Natural Aporphine Alkaloids with Potential to Impact Metabolic Syndrome
Abstract
:1. Introduction
2. Prevention of Insulin Resistance and Type 2 Diabetes
3. Restoration of Endothelial Dysfunction, Hypertension, and Cardiovascular Disease
4. Attenuation of Hyperlipidemia and Obesity
5. Amelioration of NAFLD
6. Alleviation of Hyperuricemia and Kidney Damage
7. Recovery of Erectile Function
8. Improvement of Brain Function
9. Potent Restoration of Intestinal Microbiota-Mediated Metabolic Syndrome
10. Potential Effect on Other Disorders
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Aguilar, M.; Bhuket, T.; Torres, S.; Liu, B.; Wong, R.-J. Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA 2015, 313, 1973–1974. [Google Scholar] [CrossRef]
- Saltiel, A.R.; Olefsky, J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Investig. 2017, 127, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Tajmohammadi, A.; Razavi, B.M.; Hosseinzadeh, H. Silybum marianum (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: A review. Phytother. Res. 2018, 32, 1933–1949. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo Flores, M.E. Cocoa flavanols: Natural agents with attenuating effects on metabolic syndrome risk factors. Nutrients 2019, 11, 751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Y.C.; Wang, K.W. New analogues of aporphine alkaloids. Mini Rev. Med. Chem. 2018, 18, 1590–1602. [Google Scholar] [CrossRef] [PubMed]
- Okon, E.; Kukula-Koch, W.; Jarzab, A.; Halasa, M.; Stepulak, A.; Wawruszak, A. Advances in chemistry and bioactivity of magnoflorine and magnoflorine-containing extracts. Int. J. Mol. Sci. 2020, 21, 1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.J.; Chen, C.H.; Liu, F.W.; Kang, J.J.; Chen, C.K.; Lee, S.L.; Lee, S.S. Inhibition of intestinal glucose uptake by aporphines and secoaporphines. Life Sci. 2006, 79, 144–153. [Google Scholar] [CrossRef]
- Chi, T.C.; Lee, S.S.; Su, M.J. Antihyperglycemic effect of aporphines and their derivatives in normal and diabetic rats. Planta Med. 2006, 72, 1175–1180. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.; Ge, Y.; Wang, H.; Phosat, C.; Li, J.; Mao, H.P.; Gao, X.M.; Chang, Y.X. Network pharmacology strategy for revealing the pharmacological mechanism of pharmacokinetic target components of San-Ye-Tang-Zhi-Qing formula for the treatment of type 2 diabetes mellitus. J. Ethnopharmacol. 2020, 260, 113044. [Google Scholar] [CrossRef]
- Ma, C.J.; Li, G.; He, Y.F.; Xu, B.; Mi, X.; Wang, H.L.; Wang, Z.H. Pronuciferine and nuciferine inhibit lipogenesis in 3T3-L1 adipocytes by activating the AMPK signaling pathway. Life Sci. 2015, 136, 120–125. [Google Scholar] [CrossRef]
- Nguyen, K.H.; Ta, T.N.; Pham, T.H.; Nguyen, Q.T.; Pham, H.D.; Mishra, S.; Nyomba, B.L. Nuciferine stimulates insulin secretion from beta cells-an in vitro comparison with glibenclamide. J. Ethnopharmacol. 2012, 142, 488–495. [Google Scholar] [CrossRef]
- Zhang, C.; Deng, J.J.; Liu, D.; Tuo, X.X.; Xiao, L.; Lai, B.H.; Yao, Q.Y.; Liu, J.; Yang, H.X.; Wang, N.P. Nuciferine ameliorates hepatic steatosis in high-fat diet/streptozocin-induced diabetic mice through a PPARα/PPARγ coactivator-1α pathway. Br. J. Pharmacol. 2018, 175, 4218–4228. [Google Scholar] [CrossRef] [PubMed]
- Ning, Q.; Wang, Y.; Zhang, Y.; Shen, G.Z.; Xie, Z.J.; Pang, J. Nuciferine prevents hepatic steatosis by regulating lipid metabolism in diabetic rat model. Open Life Sci. 2019, 14, 699–706. [Google Scholar] [CrossRef]
