The Role of Bioactive Phenolic Compounds on the Impact of Beer on Health
Abstract
:1. Introduction
2. Main and Minor Beer Phenols
3. Phenols’ Fate during Malting and Brewing
4. Phenols and Beer Attributes
5. The Role of Barley, Yeast and Hop Genetics on Beer Phenols
6. Phenols-Related Health Effects of Beer Consumption
6.1. In Vitro and Animal Experiments
6.2. Role of Alcohol on Phenols’ Metabolism and Beer Antioxidant and Anti-Inflammatory Properties, and on Cardiovascular-Related Effects
6.3. Role of Alcohol on Phenols-Related Effects of Beer on Cancer
6.4. Role of Alcohol on Phenols-Related Effects of Beer on the Microbiota
6.5. Role of Alcohol on Other Phenols-Related Effects of Beer
7. Fruit-Based Enrichment of Beer Phenols
8. Cereal-Based Enrichment of Beer Phenols
9. Phenols in Non-Alcoholic and Isotonic Beers
10. Future Directions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Homan, M.M. Beer and Its Drinkers: An Ancient Near Eastern Love Story. Near East. Archaeol. 2004, 67, 84–95. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Ball, T.; Yu, L.; Li, Y.; Xing, F. Revealing a 5,000-y-old beer recipe in China. Proc. Natl. Acad. Sci. USA 2016, 201601465. [Google Scholar] [CrossRef] [Green Version]
- Brewers. Contribution made by Beer to the European Economy. Available online: https://brewersofeurope.org/uploads/mycms-files/documents/publications/2020/contribution-made-by-beer-to-EU-economy-2020.pdf (accessed on 1 October 2020).
- Osorio-Paz, I.; Brunauer, R.; Alavez, S. Beer and its non-alcoholic compounds in health and disease. Crit. Rev. Food Sci. Nutr. 2019, 1–14. [Google Scholar] [CrossRef]
- Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 98: Painting, Firefighting and Shiftwork. International Agency for Research on Cancer. Occup. Med. (Chic. Ill.) 2011, 61, 521–522. [Google Scholar] [CrossRef] [Green Version]
- Scalbert, A.; Williamson, G. Dietary Intake and Bioavailability of Polyphenols. J. Nutr. 2000, 130, 2073S–2085S. [Google Scholar] [CrossRef]
- Mitić, S.S.; Paunović, D.Đ.; Pavlović, A.N.; Tošić, S.B.; Stojković, M.B.; Mitić, M.N. Phenolic Profiles and Total Antioxidant Capacity of Marketed Beers in Serbia. Int. J. Food Prop. 2014, 17, 908–922. [Google Scholar] [CrossRef]
- Wannenmacher, J.; Gastl, M.; Becker, T. Phenolic Substances in Beer: Structural Diversity, Reactive Potential and Relevance for Brewing Process and Beer Quality. Compr. Rev. Food Sci. Food Saf. 2018, 17, 953–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartolomé, B.; Peña-Neira, A.; Gómez-Cordovés, C. Phenolics and related substances in alcohol-free beers. Eur. Food Res. Technol. 2000, 210, 419–423. [Google Scholar] [CrossRef]
- Boronat, A.; Soldevila-Domenech, N.; Rodríguez-Morató, J.; Martínez-Huélamo, M.; Lamuela-Raventós, R.M.; de la Torre, R. Beer Phenolic Composition of Simple Phenols, Prenylated Flavonoids and Alkylresorcinols. Molecules 2020, 25, 2582. [Google Scholar] [CrossRef]
- Soldevila-Domenech, N.; Boronat, A.; Mateus, J.; Diaz-Pellicer, P.; Matilla, I.; Pérez-Otero, M.; Aldea-Perona, A.; De La Torre, R. Generation of the antioxidant hydroxytyrosol from tyrosol present in beer and red wine in a randomized clinical trial. Nutrients 2019. [Google Scholar] [CrossRef] [Green Version]
- Gharwalova, L.; Sigler, K.; Dolezalova, J.; Masak, J.; Rezanka, T.; Kolouchova, I. Resveratrol suppresses ethanol stress in winery and bottom brewery yeast by affecting superoxide dismutase, lipid peroxidation and fatty acid profile. World J. Microbiol. Biotechnol. 2017, 33, 205. [Google Scholar] [CrossRef]
- Moura-Nunes, N.; Brito, T.C.; Da Fonseca, N.D.; De Aguiar, P.F.; Monteiro, M.; Perrone, D.; Torres, A.G. Phenolic compounds of Brazilian beers from different types and styles and application of chemometrics for modeling antioxidant capacity. Food Chem. 2016. [Google Scholar] [CrossRef] [Green Version]
- Parikka, K.; Rowland, I.R.; Welch, R.W.; Wähälä, K. In vitro antioxidant activity and antigenotoxicity of 5-n-alkylresorcinols. J. Agric. Food Chem. 2006. [Google Scholar] [CrossRef]
- Oishi, K.; Yamamoto, S.; Itoh, N.; Nakao, R.; Yasumoto, Y.; Tanaka, K.; Kikuchi, Y.; Fukudome, S.-I.; Okita, K.; Takano-Ishikawa, Y. Wheat alkylresorcinols suppress high-fat, high-sucrose diet-induced obesity and glucose intolerance by increasing insulin sensitivity and cholesterol excretion in male mice. J. Nutr. 2015. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Mukwaya, E.; Wong, M.-S.; Zhang, Y. A systematic review on biological activities of prenylated flavonoids. Pharm. Biol. 2014, 52, 655–660. [Google Scholar] [CrossRef]
- Štulíková, K.; Karabín, M.; Nešpor, J.; Dostálek, P. Therapeutic Perspectives of 8-Prenylnaringenin, a Potent Phytoestrogen from Hops. Molecules 2018, 23, 660. [Google Scholar] [CrossRef] [Green Version]
- Intelmann, D.; Haseleu, G.; Dunkel, A.; Lagemann, A.; Stephan, A.; Hofmann, T. Comprehensive sensomics analysis of hop-derived bitter compounds during storage of beer. J. Agric. Food Chem. 2011. [Google Scholar] [CrossRef]
- Callemien, D.; Collin, S. Involvement of flavanoids in beer color instability during storage. J. Agric. Food Chem. 2007. [Google Scholar] [CrossRef]
- Heuberger, A.L.; Broeckling, C.D.; Lewis, M.R.; Salazar, L.; Bouckaert, P.; Prenni, J.E. Metabolomic profiling of beer reveals effect of temperature on non-volatile small molecules during short-term storage. Food Chem. 2012. [Google Scholar] [CrossRef]
- Owades, J.L.; Jakovac, J. Study of Beer Oxidation with O18. Proc. Annu. Meet. Am. Soc. Brew. Chem. 1966, 24, 180–183. [Google Scholar] [CrossRef]
- Asano, K.; Ohtsu, K.; Shinagawa, K.; Hashimoto, N. Affinity of proanthocyanidins and their oxidation products for haze-forming proteins of beerand the formation of chill haze. Agric. Biol. Chem. 1984. [Google Scholar] [CrossRef] [Green Version]
- Delcour, J.A.; Dondeyne, P.; Trousdale, E.K.; Singleton, V.L. The reactions between polyphenols and aldehydes and the influence of acetaldehyde on haze formation in beer. J. Inst. Brew. 1982. [Google Scholar] [CrossRef]
- Maia, P.D.D.S.; dos Santos Baião, D.; da Silva, V.P.F.; Lemos Miguel, M.A.; Quirino Lacerda, E.C.; de Araújo Calado, V.M.; da Silva Carneiro, C.; Finotelli, P.V.; Pierucci, A.P.T.R. Microencapsulation of a craft beer, nutritional composition, antioxidant stability, and drink acceptance. LWT 2020, 133, 110104. [Google Scholar] [CrossRef]
- Callemien, D.; Collin, S. Use of RP-HPLC-ESI(–)-MS/MS to Differentiate Various Proanthocyanidin Isomers in Lager Beer Extracts. J. Am. Soc. Brew. Chem. 2008, 66, 109–115. [Google Scholar] [CrossRef]
- Corso, M.; Perreau, F.; Mouille, G.; Lepiniec, L. Specialized phenolic compounds in seeds: Structures, functions, and regulations. Plant. Sci. 2020, 296, 110471. [Google Scholar] [CrossRef]
- Gretenhart, K.E. Specialty malts. Tech. Q. Master Brew. Assoc. Am. 1997, 34, 102–106. [Google Scholar]
- Lu, J.; Zhao, H.; Chen, J.; Fan, W.; Dong, J.; Kong, W.; Sun, J.; Cao, Y.; Cai, G. Evolution of phenolic compounds and antioxidant activity during malting. J. Agric. Food Chem. 2007. [Google Scholar] [CrossRef]
- Maillard, M.-N.; Berset, C. Evolution of Antioxidant Activity during Kilning: Role of Insoluble Bound Phenolic Acids of Barley and Malt. J. Agric. Food Chem. 1995, 43, 1789–1793. [Google Scholar] [CrossRef]
