs worldwide in 2016: An update. World J. Gastroenterol. 2017, 23, 3632–3642. [Google Scholar] [CrossRef]
- Zonta, G.; Malagù, C.; Gherardi, S.; Giberti, A.; Pezzoli, A.; De Togni, A.; Palmonari, C. Clinical Validation Results of an Innovative Non-Invasive Device for Colorectal Cancer Preventive Screening through Fecal Exhalation Analysis. Cancers 2020, 12, 1471. [Google Scholar] [CrossRef] [PubMed]
- Hines, R.B.; Jiban, J.H.; Choudhury, K.; Loerzel, V.; Specogna, A.V.; Troy, S.P.; Zhang, S. Post-treatment surveillance testing of patients with colorectal cancer and the association with survival: protocol for a retrospective cohort study of the Surveillance, Epidemiology, and End Results (SEER)-Medicare database. BMJ Open 2018, 8, e022393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Lena, M.; Porcelli, F.; Altomare, D.F. Volatile organic compounds as new biomarkers for colorectal cancer: a review. Color. Dis. 2016, 18, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Zonta, G.; Anania, G.; Feo, C.; Gaiardo, A.; Gherardi, S.; Giberti, A.; Guidi, V.; Landini, N.; Palmonari, C.; Ricci, L.; et al. Use of gas sensors and FOBT for the early detection of colorectal cancer. Sens. Actuators B: Chem. 2018, 262, 884–891. [Google Scholar] [CrossRef]
- Malagù, C.; Fabbri, B.; Gherardi, S.; Giberti, A.; Guidi, V.; Landini, N.; Zonta, G. Chemoresistive Gas Sensors for the Detection of Colorectal Cancer Biomarkers. Sensors 2014, 14, 18982–18992. [Google Scholar] [CrossRef] [Green Version]
- Zonta, G.; Anania, G.; Fabbri, B.; Gaiardo, A.; Gherardi, S.; Giberti, A.; Guidi, V.; Landini, N.; Malagù, C. Detection of colorectal cancer biomarkers in the presence of interfering gases. Sens. Actuators B: Chem. 2015, 218, 289–295. [Google Scholar] [CrossRef]
- Zonta, G.; Anania, G.; Fabbri, B.; Gaiardo, A.; Gherardi, S.; Giberti, A.; Landini, N.; Malagù, C.; Scagliarini, L.; Guidi, V. Preventive screening of colorectal cancer with a device based on chemoresistive sensors. Sens. Actuators B: Chem. 2017, 238, 1098–1101. [Google Scholar] [CrossRef]
- Malagù, C.; Gherardi, S.; Zonta, G.; Landini, N.; Giberti, A.; Giberti, A.; Fabbri, B.; Anania, G.; Rispoli, G.; Scagliarini, L. SCENT B1. Italian Patent No. 102015000057717, 2 October 2015. [Google Scholar]
- Astolfi, M.; Zonta, G.; Landini, N.; Gherardi, S.; Rispoli, G.; Anania, G.; Benedusi, M.; Guidi, V.; Palmonari, C.; Secchiero, P.; et al. Chemoresistive Nanostructured Sensors for Tumor Pre-Screening. Proceedings 2019, 14, 29. [Google Scholar] [CrossRef] [Green Version]
- Landini, N.; Anania, G.; Fabbri, B.; Gaiardo, A.; Gherardi, S.; Guidi, V.; Rispoli, G.; Scagliarini, L.; Zonta, G.; Malagu, C. Neoplasms and metastasis detection in human blood exhalations with a device composed by nanostructured sensors. Sensors Actuators B: Chem. 2018, 271, 203–214. [Google Scholar] [CrossRef]
- Astolfi, M.; Rispoli, G.; Anania, G.; Nevoso, V.; Artioli, E.; Landini, N.; Benedusi, M.; Melloni, E.; Secchiero, P.; Tisato, V.; et al. Colorectal Cancer Study with Nanostructured Sensors: Tumor Marker Screening of Patient Biopsies. Nanomaterials 2020, 10, 606. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, P.; Lian, A.; Sun, B.; Wang, X.; Guo, L.; Chi, C.; Liu, S.; Zhao, W.; Luo, S.; et al. Blood volatile compounds as biomarkers for colorectal cancer. Cancer Biol. Ther. 2013, 15, 200–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Casp. J. Intern. Med. 2013, 4, 627–635. [Google Scholar]