- Yadav, A.; Singh, A.; Phogat, J.; Dahuja, A.; Dabur, R. Magnoflorine prevent the skeletal muscle atrophy via Akt/mTOR/FoxO signal pathway and increase slow-MyHC production in streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2021, 267, 113510. [Google Scholar] [CrossRef] [PubMed]
- Damayanti, D.S.; Utomo, D.H.; Kusuma, C. Revealing the potency of Annona muricata leaves extract as FOXO1 inhibitor for diabetes mellitus treatment through computational study. In Silico Pharmacol. 2016, 5, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, Y.Y.; Song, J.H.; Shin, Y.K.; Han, E.S.; Lee, C.S. Protective effect of boldine on oxidative mitochondrial damage in streptozotocin-induced diabetic rats. Pharmacol. Res. 2000, 42, 361–371. [Google Scholar] [CrossRef]
- Hernández-Salinas, R.; Vielma, A.Z.; Arismendi, M.N.; Boric, M.P.; Sáez, J.C.; Velarde, V. Boldine prevents renal alterations in diabetic rats. J. Diabetes Res. 2013, 2013, 593672. [Google Scholar] [CrossRef] [Green Version]
- Park, S.K.; Oh, C.M.; Kim, M.H.; Ha, E.; Choi, Y.S.; Ryoo, J.H. Metabolic syndrome, metabolic components, and their relation to the risk of pancreatic cancer. Cancer 2020, 126, 1979–1986. [Google Scholar] [CrossRef]
- Esposito, K.; Chiodini, P.; Colao, A.; Lenzi, A.; Giugliano, D. Metabolic syndrome and risk of cancer: A systematic review and meta-analysis. Diabetes Care 2012, 35, 2402–2411. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Wang, Q.Y.; Zhang, H.; Li, Y.J.; Xie, S.Y.; Xu, M.L. YAP inhibition by nuciferine via AMPK-mediated downregulation of HMGCR sensitizes pancreatic cancer cells to gemcitabine. Biomolecules 2019, 9, 620. [Google Scholar] [CrossRef] [Green Version]
- Otto, M.; Bucher, C.; Liu, W.T.; Müller, M.; Schmidt, T.; Kardell, M.; Driessen, M.N.; Rossaint, J.; Gross, E.R.; Wagner, N.M. 12(S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1. J. Clin. Investig. 2020, 130, 4999–5010. [Google Scholar] [CrossRef]
- Lau, Y.S.; Machha, A.; Achike, F.I.; Murugan, D.; Mustafa, M.R. The aporphine alkaloid boldine improves endothelial function in spontaneously hypertensive rats. Exp. Biol. Med. 2012, 237, 93–98. [Google Scholar] [CrossRef]
- Lau, Y.S.; Tian, X.Y.; Huang, Y.; Murugan, D.; Achike, F.I.; Mustafa, M.R. Boldine protects endothelial function in hyperglycemia-induced oxidative stress through an antioxidant mechanism. Biochem. Pharmacol. 2013, 85, 367–375. [Google Scholar] [CrossRef]
- Lau, Y.S.; Tian, X.Y.; Mustafa, M.R.; Murugan, D.; Liu, J.; Zhang, Y.; Lau, C.W.; Huang, Y. Boldine improves endothelial function in diabetic db/db mice through inhibition of angiotensin II-mediated BMP4-oxidative stress cascade. Br. J. Pharmacol. 2013, 170, 1190–1198. [Google Scholar] [CrossRef] [Green Version]
- Lau, Y.S.; Ling, W.C.; Murugan, D.; Mustafa, M.R. Boldine ameliorates vascular oxidative stress and endothelial dysfunction: Therapeutic implication for hypertension and diabetes. J. Cardiovasc. Pharmacol. 2015, 65, 522–531. [Google Scholar] [CrossRef] [Green Version]