- Leitao, C.; Marchioni, E.; Bergaentzlé, M.; Zhao, M.; Didierjean, L.; Miesch, L.; Holder, E.; Miesch, M.; Ennahar, S. Fate of polyphenols and antioxidant activity of barley throughout malting and brewing. J. Cereal Sci. 2012. [Google Scholar] [CrossRef]
- Munoz-Insa, A.; Gastl, M.; Becker, T. Influence of malting on the protein composition of triticale (× Triticosecale Wittmack) “trigold.”. Cereal Chem. 2016. [Google Scholar] [CrossRef]
- Koren, D.; Kun, S.; Hegyesné Vecseri, B.; Kun-Farkas, G. Study of antioxidant activity during the malting and brewing process. J. Food Sci. Technol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Szwajgier, D. Dry and wet milling of malt. a preliminary study comparing fermentable sugar, total protein, total phenolics and the ferulic acid content in non-hopped worts. J. Inst. Brew. 2011. [Google Scholar] [CrossRef]
- Defernez, M.; Foxall, R.J.; O’Malley, C.J.; Montague, G.; Ring, S.M.; Kemsley, E.K. Modelling beer fermentation variability. J. Food Eng. 2007, 83, 167–172. [Google Scholar] [CrossRef]
- Piazzon, A.; Forte, M.; Nardini, M. Characterization of phenolics content and antioxidant activity of different beer types. J. Agric. Food Chem. 2010. [Google Scholar] [CrossRef]
- Cheiran, K.P.; Raimundo, V.P.; Manfroi, V.; Anzanello, M.J.; Kahmann, A.; Rodrigues, E.; Frazzon, J. Simultaneous identification of low-molecular weight phenolic and nitrogen compounds in craft beers by HPLC-ESI-MS/MS. Food Chem. 2019. [Google Scholar] [CrossRef]
- Bertuzzi, T.; Mulazzi, A.; Rastelli, S.; Donadini, G.; Rossi, F.; Spigno, G. Targeted healthy compounds in small and large-scale brewed beers. Food Chem. 2020. [Google Scholar] [CrossRef]
- Zhao, H. Effects of Processing Stages on the Profile of Phenolic Compounds in Beer. In Processing and Impact on Active Components in Food; Academic Press: Cambridge, MA, USA, 2015; ISBN 9780124047099. [Google Scholar]
- Obata, Y.; Koshika, M. Studies on the Sunlight Flavor of Beer. Bull. Agric. Chem. Soc. Jpn. 1960, 24, 644–646. [Google Scholar] [CrossRef]
- Taylor, R.; Kirsop, B.H. Occurrence of a killer strain of Saccharomyces cerevisiae in a batch fermentation plant. J. Inst. Brew. 1979, 85, 325. [Google Scholar] [CrossRef]
- Vanbeneden, N.; Van Roey, T.; Willems, F.; Delvaux, F.; Delvaux, F.R. Release of phenolic flavour precursors during wort production: Influence of process parameters and grist composition on ferulic acid release during brewing. Food Chem. 2008. [Google Scholar] [CrossRef]
- Vanbeneden, N.; Gils, F.; Delvaux, F.; Delvaux, F.R. Formation of 4-vinyl and 4-ethyl derivatives from hydroxycinnamic acids: Occurrence of volatile phenolic flavour compounds in beer and distribution of Pad1-activity among brewing yeasts. Food Chem. 2008. [Google Scholar] [CrossRef]
- Schwarz, K.J.; Stübner, R.; Methner, F.J. Formation of styrene dependent on fermentation management during wheat beer production. Food Chem. 2012. [Google Scholar] [CrossRef] [PubMed]
- Sterckx, F.L.; Missiaen, J.; Saison, D.; Delvaux, F.R. Contribution of monophenols to beer flavour based on flavour thresholds, interactions and recombination experiments. Food Chem. 2011. [Google Scholar] [CrossRef] [PubMed]
- Bettenhausen, H.M.; Barr, L.; Broeckling, C.D.; Chaparro, J.M.; Holbrook, C.; Sedin, D.; Heuberger, A.L. Influence of malt source on beer chemistry, flavor, and flavor stability. Food Res. Int. 2018. [Google Scholar] [CrossRef]
- Maillard, M.N.; Soum, M.H.; Boivin, P.; Berset, C. Antioxidant activity of barley and malt: Relationship with phenolic content. LWT Food Sci. Technol. 1996. [Google Scholar] [CrossRef]
- Langos, D.; Granvogl, M.; Schieberle, P. Characterization of the key aroma compounds in two Bavarian wheat beers by means of the sensomics approach. J. Agric. Food Chem. 2013. [Google Scholar] [CrossRef]
- Lentz, M. The impact of simple phenolic compounds on beer aroma and flavor. Fermentation 2018, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Marova, I.; Parilova, K.; Friedl, Z.; Obruca, S.; Duronova, K. Analysis of phenolic compounds in lager beers of different origin: A contribution to potential determination of the authenticity of Czech beer. Chromatographia 2011. [Google Scholar] [CrossRef]
- Olšovská, J.; Čejka, P.; Sigler, K.; Hönigová, V. The phenomenon of Czech beer: A review. Czech. J. Food Sci. 2014, 32, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Dadic, M.; Van Gheluwe, G.E.A. Role of polyphenols and non-volatiles in beer quality. Master Brew. Assoc. Am. Tech. Q. 1973, 10, 69–73. [Google Scholar]
- Cai, S.; Han, Z.; Huang, Y.; Chen, Z.-H.; Zhang, G.; Dai, F. Genetic Diversity of Individual Phenolic Acids in Barley and Their Correlation with Barley Malt Quality. J. Agric. Food Chem. 2015, 63, 7051–7057. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Huang, Y.; Hu, H.; Dai, F.; Zhang, G. Identification of QTLs associated with haze active proteins in barley. Euphytica 2015. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, J.; Cai, S.; Chen, X.; Quan, X.; Zhang, G. Association mapping for total polyphenol content, total flavonoid content and antioxidant activity in barley. BMC Genomics 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikyška, A.; Hrabák, M.; Hašková, D.; Šrogl, J. The role of malt and hop polyphenols in beer quality, flavour and haze stability. J. Inst. Brew. 2002. [Google Scholar] [CrossRef]
- Munoz-Insa, A.; Gastl, M.; Becker, T. Use of Polyphenol-Rich Hop Products to Reduce Sunstruck Flavor in Beer. J. Am. Soc. Brew. Chem. 2015, 73, 228–235. [Google Scholar] [CrossRef]
- Wannenmacher, J.; Cotterchio, C.; Schlumberger, M.; Reuber, V.; Gastl, M.; Becker, T. Technological influence on sensory stability and antioxidant activity of beers measured by ORAC and FRAP. J. Sci. Food Agric. 2019. [Google Scholar] [CrossRef]
- Goiris, K.; Jaskula-Goiris, B.; Syryn, E.; Van Opstaele, F.; De Rouck, G.; Aerts, G.; De Cooman, L. The flavoring potential of hop polyphenols in beer. J. Am. Soc. Brew. Chem. 2014. [Google Scholar] [CrossRef]
- Bober, A.; Liashenko, M.; Protsenko, L.; Slobodyanyuk, N.; Matseiko, L.; Yashchuk, N.; Gunko, S.; Mushtruk, M. Biochemical composition of the hops and quality of the finished beer. Potravin. Slovak J. Food Sci. 2020. [Google Scholar] [CrossRef]
- Griffiths, D.W.; Welch, R.W. Genotypic and environmental variation in the total phenol and flavanol contents of barley grain. J. Sci. Food Agric. 1982. [Google Scholar] [CrossRef]
- Forster, A.; Beck, B.; Schmidt, R.; Jansen, C.; Mellenthin, A. On the composition of low molecular polyphenols in different varieties of hops and from two growing areas. Monatsschr. Brauwiss. 2002, 55, 98–108. [Google Scholar]
- Thurston, P.A.; Tubb, R.S. Screening yeast strains for the ability to produce phenolic off-flavours: A simple method for determining phenols in wort and beer. J. Inst. Brew. 1981. [Google Scholar] [CrossRef]
- Mohammadi, M.; Endelman, J.B.; Nair, S.; Chao, S.; Jones, S.S.; Muehlbauer, G.J.; Ullrich, S.E.; Baik, B.-K.; Wise, M.L.; Smith, K.P. Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and β-glucan in US barley breeding germplasm. Mol. Breed. 2014, 34, 1229–1243. [Google Scholar] [CrossRef]