- Ponzoni, A.; Comini, E.; Concina, I.; Ferroni, M.; Falasconi, M.; Gobbi, E.; Sberveglieri, V.; Sberveglieri, G. Nanostructured Metal Oxide Gas Sensors, a Survey of Applications Carried out at SENSOR Lab, Brescia (Italy) in the Security and Food Quality Fields. Sensors 2012, 12, 17023–17045. [Google Scholar] [CrossRef] [PubMed]
- Malagù, C.; Benetti, M.; Carotta, M.C.; Giberti, A.; Guidi, V.; Milano, L.; Martinelli, G. Investigation of the humidity effects on SNO2-based sensors in CO detection. Mater. Res. Soc. Symp. Proc. 2006, 915. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [Green Version]
- Brinker, C.J.; Scherer, G.W.B. Sol-gel science: the physics and chemistry of sol-gel processing; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
- Gaiardo, A.; Fabbri, B.; Giberti, A.; Guidi, V.; Bellutti, P.; Malagù, C.; Valt, M.; Pepponi, G.; Gherardi, S.; Zonta, G.; et al. ZnO and Au/ZnO thin films: Room-temperature chemoresistive properties for gas sensing applications. Sens. Actuators B: Chem. 2016, 237, 1085–1094. [Google Scholar] [CrossRef]
- Giberti, A.; Benetti, M.; Carotta, M.; Guidi, V.; Malagù, C.; Martinelli, G. Heat exchange and temperature calculation in thick-film semiconductor gas sensor systems. Sens. Actuators B: Chem. 2008, 130, 277–280. [Google Scholar] [CrossRef]
SENSOR | AVE. T | AVE. H | D.P. (%) | C.I. T | C.I. H |
---|---|---|---|---|---|
ST25 | 1.43 ± 0.05 | 1.24 ± 0.02 | 16.09 ± 4.79 | 1.35–1.52 | 1.21–1.26 |
W11 | 1.11 ± 0.02 | 1.09 ± 0.02 | 2.31 ± 3.98 | 1.07–1.15 | 1.05–1.12 |
STN | 1.95 ± 0.06 | 1.62 ± 0.06 | 20.51 ± 6.69 | 1.84–2.06 | 1.52–1.72 |
TiTaV | 1.22 ± 0.02 | 1.15 ± 0.02 | 6.13 ± 2.88 | 1.18–1.25 | 1.12–1.17 |
SENSOR | AUC | CUT-OFF | SENS.% | SPEC.% |
---|---|---|---|---|
ST25 | 0.82 | 1.24 | 80.0 | 69.6 |
STN | 0.78 | 1.83 | 64.0 | 78.3 |
TiTaV | 0.73 | 1.24 | 44.0 | 91.3 |
W11 | 0.60 | 1.22 | 28.0 | 87.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astolfi, M.; Rispoli, G.; Anania, G.; Artioli, E.; Nevoso, V.; Zonta, G.; Malagù, C. Tin, Titanium, Tantalum, Vanadium and Niobium Oxide Based Sensors to Detect Colorectal Cancer Exhalations in Blood Samples. Molecules 2021, 26, 466. https://doi.org/10.3390/molecules26020466
Astolfi M, Rispoli G, Anania G, Artioli E, Nevoso V, Zonta G, Malagù C. Tin, Titanium, Tantalum, Vanadium and Niobium Oxide Based Sensors to Detect Colorectal Cancer Exhalations in Blood Samples. Molecules. 2021; 26(2):466. https://doi.org/10.3390/molecules26020466
Chicago/Turabian StyleAstolfi, Michele, Giorgio Rispoli, Gabriele Anania, Elena Artioli, Veronica Nevoso, Giulia Zonta, and Cesare Malagù. 2021. "Tin, Titanium, Tantalum, Vanadium and Niobium Oxide Based Sensors to Detect Colorectal Cancer Exhalations in Blood Samples" Molecules 26, no. 2: 466. https://doi.org/10.3390/molecules26020466
APA StyleAstolfi, M., Rispoli, G., Anania, G., Artioli, E., Nevoso, V., Zonta, G., & Malagù, C. (2021). Tin, Titanium, Tantalum, Vanadium and Niobium Oxide Based Sensors to Detect Colorectal Cancer Exhalations in Blood Samples. Molecules, 26(2), 466. https://doi.org/10.3390/molecules26020466