- HarishKumar, R.; Selvaraj, C.I. Nuciferine from Nelumbo nucifera Gaertn. attenuates isoproterenol-induced myocardial infarction in Wistar rats. Biotechnol. Appl. Biochem 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Wang, X.; Cheang, W.S.; Yang, H.; Xiao, L.; Lai, B.; Zhang, M.; Ni, J.; Luo, Z.; Zhang, Z.; Huang, Y.; et al. Nuciferine relaxes rat mesenteric arteries through endothelium-dependent and -independent mechanisms. Br. J. Pharmacol. 2015, 172, 5609–5618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.M.; Kang, Y.F.; Chen, C.C.; Teng, C.M. Effects of dicentrine on haemodynamic, plasma lipid, lipoprotein level and vascular reactivity in hyperlipidaemic rats. Br. J. Pharmacol. 1993, 108, 1055–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yodkeeree, S.; Ooppachai, C.; Pompimon, W.; Limtrakul Dejkriengkraikul, P. O-methylbulbocapnine and dicentrine suppress LPS-induced inflammatory response by blocking NF-κB and AP-1 activation through inhibiting MAPKs and Akt signaling in RAW264.7 macrophages. Biol. Pharm. Bull. 2018, 41, 1219–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, C.J.; Murphy, K.E.; Fernandez, M.L. Impact of obesity and metabolic syndrome on immunity. Adv. Nutr. 2016, 7, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Wang, L.; Yan, K.; Zhu, H.; Pan, H.; Yang, H.; Liu, M.; Gong, F. Nuciferine inhibited the differentiation and lipid accumulation of 3T3-L1 preadipocytes by regulating the expression of lipogenic genes and adipokines. Front. Pharmacol. 2021, 12, 632236. [Google Scholar] [CrossRef]
- Liu, X.T.; Liu, T.T.; Xu, H.L.; Chen, Q.X.; Wang, Q. Inhibitory kinetics and bioactivities of nuciferine and methyl ganoderate on mucor miehei lipase and 3T3-L1 preadipocytes. Int. J. Biol. Macromol. 2020, 163, 1719–1728. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Mi, Y.S.; Zhang, B.M.; Gu, S.Y.; Liu, G.L.; Li, X.Y. PLGA nanoparticles for the oral delivery of nuciferine: Preparation, physicochemical characterization and in vitro/in vivo studies. Drug Deliv. 2017, 24, 443–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Q.; Hu, Z.M.; Zhang, F.F.; Cui, A.Y.; Chen, X.; Jiang, H.Y.; Gao, J.; Chen, X.Q.; Han, Y.M.; Liang, Q.N.; et al. Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1. Hepatology 2016, 64, 425–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, B.; Cook, C.; Santanam, N. The aporphine alkaloid boldine induces adiponectin expression and regulation in 3T3-L1 cells. J. Med. Food 2009, 12, 1074–1083. [Google Scholar] [CrossRef] [Green Version]
- Santanam, N.; Penumetcha, M.; Speisky, H.; Parthasarathy, S. A novel alkaloid antioxidant, Boldine and synthetic antioxidant, reduced form of RU486, inhibit the oxidation of LDL in-vitro and atherosclerosis in vivo in LDLR−/− mice. Atherosclerosis 2004, 173, 203–210. [Google Scholar] [PubMed]
- Wang, D.; Wu, Z.; Zhou, J.; Zhang, X. Rs9939609 polymorphism of the fat mass and obesity-associated (FTO) gene and metabolic syndrome susceptibility in the Chinese population: A meta-analysis. Endocrine 2020, 69, 278–285. [Google Scholar] [CrossRef]
- Kawajiri, T.; Osaki, Y.; Kishimoto, T. Association of gene polymorphism of the fat mass and obesity associated gene with metabolic syndrome: A retrospective cohort study in Japanese workers. Yonago Acta Med. 2012, 55, 29–40. [Google Scholar]
- Elekofehinti, O.O.; Lawal, A.O.; Ejelonu, O.C.; Molehin, O.R.; Famusiwa, C.D. Involvement of fat mass and obesity gene (FTO) in the anti-obesity action of Annona muricata Annonaceae: In silico and in vivo studies. J. Diabetes Metab. Disord. 2020, 19, 1–8. [Google Scholar] [CrossRef]
- Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol. 2015, 62, S47–S64. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Li, Y.; Cao, M.; Liao, J.; Liu, X.; Miao, J.; Fu, H.; Song, R.; Wen, W.; Zhang, Z.; et al. Untargeted metabolomic analysis of the effects and mechanism of nuciferine treatment on rats with nonalcoholic fatty liver disease. Front. Pharmacol. 2020, 11, 858. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Yang, X.; Li, X.; Feng, R.; Guan, C.; Wang, Y.; Li, Y.; Sun, C. Nuciferine prevents hepatic steatosis and injury induced by a high-fat diet in hamsters. PLoS ONE 2013, 8, e63770. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.D.; Zhang, J.G.; Wu, X.; Liu, Y.; Gu, S.Y.; Zhu, G.H.; Wang, Y.Z.; Liu, G.L.; Li, X.Y. Nuciferine downregulates Per-Arnt-Sim kinase expression during its alleviation of lipogenesis and inflammation on oleic acid-induced hepatic steatosis in HepG2 cells. Front. Pharmacol. 2015, 6, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Chen, Z.; Lin, Q.; Yang, Y.; Hang, Y.; Zhou, X.; Wu, C.; Xie, Z. Nuciferine reduced fat deposition by controlling triglyceride and cholesterol concentration in broiler chickens. Poult. Sci. 2020, 99, 7101–7108. [Google Scholar] [CrossRef] [PubMed]
- Zagorova, M.; Prasnicka, A.; Kadova, Z.; Dolezelova, E.; Kazdova, L.; Cermanova, J.; Rozkydalova, L.; Hroch, M.; Mokry, J.; Micuda, S. Boldine attenuates cholestasis associated with nonalcoholic fatty liver disease in hereditary hypertriglyceridemic rats fed by high-sucrose diet. Physiol. Res. 2015, 64, S467–S476. [Google Scholar] [CrossRef]
- Clifford, B.L.; Sedgeman, L.R.; Williams, K.J.; Morand, P.; Cheng, A.; Jarrett, K.E.; Chan, A.P.; Brearley-Sholto, M.C.; Wahlström, A.; Ashby, J.W.; et al. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab. 2021, 33, 1671–1684.e4. [Google Scholar]
- Cermanova, J.; Kadova, Z.; Zagorova, M.; Hroch, M.; Tomsik, P.; Nachtigal, P.; Kudlackova, Z.; Pavek, P.; Dubecka, M.; Ceckova, M.; et al. Boldine enhances bile production in rats via osmotic and farnesoid X receptor dependent mechanisms. Toxicol. Appl. Pharmacol. 2015, 285, 12–22. [Google Scholar] [CrossRef]
- Cermanova, J.; Prasnicka, A.; Dolezelova, E.; Rozkydalova, L.; Hroch, M.; Chládek, J.; Tomsik, P.; Kloeting, I.; Micuda, S. Pharmacokinetics of boldine in control and Mrp2-deficient rats. Physiol. Res. 2016, 65, S489–S497. [Google Scholar] [CrossRef]
- Wang, M.X.; Zhao, X.J.; Chen, T.Y.; Liu, Y.L.; Jiao, R.Q.; Zhang, J.H.; Ma, C.H.; Liu, J.H.; Pan, Y.; Kong, L.D. Nuciferine alleviates renal injury by inhibiting inflammatory responses in fructose-fed rats. J. Agric. Food Chem. 2016, 64, 7899–7910. [Google Scholar] [CrossRef]
- Sang, M.M.; Du, G.Y.; Hao, J.; Wang, L.L.; Liu, E.W.; Zhang, Y.; Wang, T.; Gao, X.M.; Han, L.F. Modeling and optimizing inhibitory activities of Nelumbinis folium extract on xanthine oxidase using response surface methodology. J. Pharm Biomed. Anal. 2017, 139, 37–43. [Google Scholar] [CrossRef]
- Li, D.; Liu, B.; Fan, Y.; Liu, M.; Han, B.; Meng, Y.; Xu, X.; Song, Z.; Liu, X.; Hao, Q.; et al. Nuciferineprotects against folic acid-induced acute kidney injury by inhibiting ferroptosis. Br. J. Pharmacol. 2021, 178, 1182–1199. [Google Scholar] [CrossRef]
- Wang, M.X.; Liu, Y.L.; Yang, Y.; Zhang, D.M.; Kong, L.D. Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Eur. J. Pharmacol. 2015, 747, 59–70. [Google Scholar] [CrossRef]