- Holtekjølen, A.K.; Kinitz, C.; Knutsen, S.H. Flavanol and Bound Phenolic Acid Contents in Different Barley Varieties. J. Agric. Food Chem. 2006, 54, 2253–2260. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.M.; Cao, F.; Han, Y.; Nadira, U.A.; Zhang, G.; Wu, F. Differential changes in grain ultrastructure, amylase, protein and amino acid profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress. Food Chem. 2013, 141, 2743–2750. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Ahsan, M.; Adil, M.F.; Chen, X.; Nazir, M.M.; Shamsi, I.H.; Zeng, F.; Zhang, G. Identification of the gene network modules highly associated with the synthesis of phenolics compounds in barley by transcriptome and metabolome analysis. Food Chem. 2020, 323, 126862. [Google Scholar] [CrossRef] [PubMed]
- Morcol, T.B.; Negrin, A.; Matthews, P.D.; Kennelly, E.J. Hop (Humulus lupulus L.) terroir has large effect on a glycosylated green leaf volatile but not on other aroma glycosides. Food Chem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Claussen, N.H. On a Method for the Application of Hansen’s Pure Yeast System in the Manufacturing of Well-Conditioned English Stock Beers. J. Inst. Brew. 1904, 10, 308–331. [Google Scholar] [CrossRef]
- Wiles, A.E. Studies of some yeasts causing spoilage of draught beer. J. Inst. Brew. 1950. [Google Scholar] [CrossRef]
- Chatonnet, P.; Dubourdie, D.; Boidron, J.-N.; Pons, M. The origin of ethylphenols in wines. J. Sci. Food Agric. 1992. [Google Scholar] [CrossRef]
- Passoth, V.; Blomqvist, J.; Schnürer, J. Dekkera bruxellensis and Lactobacillus vini form a stable ethanol-producing consortium in a commercial alcohol production process. Appl. Environ. Microbiol. 2007, 73, 4354–4356. [Google Scholar] [CrossRef] [Green Version]
- Steensels, J.; Daenen, L.; Malcorps, P.; Derdelinckx, G.; Verachtert, H.; Verstrepen, K.J. Brettanomyces yeasts—From spoilage organisms to valuable contributors to industrial fermentations. Int. J. Food Microbiol. 2015, 206, 24–38. [Google Scholar] [CrossRef] [Green Version]
- González, C.; Godoy, L.; Ganga, M.A. Identification of a second PAD1 in Brettanomyces bruxellensis LAMAP2480. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2017. [Google Scholar] [CrossRef]
- Lentz, M.; Harris, C. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast. Foods 2015. [Google Scholar] [CrossRef] [Green Version]
- Coghe, S.; Benoot, K.; Delvaux, F.; Vanderhaegen, B.; Delvaux, F.R. Ferulic Acid Release and 4-Vinylguaiacol Formation during Brewing and Fermentation: Indications for Feruloyl Esterase Activity in Saccharomyces cerevisiae. J. Agric. Food Chem. 2004. [Google Scholar] [CrossRef]
- Spitaels, F.; Wieme, A.D.; Janssens, M.; Aerts, M.; Daniel, H.-M.; Van Landschoot, A.; De Vuyst, L.; Vandamme, P. The Microbial Diversity of Traditional Spontaneously Fermented Lambic Beer. PLoS ONE 2014, 9, e95384. [Google Scholar] [CrossRef]
- Serra Colomer, M.; Funch, B.; Forster, J. The raise of Brettanomyces yeast species for beer production. Curr. Opin. Biotechnol. 2019, 56, 30–35. [Google Scholar] [CrossRef]
- Coelho, E.; Azevedo, M.; Teixeira, J.A.; Tavares, T.; Oliveira, J.M.; Domingues, L. Evaluation of multi-starter S. cerevisiae/ D. bruxellensis cultures for mimicking and accelerating transformations occurring during barrel ageing of beer. Food Chem. 2020, 323, 126826. [Google Scholar] [CrossRef]
- Capece, A.; Romaniello, R.; Pietrafesa, A.; Siesto, G.; Pietrafesa, R.; Zambuto, M.; Romano, P. Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value-added. Int. J. Food Microbiol. 2018. [Google Scholar] [CrossRef]
- Gallone, B.; Steensels, J.; Prahl, T.; Soriaga, L.; Saels, V.; Herrera-Malaver, B.; Merlevede, A.; Roncoroni, M.; Voordeckers, K.; Miraglia, L.; et al. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts. Cell 2016, 166, 1397–1410.e16. [Google Scholar] [CrossRef] [Green Version]
- Colomer, M.S.; Chailyan, A.; Fennessy, R.T.; Olsson, K.F.; Johnsen, L.; Solodovnikova, N.; Forster, J. Assessing Population Diversity of Brettanomyces Yeast Species and Identification of Strains for Brewing Applications. Front. Microbiol. 2020, 11, 637. [Google Scholar] [CrossRef]
- Langdon, Q.K.; Peris, D.; Baker, E.P.; Opulente, D.A.; Nguyen, H.-V.; Bond, U.; Gonçalves, P.; Sampaio, J.P.; Libkind, D.; Hittinger, C.T. Fermentation innovation through complex hybridization of wild and domesticated yeasts. Nat. Ecol. Evol. 2019, 3, 1576–1586. [Google Scholar] [CrossRef] [PubMed]
- Avramova, M.; Cibrario, A.; Peltier, E.; Coton, M.; Coton, E.; Schacherer, J.; Spano, G.; Capozzi, V.; Blaiotta, G.; Salin, F.; et al. Brettanomyces bruxellensis population survey reveals a diploid-triploid complex structured according to substrate of isolation and geographical distribution. Sci. Rep. 2018, 8, 4136. [Google Scholar] [CrossRef] [PubMed]
- De Gaetano, G.; Costanzo, S.; Di Castelnuovo, A.; Badimon, L.; Bejko, D.; Alkerwi, A.; Chiva-Blanch, G.; Estruch, R.; La Vecchia, C.; Panico, S.; et al. Effects of moderate beer consumption on health and disease: A consensus document. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 443–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Karatzi, K.; Rontoyanni, V.G.; Protogerou, A.D.; Georgoulia, A.; Xenos, K.; Chrysou, J.; Sfikakis, P.P.; Sidossis, L.S. Acute effects of beer on endothelial function and hemodynamics: Asingle-blind, crossover study in healthy volunteers. Nutrition 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Miranda, R.C.; Paiva, E.S.; Suter Correia Cadena, S.M.; Brandt, A.P.; Vilela, R.M. Polyphenol-rich foods alleviate pain and ameliorate quality of life in fibromyalgic women. Int. J. Vitam. Nutr. Res. 2017. [Google Scholar] [CrossRef]
- Loguercio, C.; Tuccillo, C.; Federico, A.; Fogliano, V.; Del Vecchio Blanco, C.; Romano, M. Alcoholic beverages and gastric epithelial cell viability: Effect on oxidative stress-induced damage. J. Physiol. Pharmacol. 2009, 60, 87–92. [Google Scholar]
- Machado, J.C.; Faria, M.A.; Melo, A.; Ferreira, I.M.P.L.V.O. Antiproliferative effect of beer and hop compounds against human colorectal adenocarcinome Caco-2 cells. J. Funct. Foods 2017. [Google Scholar] [CrossRef]
- Alonso-Andrés, P.; Martín, M.; Albasanz, J.É.L. Modulation of adenosine receptors and antioxidative effect of beer extracts in in vitro models. Nutrients 2019, 11, 1258. [Google Scholar] [CrossRef] [Green Version]
- Oczkowski, M.; Rembiszewska, A.; Dziendzikowska, K.; Wolińska-Witort, E.; Kołota, A.; Malik, A.; Stachoń, M.; Lachowicz, K.; Gromadzka-Ostrowska, J. Beer consumption negatively regulates hormonal reproductive status and reduces apoptosis in Leydig cells in peripubertal rats. Alcohol 2019. [Google Scholar] [CrossRef]
- Silva, A.F.; Faria-Costa, G.; Sousa-Nunes, F.; Santos, M.F.; Ferreira-Pinto, M.J.; Duarte, D.; Rodrigues, I.; Guimarães, J.T.; Leite-Moreira, A.; Moreira-Gonçalves, D.; et al. Anti-remodeling effects of xanthohumol-fortified beer in pulmonary arterial hypertension mediated by ERK and AKT inhibition. Nutrients 2019, 11, 583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merino, P.; Santos-López, J.A.; Mateos, C.J.; Meseguer, I.; Garcimartín, A.; Bastida, S.; Sánchez-Muniz, F.J.; Benedí, J.; González-Muñoz, M.J. Can nonalcoholic beer, silicon and hops reduce the brain damage and behavioral changes induced by aluminum nitrate in young male Wistar rats? Food Chem. Toxicol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Lima-Fontes, M.; Costa, R.; Rodrigues, I.; Soares, R. Xanthohumol Restores Hepatic Glucolipid Metabolism Balance in Type 1 Diabetic Wistar Rats. J. Agric. Food Chem. 2017. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.; Negrão, R.; Valente, I.; Castela, A.; Duarte, D.; Guardão, L.; Magalhães, P.J.; Rodrigues, J.A.; Guimarães, J.T.; Gomes, P.; et al. Xanthohumol modulates inflammation, oxidative stress, and angiogenesis in type 1 diabetic rat skin wound healing. J. Nat. Prod. 2013. [Google Scholar] [CrossRef] [PubMed]
- Negrão, R.; Costa, R.; Duarte, D.; Gomes, T.T.; Coelho, P.; Guimarães, J.T.; Guardão, L.; Azevedo, I.; Soares, R. Xanthohumol-supplemented beer modulates angiogenesis and inflammation in a skin wound healing model. Involvement of local adipocytes. J. Cell. Biochem. 2012. [Google Scholar] [CrossRef] [Green Version]
- Jastrzebski, Z.; Gorinstein, S.; Czyzewska-Szafran, H.; Leontowicz, H.; Leontowicz, M.; Trakhtenberg, S.; Remiszewska, M. The effect of short-term lyophilized beer consumption on established hypertension in rats. Food Chem. Toxicol. 2007. [Google Scholar] [CrossRef]
- Gorinstein, S.; Caspi, A.; Pawelzik, E.; Deldago-Licon, E.; Libman, I.; Trakhtenberg, S.; Weisz, M.; Martin-Belloso, O. Proteins of beer affect lipid levels in rats. Nutr. Res. 2001. [Google Scholar] [CrossRef]
- Gorinstein, S.; Zemser, M.; Weisz, M.; Halevy, S.; Martin-Belloso, O.; Trakhtenberg, S. The influence of alcohol-containing and alcohol-free beverages on lipid levels and lipid peroxides in serum of rats. J. Nutr. Biochem. 1998. [Google Scholar] [CrossRef]
- Negrão, R.; Costa, R.; Duarte, D.; Taveira Gomes, T.; Mendanha, M.; Moura, L.; Vasques, L.; Azevedo, I.; Soares, R. Angiogenesis and inflammation signaling are targets of beer polyphenols on vascular cells. J. Cell. Biochem. 2010. [Google Scholar] [CrossRef]
- Bourne, L.; Paganga, G.; Baxter, D.; Hughes, P.; Rice-Evans, C. Absorption of ferulic acid from low-alcohol beer. Free Radic. Res. 2000. [Google Scholar] [CrossRef]
- Nardini, M.; Natella, F.; Scaccini, C.; Ghiselli, A. Phenolic acids from beer are absorbed and extensively metabolized in humans. J. Nutr. Biochem. 2006. [Google Scholar] [CrossRef] [PubMed]
- Ghiselli, A.; Natella, F.; Guidi, A.; Montanari, L.; Fantozzi, P.; Scaccini, C. Beer increases plasma antioxidant capacity in humans. J. Nutr. Biochem. 2000. [Google Scholar] [CrossRef]
- Pérez-Mañá, C.; Farré, M.; Pastor, A.; Fonseca, F.; Torrens, M.; Menoyo, E.; Pujadas, M.; Frias, S.; Langohr, K.; de la Torre, R. Non-linear formation of EtG and FAEEs after controlled administration of low to moderate doses of ethanol. Alcohol Alcohol. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krnic, M.; Modun, D.; Budimir, D.; Gunjaca, G.; Jajic, I.; Vukovic, J.; Salamunic, I.; Sutlovic, D.; Kozina, B.; Boban, M. Comparison of acute effects of red wine, beer and vodka against hyperoxia-induced oxidative stress and increase in arterial stiffness in healthy humans. Atherosclerosis 2011. [Google Scholar] [CrossRef] [PubMed]
- Codoñer-Franch, P.; Hernández-Aguilar, M.T.; Navarro-Ruiz, A.; López-Jaén, A.B.; Borja-Herrero, C.; Valls-Bellés, V. Diet supplementation during early lactation with non-alcoholic beer increases the antioxidant properties of breastmilk and decreases the oxidative damage in breastfeeding mothers. Breastfeed. Med. 2013. [Google Scholar] [CrossRef] [PubMed]
- Martínez Alvarez, J.R.; Bellés, V.V.; López-Jaén, A.B.; Marín, A.V.; Codoñer-Franch, P. Effects of alcohol-free beer on lipid profile and parameters of oxidative stress and inflammation in elderly women. Nutrition 2009. [Google Scholar] [CrossRef] [PubMed]
- Croft, K.D.; Puddey, I.B.; Rakic, V.; Abu-Amsha, R.; Dimmitt, S.B.; Beilin, L.J. Oxidative susceptibility of low-density lipoproteins—Influence of regular alcohol use. Alcohol. Clin. Exp. Res. 1996. [Google Scholar] [CrossRef]
- Franco, L.; Bravo, R.; Galan, C.; Sanchez, C.; Rodriguez, A.B.; Barrigs, C.; Cubero Juánez, J. Effects of beer, Hops (Humulus lupulus) on total antioxidant capacity in plasma of stressed subjects. Cell Membr. Free Radic. Res. 2013, 5, 232–235. [Google Scholar]
- Hernández-Quiroz, F.; Nirmalkar, K.; Villalobos-Flores, L.E.; Murugesan, S.; Cruz-Narváez, Y.; Rico-Arzate, E.; Hoyo-Vadillo, C.; Chavez-Carbajal, A.; Pizano-Zárate, M.L.; García-Mena, J. Influence of moderate beer consumption on human gut microbiota and its impact on fasting glucose and β-cell function. Alcohol 2020. [Google Scholar] [CrossRef]
- Quifer-Rada, P.; Chiva-Blanch, G.; Jáuregui, O.; Estruch, R.; Lamuela-Raventós, R.M. A discovery-driven approach to elucidate urinary metabolome changes after a regular and moderate consumption of beer and nonalcoholic beer in subjects at high cardiovascular risk. Mol. Nutr. Food Res. 2017. [Google Scholar] [CrossRef]
- Chiva-Blanch, G.; Magraner, E.; Condines, X.; Valderas-Martínez, P.; Roth, I.; Arranz, S.; Casas, R.; Navarro, M.; Hervas, A.; Sisó, A.; et al. Effects of alcohol and polyphenols from beer on atherosclerotic biomarkers in high cardiovascular risk men: A randomized feeding trial. Nutr. Metab. Cardiovasc. Dis. 2015. [Google Scholar] [CrossRef] [PubMed]
- Chiva-Blanch, G.; Condines, X.; Magraner, E.; Roth, I.; Valderas-Martínez, P.; Arranz, S.; Casas, R.; Martínez-Huélamo, M.; Vallverdú-Queralt, A.; Quifer-Rada, P.; et al. The non-alcoholic fraction of beer increases stromal cell derived factor 1 and the number of circulating endothelial progenitor cells in high cardiovascular risk subjects: A randomized clinical trial. Atherosclerosis 2014. [Google Scholar] [CrossRef] [PubMed]
- Quifer-Rada, P.; Martínez-Huélamo, M.; Chiva-Blanch, G.; Jáuregui, O.; Estruch, R.; Lamuela-Raventós, R.M. Urinary isoxanthohumol is a specific and accurate biomarker of beer consumption. J. Nutr. 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherr, J.; Nieman, D.C.; Schuster, T.; Habermann, J.; Rank, M.; Braun, S.; Pressler, A.; Wolfarth, B.; Halle, M. Nonalcoholic beer reduces inflammation and incidence of respiratory tract illness. Med. Sci. Sports Exerc. 2012. [Google Scholar] [CrossRef]
- Gorinstein, S.; Caspi, A.; Libman, I.; Leontowicz, H.; Leontowicz, M.; Tashma, Z.; Katrich, E.; Jastrzebski, Z.; Trakhtenberg, S. Bioactivity of beer and its influence on human metabolism. Int. J. Food Sci. Nutr. 2007. [Google Scholar] [CrossRef]
- Zilkens, R.R.; Burke, V.; Hodgson, J.M.; Barden, A.; Beilin, L.J.; Puddey, I.B. Red wine and beer elevate blood pressure in normotensive men. Hypertension 2005. [Google Scholar] [CrossRef]
- Di Giuseppe, R.; De Lorgeril, M.; Salen, P.; Laporte, F.; Di Castelnuovo, A.; Krogh, V.; Siani, A.; Arnout, J.; Cappuccio, F.P.; Van Dongen, M.; et al. Alcohol consumption and n-3 polyunsaturated fatty acids in healthy men and women from 3 European populations. Am. J. Clin. Nutr. 2009. [Google Scholar] [CrossRef] [Green Version]
- Padro, T.; Muñoz-García, N.; Vilahur, G.; Chagas, P.; Deyà, A.; Antonijoan, R.M.; Badimon, L. Moderate beer intake and cardiovascular health in overweight individuals. Nutrients 2018. [Google Scholar] [CrossRef] [Green Version]
- Godos, J.; Sinatra, D.; Blanco, I.; Mulè, S.; La Verde, M.; Marranzano, M. Association between dietary phenolic acids and hypertension in a mediterranean cohort. Nutrients 2017, 9, 1069. [Google Scholar] [CrossRef] [Green Version]