- Gómez, G.I.; Velarde, V. Boldine improves kidney damage in the goldblatt 2K1C model avoiding the increase in TGF-β. Int. J. Mol. Sci. 2018, 19, 1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barassi, A.; Corsi Romanelli, M.M.; Pezzilli, R.; Dozio, E.; Damele, C.A.L.; Vaccalluzzo, L.; Di Dario, M.; Goi, G.; Papini, N.; Massaccesi, L.; et al. Levels of uric acid in erectile dysfunction of different aetiology. Aging Male 2018, 21, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Alkan, E.; Ugan, R.A.; Basar, M.M.; Halici, Z.; Karakus, E.; Balbay, M.D.; Un, H. Role of endothelin receptors and relationship with nitric oxide synthase in impaired erectile response in diabetic rats. Andrologia 2017, 49, e12607. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, E.; Pastuszak, A.W.; Khera, M. Erectile dysfunction, metabolic syndrome, and cardiovascular risks: Facts and controversies. Transl. Androl. Urol. 2017, 6, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Redrow, G.P.; Thompson, C.M.; Wang, R. Treatment strategies for diabetic patients suffering from erectile dysfunction: An update. Expert Opin. Pharmacother. 2014, 15, 1827–1836. [Google Scholar] [CrossRef] [PubMed]
- Kara, E.; Kahraman, E.; Dayar, E.; Yetik Anacak, G.; Demir, O.; Gidener, S.; Atabey, N.; Durmus, N. The role of resistin on metabolic syndrome-induced erectile dysfunction and the possible therapeutic effect of Boldine. Andrology 2020, 8, 1728–1735. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Prieto, M.A.; González, R.E.; Renna, N.F.; Galmarini, C.R.; Miatello, R.M. Aqueous garlic extracts prevent oxidative stress and vascular remodeling in an experimental model of metabolic syndrome. J. Agric. Food Chem. 2010, 58, 6630–6635. [Google Scholar] [CrossRef] [PubMed]
- Arellano Buendía, A.S.; Tostado González, M.; Sánchez Reyes, O.; García Arroyo, F.E.; Argüello García, R.; Tapia, E.; Sánchez Lozada, L.G.; Osorio Alonso, H. Immunomodulatory effects of the nutraceutical garlic derivative allicin in the progression of diabetic nephropathy. Int. J. Mol. Sci. 2018, 19, 3107. [Google Scholar] [CrossRef] [Green Version]
- Izigov, N.; Farzam, N.; Savion, N. S-allylmercapto-N-acetylcysteine up-regulates cellular glutathione and protects vascular endothelial cells from oxidative stress. Free Radic. Biol. Med. 2011, 50, 1131–1139. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Long, Z.; Sun, Q.; Liu, Y.; Wang, L.; Zhang, X.; Hai, C. Effect of diosgenin on metabolic dysfunction: Role of ERβ in the regulation of PPARγ. Toxicol. Appl. Pharmacol. 2015, 289, 286–296. [Google Scholar] [CrossRef]
- Szabó, K.; Gesztelyi, R.; Lampé, N.; Kiss, R.; Remenyik, J.; Pesti-Asbóth, G.; Priksz, D.; Szilvássy, Z.; Juhász, B. Fenugreek (Trigonella foenum-Graecum) seed flour and diosgenin preserve endothelium-dependent arterial relaxation in a rat model of early-stage metabolic syndrome. Int. J. Mol. Sci. 2018, 19, 798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, T.; Cocci, A.; Cito, G.; Giammusso, B.; Zucchi, A.; Chiancone, F.; Carrino, M.; Mastroeni, F.; Comerci, F.; Franco, G.; et al. The role of diallyl thiosulfinate associated with nuciferine and diosgenin in the treatment of premature ejaculation: A pilot study. Arch. Ital. Urol. Androl. 2018, 90, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahchevanov, K.M.; Dzhambov, A.M.; Chompalov, K.A.; Massaldjieva, R.I.; Atanassova, P.A.; Mitkov, M.D. Contribution of components of metabolic syndrome to cognitive performance in middle-aged adults. Arch. Clin. Neuropsychol. 2021, 36, 498–506. [Google Scholar] [CrossRef]