- González-Zancada, N.; Redondo-Useros, N.; Díaz, L.E.; Gómez-Martínez, S.; Marcos, A.; Nova, E. Association of Moderate Beer Consumption with the Gut Microbiota and SCFA of Healthy Adults. Molecules 2020, 25, 4772. [Google Scholar] [CrossRef]
- Le Roy, C.I.; Wells, P.M.; Si, J.; Raes, J.; Bell, J.T.; Spector, T.D. Red Wine Consumption Associated With Increased Gut Microbiota α-Diversity in 3 Independent Cohorts. Gastroenterology 2020. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.; Haque, R.; Van Den Eeden, S.K.; Caan, B.J.; Poon, K.Y.T.; Quinn, V.P. Red wine consumption and risk of prostate cancer: The California men’s health study. Int. J. Cancer 2010. [Google Scholar] [CrossRef]
- Mehlig, K.; Skoog, I.; Guo, X.; Schütze, M.; Gustafson, D.; Waern, M.; Östling, S.; Björkelund, C.; Lissner, L. Alcoholic beverages and incidence of dementia: 34-Year follow-up of the prospective population study of women in Göteborg. Am. J. Epidemiol. 2008. [Google Scholar] [CrossRef]
- Petti, S.; Scully, C. Association between different alcoholic beverages and leukoplakia among non- to moderate-drinking adults: A matched case-control study. Eur. J. Cancer 2006. [Google Scholar] [CrossRef]
- Nettleton, J.A.; Harnack, L.J.; Scrafford, C.G.; Mink, P.J.; Barraj, L.M.; Jacobs, D.R. Dietary flavonoids and flavonoid-rich foods are not associated with risk of type 2 diabetes in postmenopausal women. J. Nutr. 2006. [Google Scholar] [CrossRef] [Green Version]
- Petti, S.; Scully, C. Oral cancer: The association between nation-based alcohol-drinking profiles and oral cancer mortality. Oral Oncol. 2005. [Google Scholar] [CrossRef]
- Schoonen, W.M.; Salinas, C.A.; Kiemeney, L.A.L.M.; Stanford, J.L. Alcohol consumption and risk of prostate cancer in middle-aged men. Int. J. Cancer 2005. [Google Scholar] [CrossRef]
- Infante-Rivard, C.; Krajinovic, M.; Labuda, D.; Sinnett, D. Childhood acute lymphoblastic leukemia associated with parental alcohol consumption and polymorphisms of carcinogen-metabolizing genes. Epidemiology 2002. [Google Scholar] [CrossRef]
- Ussar, S.; Griffin, N.W.; Bezy, O.; Fujisaka, S.; Vienberg, S.; Softic, S.; Deng, L.; Bry, L.; Gordon, J.I.; Kahn, C.R. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab. 2015. [Google Scholar] [CrossRef] [Green Version]
- Chávez-Carbajal, A.; Nirmalkar, K.; Pérez-Lizaur, A.; Hernández-Quiroz, F.; Ramírez-Del-Alto, S.; García-Mena, J.; Hernández-Guerrero, C. Gut microbiota and predicted metabolic pathways in a sample of Mexican women affected by obesity and obesity plus metabolic syndrome. Int. J. Mol. Sci. 2019, 20, 438. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Chen, W.; Lu, J.; Zhao, M. Phenolic profiles and antioxidant activities of commercial beers. Food Chem. 2010. [Google Scholar] [CrossRef]
- Nardini, M.; Garaguso, I. Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chem. 2020, 305, 125437. [Google Scholar] [CrossRef] [PubMed]
- Legua, P.; Serrano, M.; Melgarejo, P.; Valero, D.; Martínez, J.J.; Martínez, R.; Hernández, F. Quality parameters, biocompounds and antioxidant activity in fruits of nine quince (Cydonia oblonga Miller) accessions. Sci. Hortic. (Amsterdam) 2013, 154, 61–65. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Bielicki, P. Polyphenolic composition, antioxidant activity, and polyphenol oxidase (PPO) activity of quince (cydonia oblonga miller) varieties. J. Agric. Food Chem. 2013. [Google Scholar] [CrossRef]
- Zapata, P.J.; Martínez-Esplá, A.; Gironés-Vilaplana, A.; Santos-Lax, D.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A. Phenolic, volatile, and sensory profiles of beer enriched by macerating quince fruits. LWT 2019. [Google Scholar] [CrossRef]
- Sun, J.; Li, L.; You, X.; Li, C.; Zhang, E.; Li, Z.; Chen, G.; Peng, H. Phenolics and polysaccharides in major tropical fruits: Chemical compositions, analytical methods and bioactivities. Anal. Methods 2011. [Google Scholar] [CrossRef]
- Gasinski, A.; Kawa-Rygielska, J.; Szumny, A.; Czubaszek, A.; Gasior, J.; Pietrzak, W. Volatile compounds content, physicochemical parameters, and antioxidant activity of beers with addition of mango fruit (Mangifera Indica). Molecules 2020, 25, 3033. [Google Scholar] [CrossRef]
- Lako, J.; Trenerry, V.C.; Wahlqvist, M.; Wattanapenpaiboon, N.; Sotheeswaran, S.; Premier, R. Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem. 2007. [Google Scholar] [CrossRef]
- Humia, B.V.; Santos, K.S.; Schneider, J.K.; Leal, I.L.; de Abreu Barreto, G.; Batista, T.; Machado, B.A.S.; Druzian, J.I.; Krause, L.C.; da Costa Mendonça, M.; et al. Physicochemical and sensory profile of Beauregard sweet potato beer. Food Chem. 2020. [Google Scholar] [CrossRef]
- Talhaoui, N.; Taamalli, A.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res. Int. 2015, 77, 92–108. [Google Scholar] [CrossRef]
- Guglielmotti, M.; Passaghe, P.; Buiatti, S. Use of olive (Olea europaea L.) leaves as beer ingredient, and their influence on beer chemical composition and antioxidant activity. J. Food Sci. 2020, 85, 2278–2285. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Lim, J.; Nguyen, T.T.H.; Mok, I.-K.; Piao, M.; Kim, D. Composition and biochemical properties of ale beer enriched with lignans from Schisandra chinensis Baillon (omija) fruits. Food Sci. Biotechnol. 2020, 29, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, D.J.; Barooah, M.S.; Bora, S.S.; Singaravadivel, K. Biochemical and nutritional analysis of rice beer of North East India. Indian J. Tradit. Knowl. 2014, 13, 142–148. [Google Scholar]
- Agu, R.C. Comparative study of experimental beers brewed from millet, sorghum and barley malts. Process. Biochem. 1995. [Google Scholar] [CrossRef]
- Palmer, G.H.; Etokakpan, O.U.; Igyor, M.A. Sorghum as brewing material. MIRCEN J. Appl. Microbiol. Biotechnol. 1989, 5, 265–275. [Google Scholar] [CrossRef]
- Serna-Saldivar, S.O. Maize: Foods from Maize. In Encyclopedia of Food Grains, 2nd ed.; Wrigley, C., Corke, H., Seetharaman, K., Faubion, J., Eds.; Academic Press: Oxford, UK, 2016; pp. 97–109. ISBN 978-0-12-394786-4. [Google Scholar]
- Escalante-Aburto, A.; Ramírez-Wong, B.; Torres-Chávez, P.I.; Manuel Barrón-Hoyos, J.; de Dios Figueroa-Cárdenas, J.; López-Cervantes, J. The nixtamalization process and its effect on anthocyanin content of pigmented maize, A review. Rev. Fitotec. Mex. 2013. [Google Scholar] [CrossRef]
- Flores-Calderón, A.M.D.; Luna, H.; Escalona-Buendía, H.B.; Verde-Calvo, J.R. Chemical characterization and antioxidant capacity in blue corn (Zea mays L.) malt beers. J. Inst. Brew. 2017. [Google Scholar] [CrossRef] [Green Version]
- Romero-Medina, A.; Estarrón-Espinosa, M.; Verde-Calvo, J.R.; Lelièvre-Desmas, M.; Escalona-Buendiá, H.B. Renewing Traditions: A Sensory and Chemical Characterisation of Mexican Pigmented Corn Beers. Foods 2020, 9, 886. [Google Scholar] [CrossRef]
- Fumi, M.D.; Galli, R.; Lambri, M.; Donadini, G.; De Faveri, D.M. Effect of full-scale brewing process on polyphenols in Italian all-malt and maize adjunct lager beers. J. Food Compos. Anal. 2011, 24, 568–573. [Google Scholar] [CrossRef]
- Klose, C.; Mauch, A.; Wunderlich, S.; Thiele, F.; Zarnkow, M.; Jacob, F.; Arendt, E.K. Brewing with 100% oat malt. J. Inst. Brew. 2011. [Google Scholar] [CrossRef]
- Di Ghionno, L.; Sileoni, V.; Marconi, O.; De Francesco, G.; Perretti, G. Comparative study on quality attributes of gluten-free beer from malted and unmalted teff [Eragrostis tef (zucc.) trotter]. LWT Food Sci. Technol. 2017. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, T.J.; Chen, J. Changes of the flavonoid and phenolic acid content and antioxidant activity of tartary buckwheat beer during the fermentation. Adv. Mater. Res. 2013, 781–784, 1619–1624. [Google Scholar] [CrossRef]
- Kordialik-Bogacka, E.; Bogdan, P.; Pielech-Przybylska, K.; Michałowska, D. Suitability of unmalted quinoa for beer production. J. Sci. Food Agric. 2018. [Google Scholar] [CrossRef] [PubMed]
- Zarnkow, M.; Faltermaier, A.; Back, W.; Gastl, M.; Arendt, E.K. Evaluation of different yeast strains on the quality of beer produced from malted proso millet (Panicum miliaceum L.). Eur. Food Res. Technol. 2010. [Google Scholar] [CrossRef]
- Lyumugabe, F.; Bajyana Songa, E.; Wathelet, J.P.; Thonart, P. Volatile compounds of the traditional sorghum beers “ikigage” brewed with Vernonia amygdalina “umubirizi.”. Cerevisia 2013. [Google Scholar] [CrossRef]
- Onyenekwe, P.C.; Erhabor, G.O.; Akande, S.A. Characterisation of aroma volatiles of indigenous alcoholic beverages: Burukutu and pito. Nat. Prod. Res. 2016. [Google Scholar] [CrossRef]
- Handique, P.; Deka, A.K.; Deka, D.C. Antioxidant Properties and Phenolic Contents of Traditional Rice-Based Alcoholic Beverages of Assam, India. Natl. Acad. Sci. Lett. 2020. [Google Scholar] [CrossRef]
- Kordialik-Bogacka, E.; Bogdan, P.; Diowksz, A. Malted and unmalted oats in brewing. J. Inst. Brew. 2014. [Google Scholar] [CrossRef]
- Wu, D.; Cai, G.; Li, X.; Li, B.; Lu, J. Cloning and expression of ferulic acid esterase gene and its effect on wort filterability. Biotechnol. Lett. 2018. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, A.; Zhang, Z.; Speers, R.A. Enhancing the levels of 4-vinylguaiacol and 4-vinylphenol in pilot-scale top-fermented wheat beers by response surface methodology. J. Inst. Brew. 2015. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Cui, Y.; Zeng, D.; Bao, X. Increasing the level of 4-vinylguaiacol in top-fermented wheat beer by secretory expression of ferulic acid decarboxylase from Bacillus pumilus in brewer’s yeast. Biotechnol. Lett. 2020. [Google Scholar] [CrossRef]
- Brányik, T.; Silva, D.P.; Baszczyňski, M.; Lehnert, R.; Almeida e Silva, J.B. A review of methods of low alcohol and alcohol-free beer production. J. Food Eng. 2012, 108, 493–506. [Google Scholar] [CrossRef]
- Liguori, L.; De Francesco, G.; Russo, P.; Perretti, G.; Albanese, D.; Di Matteo, M. Quality Attributes of Low-Alcohol Top-Fermented Beers Produced by Membrane Contactor. Food Bioprocess. Technol. 2016. [Google Scholar] [CrossRef]
- De Fusco, D.O.; Madaleno, L.L.; Del Bianchi, V.L.; da Silva Bernardo, A.; Assis, R.R.; de Almeida Teixeira, G.H. Development of low-alcohol isotonic beer by interrupted fermentation. Int. J. Food Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Desbrow, B.; Murray, D.; Leveritt, M. Beer as a sports drink? Manipulating beer’s ingredients to replace lost fluid. Int. J. Sport Nutr. Exerc. Metab. 2013. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J. The sports drink as a functional food: Formulations for successful performance. Proc. Nutr. Soc. 1998. [Google Scholar] [CrossRef] [Green Version]
- Menz, G.; Vriesekoop, F.; Zarei, M.; Zhu, B.; Aldred, P. The growth and survival of food-borne pathogens in sweet and fermenting brewers’ wort. Int. J. Food Microbiol. 2010. [Google Scholar] [CrossRef] [PubMed]
- Meneses, N.G.T.; Martins, S.; Teixeira, J.A.; Mussatto, S.I. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Sep. Purif. Technol. 2013. [Google Scholar] [CrossRef] [Green Version]
- Cooray, S.T.; Chen, W.N. Valorization of brewer’s spent grain using fungi solid-state fermentation to enhance nutritional value. J. Funct. Foods 2018. [Google Scholar] [CrossRef]
- Ferk, F.; Mišík, M.; Nersesyan, A.; Pichler, C.; Jäger, W.; Szekeres, T.; Marculescu, R.; Poulsen, H.E.; Henriksen, T.; Bono, R.; et al. Impact of xanthohumol (a prenylated flavonoid from hops) on DNA stability and other health-related biochemical parameters: Results of human intervention trials. Mol. Nutr. Food Res. 2016. [Google Scholar] [CrossRef]
- Wunderlich, S.; Zürcher, A.; Back, W. Enrichment of xanthohumol in the brewing process. Mol. Nutr. Food Res. 2005. [Google Scholar] [CrossRef] [PubMed]
- Karabín, M.; Jelínek, L.; Kinčl, T.; Hudcová, T.; Kotlíková, B.; Dostálek, P. New approach to the production of xanthohumol-enriched beers. J. Inst. Brew. 2013. [Google Scholar] [CrossRef]
- Machado, J.C.; Faria, M.A.; Melo, A.; Martins, Z.E.; Ferreira, I.M.P.L.V.O. Modeling of α-acids and xanthohumol extraction in dry-hopped beers. Food Chem. 2019. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, P.J.; Dostalek, P.; Cruz, J.M.; Guido, L.F.; Barros, A.A. The impact of a xanthohumol-enriched hop product on the behavior of xanthohumol and isoxanthohumol in pale and dark beers: A pilot scale approach. J. Inst. Brew. 2008. [Google Scholar] [CrossRef]
- Benelli, R.; Ven, R.; Ciarlo, M.; Carlone, S.; Barbieri, O.; Ferrari, N. The AKT/NF-κB inhibitor xanthohumol is a potent anti-lymphocytic leukemia drug overcoming chemoresistance and cell infiltration. Biochem. Pharmacol. 2012. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL cholesterol concentrations (ID 1639), mainte. EFSA J. 2011, 9, 2033. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the modification of the authorisation of a health claim related to cocoa flavanols and maintenance of normal endothelium-dependent vasodilation pursuant to Article 13(5) of Regulation (EC) No 1924/2006 following a request in accordan. EFSA J. 2014, 12, 3654. [Google Scholar] [CrossRef] [Green Version]
- Merinas-Amo, T.; Tasset-Cuevas, I.; Díaz-Carretero, A.M.; Alonso-Moraga, Á.; Calahorro, F. In vivo and in vitro studies of the role of lyophilised blond Lager beer and some bioactive components in the modulation of degenerative processes. J. Funct. Foods 2016. [Google Scholar] [CrossRef]
Experimental Model | Tested Parameters | Observations | Non-Alcoholic Beer | Alcoholic Beer | Ethanol | References |
---|---|---|---|---|---|---|
in vitro, rat C6 glioma and human SH-SY5Y neuroblastoma cells, treated with total extracts from dark, non-alcoholic or lager beers | cell viability and adenosine receptors gene expression and protein levels following oxidant stressor (hydrogen peroxide) challenge | alcoholic dark beer extract conferred higher protection compared to lager or non-alcoholic beer extracts | yes | no | no | [91] |
animal, 36 prepuberal Wistar rats fed with beer or ethanol (both 10%) or water for 2/4 weeks | plasma reproductive hormones, cleaved caspase-3 immunolocalization and neuronal nitric oxide synthase level in Leydig cells | beer decreased sex hormones compared to ethanol or water rats and inhibited ethanol-induced increase of cleaved caspase-3 | no | yes | yes | [92] |
animal, 70 male Wistar rats, with monocrotaline-induced pulmonary arterial hypertension, fed with xanthohumol-fortified beer or ethanol (both 5.2%) for 4 weeks | cardiopulmonary exercise testing and hemodynamic recordings, analysis of pulmonary vascular remodeling and cardiac function | xanthohumol-fortified beer attenuated pharmacologically induced pulmonary vascular remodeling and improved cardiac function, compared to ethanol rats | no | yes | yes | [93] |