- Więckowska-Gacek, A.; Mietelska-Porowska, A.; Wydrych, M.; Wojda, U. Western diet as a trigger of Alzheimer’s disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res. Rev. 2021, 70, 101397. [Google Scholar] [CrossRef] [PubMed]
- Toledo, J.P.; Fernández-Pérez, E.J.; Ferreira, I.L.; Marinho, D.; Riffo-Lepe, N.O.; Pineda-Cuevas, B.N.; Pinochet-Pino, L.F.; Burgos, C.F.; Rego, A.C.; Aguayo, L.G. Boldine attenuates synaptic failure and mitochondrial deregulation in cellular models of Alzheimer’s disease. Front. Neurosci. 2021, 15, 617821. [Google Scholar] [CrossRef]
- Dhingra, D.; Soni, K. Behavioral and biochemical evidences for nootropic activity of boldine in young and aged mice. Biomed. Pharmacother. 2018, 97, 895–904. [Google Scholar] [CrossRef]
- De Lima, N.M.; Ferreira, E.O.; Fernandes, M.Y.; Lima, F.A.; Neves, K.R.; do Carmo, M.R.; de Andrade, G.M. Neuroinflammatory response to experimental stroke is inhibited by boldine. Behav. Pharmacol. 2017, 28, 223–237. [Google Scholar] [CrossRef]
- Nakamura, N.; Ohyagi, Y.; Imamura, T.; Yanagihara, Y.T.; Iinuma, K.M.; Soejima, N.; Murai, H.; Yamasaki, R.; Kira, J.I. Apomorphine therapy for neuronal insulin resistance in a mouse model of Alzheimer’s Disease. J. Alzheimers Dis. 2017, 58, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Ohyagi, Y.; Miyoshi, K.; Nakamura, N. Therapeutic strategies for Alzheimer’s disease in the view of diabetes mellitus. Adv. Exp. Med. Biol. 2019, 1128, 227–248. [Google Scholar]
- Wu, L.; Chen, C.; Li, Y.; Guo, C.; Fan, Y.; Yu, D.; Zhang, T.; Wen, B.; Yan, Z.; Liu, A. UPLC-Q-TOF/MS-based serum metabolomics reveals the anti-ischemic stroke mechanism of nuciferine in MCAO rats. ACS Omega 2020, 5, 33433–33444. [Google Scholar] [CrossRef] [PubMed]
- Bayazeid, O.; Nemutlu, E.; Eylem, C.C.; İlhan, M.; Küpeli-Akkol, E.; Karahan, H.; Kelicen-Uğur, P.; Ersoz, T.; Yalçın, F.N. Neuroactivity of the naturally occurring aporphine alkaloid, roemerine. Nat. Prod. Res. 2020, 1–6, Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Shinjyo, N.; Parkinson, J.; Bell, J.; Katsuno, T.; Bligh, A. Berberine for prevention of dementia associated with diabetes and its comorbidities: A systematic review. J. Integr. Med. 2020, 18, 125–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avci, F.G.; Atas, B.; Aksoy, C.S.; Kurpejovic, E.; Gulsoy Toplan, G.; Gurer, C.; Guillerminet, M.; Orelle, C.; Jault, J.M.; Sariyar Akbulut, B. Repurposing bioactive aporphine alkaloids as efflux pump inhibitors. Fitoterapia 2019, 139, 104371. [Google Scholar] [CrossRef] [PubMed]
- Fahmi, R.M.; El Ebeary, M.E.S.; Abd Alrasheed, E.M.; Elkhatib, T.H.M. Metabolic syndrome components and disease disability in egyptian multiple sclerosis patients. Mult. Scler. Relat. Disord. 2020, 44, 102336. [Google Scholar] [CrossRef]
- Li, T.; Niu, J.; Yu, G.; Ezan, P.; Yi, C.; Wang, X.; Koulakoff, A.; Gao, X.; Chen, X.; Sáez, J.C.; et al. Connexin 43 deletion in astrocytes promotes CNS remyelination by modulating local inflammation. Glia 2020, 68, 1201–1212. [Google Scholar] [CrossRef]
- Lippert, K.; Kedenko, L.; Antonielli, L.; Kedenko, I.; Gemeier, C.; Leitner, M.; Kautzky-Willer, A.; Paulweber, B.; Hackl, E. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benef. Microbes 2017, 8, 545–556. [Google Scholar] [CrossRef]
- De Filippis, A.; Ullah, H.; Baldi, A.; Dacrema, M.; Esposito, C.; Garzarella, E.U.; Santarcangelo, C.; Tantipongpiradet, A.; Daglia, M. Gastrointestinal disorders and metabolic syndrome: Dysbiosis as a key link and common bioactive dietary components useful for their treatment. Int. J. Mol. Sci. 2020, 21, 4929. [Google Scholar] [CrossRef]