animal, 40 male Wistar rats, with aluminium nitrate-induced inflammatory status, fed with low alcoholic-beer (0.9%) or hops or silicons for 3 months | animal behavior and brain antioxidant and anti-inflammatory status | non-alcoholic beer, but also silicon and hops alone, prevented aluminum-induced inflammation and neurodegenerative effects | yes | no | no | [94] |
animal, 30 male Wistar rats, with streptozotocin-induced diabetes, fed with alcoholic beer or xanthohumol-enriched or 5% ethanol for 5 weeks | hepatic glucolipid metabolism, levels lipogenic enzymes and glucose transporter 2 | alcoholic beer enriched with xanthohumol (but not normal beer nor ethanol) prevented the streptozotocin-induced liver catabolic state alterations | no | yes | yes | [95] |
animal, 30 male Wistar rats, with skin induced wound healing and streptozotocin-induced diabetes, fed with alcoholic beer or xanthohumol-enriched or 5% ethanol for 5 weeks | effects on wound healing, through evaluation of angiogenesis, inflammation and oxidative stress modulation | alcoholic and xanthohumol-enriched beers respectively, prevented and reversed the alcohol-induced markers of inflammation, oxidative stress and angiogenesis | no | yes | yes | [96] |
animal, 24 male Wistar rats, with skin induced wound healing, fed with xanthohumol-fortified alcoholic beer or 5% ethanol for 4 weeks | angiogenesis and inflammation markers (serum vascular endothelial growth factor levels, N-acetylglucosaminidase activity, Interleukin-1 β concentration) | alcoholic and xanthohumol-enriched beer respectively, prevented and reversed the alcohol-induced markers of inflammation, oxidative stress and angiogenesis | no | yes | yes | [97] |
in vitro, MKN-28 gastric epithelial cells, treated with different alcoholic beverages, at a similar ethanol concentration | tetrazolium (MTT) assay at 30, 60 and 120 min | alcoholic beer reduced cell viability like ethanol, while red wine, even dealcoholated, protected | no | yes | yes | [89] |
animal, 32 spontaneously hypertensive and 32 normotensive Wister rats, fed intragastrically with lyophilized beer for 10 days | aminooxyacetic acid-induced γ-aminobutyric acid (GABA) accumulation in hypothalamus and pons-medulla | lyophilized beer decreased GABA accumulation | yes | no | no | [98] |
animal, 36 male Wistar rats fed (4 weeks) with lyophilized, polyphenol-free, beer or white wine | plasma lipids and lipid peroxides | polyphenol-free beer (not polyphenol-free wine) significantly decreased lipids and lipid peroxides | no | yes | no | [99] |
animal, 60 Wistar rats fed (4 weeks) with alcoholic (4%) or lyophilized beer | plasma lipids and lipid peroxides | both alcoholic and lyophilized beers similarly decreased lipids and lipid peroxides | yes | yes | no | [100] |
Experimental Model | Tested Parameters | Observations | Non-Alcoholic Beer | Alcoholic Beer | Ethanol | References |
---|---|---|---|---|---|---|
intervention trial (healthy adults), 30 days, 355 mL beer/day with (4.9%, n = 33, 21–55 y) or without alcohol (0.5%, n = 35, 21–53 y) | microbiota composition, fasting blood serum glucose, β-cell function | both beer interventions increased microbiota diversity, but only non-alcoholic beer increased heathier diversity and β-cells function and decreased fasting blood serum glucose | yes | yes | no | [111] |
controlled clinical trial (healthy adults, n = 20, 18–45 y, single blind, randomized, crossover), single dose of beer (250 mL), with (4.5 or 8,5%) or without (0%) alcohol | urinary tyrosol (TYR) and hydroxytyrosol (HT) | non-alcoholic beer intervention increased HT recovery (and reduced TYR recovery) compared to alcoholic beer | yes | yes | no | [12] |
intervention controlled trial (high cardiovascular risk males, n = 33, 55–75 y, open, randomized, crossover), 4 weeks, daily: 660 mL beer (1029 mg polyphenols and 30 g ethanol) or 990 mL non-alcoholic beer (1243 mg polyphenols and <1 g ethanol) or 100 mL gin (30 g ethanol) | urinary metabolomics | both beer intervention increased to similar extent urine excretion of hop α-acids and fermentation products, compared to gin intervention | yes | yes | yes | [112] |
intervention controlled trial (high cardiovascular risk males, n = 33, 55–75 y, open, randomized, crossover), 4 weeks, daily: 660 mL beer (1029 mg polyphenols and 30 g ethanol) or 990 mL non-alcoholic beer (1243 mg polyphenols and <1 g ethanol) or 100 mL gin (30 g ethanol) | atherosclerotic and inflammation plasma biomarkers and peripheral blood mononuclear cells immunophenotyping | only non-alcoholic beer intervention reduced leukocyte adhesion molecules and inflammatory biomarkers, but alcoholic beer and gin interventions improved plasma lipid and atherosclerosis inflammatory markers | yes | yes | yes | [113] |
intervention controlled trial (high cardiovascular risk males, n = 33, 55–75 y, open, randomized, crossover), 4 weeks, daily: 660 mL beer (1029 mg polyphenols and 30 g ethanol) or 990 mL non-alcoholic beer (1243 mg polyphenols and <1 g ethanol) or 100 mL gin (30 g ethanol) | number of circulating endothelial progenitor cells (EPC) | 8-fold and 5-fold increases of EPC number respectively in alcoholic and non-alcoholic beer interventions and statistically not significant 5-fold decrease in gin administration | yes | yes | yes | [114] |
intervention controlled trial (high cardiovascular risk males, n = 33, 55–75 y, open, randomized, crossover), 4 weeks, daily: 660 mL beer (1029 mg polyphenols and 30 g ethanol) or 990 mL non-alcoholic beer (1243 mg polyphenols and <1 g ethanol) or 100 mL gin (30 g ethanol) | urinary isoxanthohumol | beer administrations (not gin) induced similar excretion of urinary isoxanthohumol | yes | yes | yes | [115] |
intervention trial (stressed healthy females, n = 17, 40.9 ± 10.5 y, randomized, crossover), 2 weeks 330 mL beer/day, first week non-alcoholic, second week alcoholic | antioxidant capacity in urine | non-alcoholic beer administration induced higher antioxidant capacity compared to alcoholic beer one | yes | yes | no | [110] |
intervention trial (healthy males n = 17, 28.5 ± 5.2 y, randomized, single-blind, crossover), single dose (800 mL) beer (48 mg polyphenols and 20 g ethanol) or non-alcoholic beer (48 mg polyphenols) or vodka (20 g ethanol) | endothelial function, aortic stiffness, pressure wave reflections and aortic pressure | non-alcoholic and alcoholic beer interventions improved (similarly) arterial biomarkers but the effects were observed also for the vodka intervention alcoholic beer intervention improved wave reflections reduction better than vodka intervention | yes | yes | yes | [87] |
intervention trial (postpartum breastfeeding-mother-infants dyads), 30 days 660 mL/day non-alcoholic beer (n = 30, 30 ± 5 y) or not (n = 30, 31 ± 3 y) | breastmilk, plasma and urine oxidative status | non-alcoholic beer increased breastmilk and plasma antioxidant capacities | yes | no | no | [107] |
intervention trial (healthy male marathon runners, double-blind), 5 weeks (from 3 before to 2 after marathon) 1.0–1.5 L non-alcoholic beer (n = 142, 36–51 y) or control beverage without polyphenols (n = 135, 35–49) | blood inflammatory markers and upper respiratory tract illness (URTI) rates | non-alcoholic beer intervention reduced after-run blood inflammatory markers and URTI rates, compared to the polyphenols-free beverage | yes | no | no | [116] |