- Singh, V.; Chassaing, B.; Zhang, L.; San Yeoh, B.; Xiao, X.; Kumar, M.; Baker, M.T.; Cai, J.; Walker, R.; Borkowski, K.; et al. Microbiota-dependent hepatic lipogenesis mediated by stearoyl CoA desaturase 1 (SCD1) promotes metabolic syndrome in TLR5-deficient mice. Cell Metab. 2015, 22, 983–996. [Google Scholar]
- Hou, C.B.; Dong, Y.L.; Yin, X.W.; Liu, Y.; Sun, H.J.; Chen, Y.Y.; Dong, L. Overall intestinal permeability of multiple components in lotus leaves. Zhongguo Zhong Yao Za Zhi 2016, 41, 1183–1187. [Google Scholar]
- Yin, X.W.; Hou, C.B.; Chen, J.P.; Pan, M.; Li, X.L.; Wang, Z.Y.; Dong, L. Overall intestinal permeability of multiple components in lotus leaf by in situ single pass intestinal perfusion models. Zhongguo Zhong Yao Za Zhi 2017, 42, 1525–1531. [Google Scholar]
- Wang, Y.; Yao, W.; Li, B.; Qian, S.; Wei, B.; Gong, S.; Wang, J.; Liu, M.; Wei, M. Nuciferine modulates the gut microbiota and prevents obesity in high-fat diet-fed rats. Exp. Mol. Med. 2020, 52, 1959–1975. [Google Scholar] [CrossRef]
- Shi, Z.; Fang, Z.Y.; Gao, X.X.; Yu, H.; Zhu, Y.W.; Ouyang, H.L.; Song, Y.X.; Du, X.L.; Wang, Z.; Li, X.W.; et al. Nuciferine improves high-fat diet-induced obesity via reducing intestinal permeability by increasing autophagy and remodeling the gut microbiota. Food Funct. 2021, 12, 5850–5861. [Google Scholar] [CrossRef]
- Yu, Y.; Lu, J.; Sun, L.; Lyu, X.; Chang, X.Y.; Mi, X.; Hu, M.G.; Wu, C.; Chen, X. Akkermansia muciniphila: A potential novel mechanism of nuciferine to improve hyperlipidemia. Biomed. Pharmacother. 2021, 133, 111014. [Google Scholar] [CrossRef]
- Saiman, Y.; Shen, T.D.; Lund, P.J.; Gershuni, V.M.; Jang., C.; Patel, S.; Jung, S.; Furth, E.E.; Friedman, E.S.; Chau, L.; et al. Global microbiota-dependent histone acetylation patterns are irreversible and independent of short chain fatty acids. Hepatology 2021. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.M.; Wang, P.; Teka, T.; Zhang, Y.C.; Yang, W.Z.; Zhang, Y.; Wang, T.; Liu, L.X.; Han, L.F.; Liu, C.X. 1H NMR and UHPLC/Q-Orbitrap-MS-based metabolomics combined with 16S rRNA gut microbiota analysis revealed the potential regulation mechanism of nuciferine in hyperuricemia rats. J. Agric. Food Chem. 2020, 68, 14059–14070. [Google Scholar] [CrossRef]
- Xiong, W.T.; Liao, J.B.; Yang, Z.X.; Cui, H.T.; Zhang, Z.Y.; Wen, W.B.; Wang, H.W. Effect of nuciferine on gut microbiota and inflammatory response in obese model mice. Zhongguo Zhong Yao Za Zhi 2021, 46, 2104–2111. [Google Scholar] [PubMed]
- Chiao, C.W.; Lee, S.S.; Wu, C.C.; Su, M.J. Thaliporphine increases survival rate and attenuates multiple organ injury in LPS-induced endotoxaemia. Naunyn Schmiedebergs Arch. Pharmacol. 2005, 371, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.; Chen, W.P.; Kuo, Y.L.; Ho, Y.J.; Lee, S.S.; Su, M.J. Thaliporphine preserves cardiac function of endotoxemic rabbits by both directly and indirectly attenuating NFκB signaling pathway. PLoS ONE 2012, 7, e39174. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.D.; Fawzy, A.; Brigham, E.; McCormack, M.C.; Rosas, I.; Villareal, D.T.; Hanania, N.A. Association of triglyceride-glucose index and lung health: A population-based study. Chest 2021, 160, 1026–1034. [Google Scholar] [CrossRef]