intervention trial (healthy males, n = 10, 21–29 y, randomized, single-blind, crossover), single dose (7 mL/kg body wt) alcoholic beer (0.4 g/L GAE polyphenols and 0.32 g ethanol/kg body wt) or vodka (0.32 g ethanol/kg body wt) | plasma lipid peroxides, uric acid concentration and arterial stiffness following 100% O2 breathing-oxidative stress | alcoholic beer intervention protected against oxygen-induced increase in arterial stiffness but so did vodka | no | yes | yes | [106] |
intervention (post-menopausal healthy females, n = 29, 64.5 ± 5.3 y, longitudinal), 45 days 500 mL alcoholic-free beer/day | lipid profile and plasma inflammatory markers | alcoholic-free beer intervention improved lipid profile and plasma inflammatory markers | yes | no | no | [108] |
controlled clinical trial (hypercholesterolemic non-drinker males, n = 42, 43–71 y, randomized, single-blind), 30 days, daily: 330 mL 5.4% beer (20 g alcohol and 510 mg polyphenols) or water (containing beer mineral) | coronary atherosclerosis plasma markers | alcoholic beer intervention improved coronary atherosclerosis plasma markers compared to control administration water | no | yes | no | [117] |
intervention (healthy adults, n = 10, 25–45 y, randomized), single dose (500 mL) 4.5% alcoholic beer | phenolic acids plasma metabolites | alcoholic beer intervention demonstrates absorption and metabolism of phenolic acids to glucuronide and sulfate conjugates | no | yes | no | [103] |
intervention (healthy normotensive drinking men, n = 28, 20–65 y, randomized, crossover), 4 weeks, daily: 1125 mL 4.6% beer (41 g alcohol) or 375 mL 13% red wine 2023 mg/L polyphenols) or 375 mL dealcoholized red wine (2094 mg/L polyphenols) | blood pressure and vascular function following brachial artery flow-mediated and glyceryl trinitrate-mediated dilatation | alcoholic beer (but also wine) increased awake systolic blood pressure and asleep heart rate | no | yes | no | [118] |
intervention (healthy adults, 25–45 y, randomized no crossover), single dose (500 mL): 4.5% alcoholic (n = 14) or dealcoholized beer or 4.5% ethanol (n = 7) | total plasma antioxidant status | alcoholic beer administration improved higher plasma antioxidant capacity compared to the dealcoholized one, thanks to higher absorption of phenolic acids | yes | yes | yes | [104] |
intervention (healthy males, n = 5, 23–40 y), single dose (4 L) low-alcohol (1%) beer | urinary ferulic and its glucuronide | beer administration demonstrates bioavailability of ferulic acid | yes | no | no | [102] |
intervention trial (healthy male drinkers, n = 27, 49.2 ± 2.3 y, randomized, crossover), 4 weeks, daily 375 mL: 4.9% or 0.9% beer (similar phenolic content 310–330 mg/L) | LDL in vitro oxidizability and characterization | switch from low to high alcoholic beer intervention increased LDL oxidizability | yes | yes | no | [109] |
Experimental Model | Tested Parameters | Observations | Non-Alcoholic Beer | Alcoholic Beer | Ethanol | References |
---|---|---|---|---|---|---|
observational (ALMICROBHOL adults n = 78, 25–50 y), alcoholics BCQ | microbiota composition (16S rRNA sequencing) and short chain fatty acid profile in fecal samples | higher butyric acid concentration and gut microbial diversity in consumers vs. non-consumers of beer | no | yes | no | [122] |
observational (TwinsUK females n = 916, 16–98 y), alcoholics FFQ | microbiota composition in fecal samples (16S rRNA sequencing) | no association between beer (nor all alcohols except wine) consumption and gut microbial diversity | no | yes | yes | [123] |
observational (MEAL Southern Italy adults, n = 2044, >18 y), phenolics FFQ | hypertension (arterial blood pressure measurement) | inverse association between beer consumption and hypertension | no | yes | no | [121] |
observational prospective (2002–2003 CMHS Californian males n = 84,170, 45–69 y), alcoholics FFQ | prostate cancer registries (Surveillance Epidemiology and End Result) | no association between beer (nor wine nor liquor) consumption and prostate cancer | no | yes | yes | [124] |
observational cross-sectional (IMMIDIET Italy–Belgium–UK female–male pairs, n = 1604, 26–65 y), alcoholics FFQ | plasma and red blood cell omega–3 fatty acids | no association between beer consumption and plasma or red blood cell omega 3 fatty acids (reduced for wine) | no | yes | no | [119] |
observational 34 year prospective (PPSWG Sweden females, n = 1462; 38, 46, 50, 54, 60 y), alcoholics BCQ | dementia (neuropsychiatric years-repeated examinations) | direct association between beer (or wine) consumption and longevity and reduced dementia risk (compared to subjects consuming only spirits) | no | yes | yes | [125] |
observational (over 10 years) case-control matched leukoplakia subjects (n = 187 + 187, 40–65 y), alcoholics FFQ | leukoplakia (clinical examination and biopsy) | no significant association between moderate beer drinking and leukoplakia risk (increased for spirit and reduced for wine) | no | yes | yes | [126] |
observational case-control prospective (1987–2004 IWHS) diabetes postmenopausal females (n = 35,816; 55–69 y), flavonoids FFQ | self-reported diabetes | inverse association between beer (or other alcoholic beverages including liquor) consumption and diabetes risk | no | yes | yes | [127] |
observational oral cancer mortality rate (20 Nations male 2002 age-standardized), national mean alcoholic beverage consumption | oral cancer mortality rates (International Agency for Research on Cancer) | no association between beer (nor wine, but association for spirits) consumption alone and oral cancer risk | no | yes | yes | [128] |
observational case-control matched (1993–1996 King County, WA) prostate cancer subjects (n = 753 + 703; 40–64 y), alcoholics BCQ | prostate cancer registry (Seattle Puget Sound Surveillance Epidemiology and End Results Cancer Registry), histological confirmation | no association for beer consumption (nor liquor but association for wine) and prostate cancer risk | no | yes | yes | [129] |
observational case-control matched prospective (1980–1993 Québec) child acute lymphoblastic leukemia (n = 491 + 491; 0–9 y), parents alcoholics BCQ | child acute lymphoblastic leukemia hospital diagnosis | inverse association between mothers’ beer (but not spirits) consumption and child acute lymphoblastic leukemia | no | yes | yes | [130] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambra, R.; Pastore, G.; Lucchetti, S. The Role of Bioactive Phenolic Compounds on the Impact of Beer on Health. Molecules 2021, 26, 486. https://doi.org/10.3390/molecules26020486
Ambra R, Pastore G, Lucchetti S. The Role of Bioactive Phenolic Compounds on the Impact of Beer on Health. Molecules. 2021; 26(2):486. https://doi.org/10.3390/molecules26020486
Chicago/Turabian StyleAmbra, Roberto, Gianni Pastore, and Sabrina Lucchetti. 2021. "The Role of Bioactive Phenolic Compounds on the Impact of Beer on Health" Molecules 26, no. 2: 486. https://doi.org/10.3390/molecules26020486
APA StyleAmbra, R., Pastore, G., & Lucchetti, S. (2021). The Role of Bioactive Phenolic Compounds on the Impact of Beer on Health. Molecules, 26(2), 486. https://doi.org/10.3390/molecules26020486