- Kim, Y.J.; Womble, J.T.; Gunsch, C.K.; Ingram, J.L. The gut/lung microbiome axis in obesity, asthma, and bariatric surgery: A literature review. Obesity 2021, 29, 636–644. [Google Scholar] [CrossRef]
- Nie, X.; Wei, J.; Hao, Y.; Tao, J.; Li, Y.; Liu, M.; Xu, B.; Li, B. Consistent biomarkers and related pathogenesis underlying asthma revealed by systems biology approach. Int. J. Mol. Sci. 2019, 20, 4037. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yu, M.F.; Lei, J.; Peng, Y.B.; Zhao, P.; Xue, L.; Chen, W.W.; Ma, L.Q.; Liu, Q.H.; Shen, J.H. Nuciferine relaxes tracheal rings via the blockade of VDLCC and NSCC channels. Planta Med. 2018, 84, 83–90. [Google Scholar] [CrossRef]
- Walstab, J.; Wohlfarth, C.; Hovius, R.; Schmitteckert, S.; Röth, R.; Lasitschka, F.; Wink, M.; Bönisch, H.; Niesler, B. Natural compounds boldine and menthol are antagonists of human 5-HT3 receptors: Implications for treating gastrointestinal disorders. Neurogastroenterol. Motil. 2014, 26, 810–820. [Google Scholar] [CrossRef]
- Boeing, T.; Mariano, L.N.B.; Dos Santos, A.C.; Tolentino, B.; Vargas, A.C.; de Souza, P.; Nesello, L.A.N.; da Silva, L.M. Gastroprotective effect of the alkaloid boldine: Involvement of non-protein sulfhydryl groups, prostanoids and reduction on oxidative stress. Chem. Biol. Interact. 2020, 327, 109166. [Google Scholar] [CrossRef]
- Suwanprasit, W.; Lertpimonchai, A.; Thienpramuk, L.; Vathesatogkit, P.; Sritara, P.; Tamsailom, S. Metabolic syndrome and severe periodontitis were associated in Thai adults: A cross-sectional study. J. Periodontol. 2021. [Google Scholar] [CrossRef]
- Tegelberg, P.; Tervonen, T.; Knuuttila, M.; Jokelainen, J.; Keinänen-Kiukaanniemi, S.; Auvinen, J.; Ylöstalo, P. Long-term metabolic syndrome is associated with periodontal pockets and alveolar bone loss. J. Clin. Periodontol. 2019, 46, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Cafferata, E.A.; Castro-Saavedra, S.; Fuentes-Barros, G.; Melgar-Rodríguez, S.; Rivera, F.; Carvajal, P.; Hernández, M.; Cortés, B.I.; Cortez, C.; Cassels, B.K.; et al. Boldine inhibits the alveolar bone resorption during ligature-induced periodontitis by modulating the Th17/Treg imbalance. J. Periodontol. 2021, 92, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.K.; Chin, K.Y.; Suhaimi, F.H.; Ahmad, F.; Ima-Nirwana, S. The relationship between metabolic syndrome and osteoporosis: A review. Nutrients 2016, 8, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wung, C.H.; Chung, C.Y.; Wu, P.Y.; Huang, J.C.; Tsai, Y.C.; Chen, S.C.; Chiu, Y.W.; Chang, J.M. Associations between metabolic syndrome and obesity-related indices and bone mineral density T-Score in hemodialysis patients. J. Pers. Med. 2021, 11, 775. [Google Scholar] [CrossRef]
- Nóbrega da Silva, V.; Goldberg, T.B.L.; Silva, C.C.; Kurokawa, C.S.; Fiorelli, L.N.M.; Rizzo, A.D.C.B.; Corrente, J.E. Impact of metabolic syndrome and its components on bone remodeling in adolescents. PLoS ONE 2021, 16, e0253892. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Lv, Z.T.; Cheng, P.; Zhu, W.T.; Liang, S.; Yang, Q.; Parkman, V.A.; Zhou, C.H.; Jing, X.Z.; Liu, H.; et al. Boldine ameliorates estrogen deficiency-induced bone loss via inhibiting bone resorption. Front. Pharmacol. 2018, 9, 1046. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, S.; Santos-Faria, D.; Leite Silva, J.; Ramos Rodrigues, J.; Sousa Neves, J.; Peixoto, D.; Tavares-Costa, J.; Alcino, S.; Afonso, C.; Teixeira, F. Obesity, metabolic syndrome and other comorbidities in rheumatoid arthritis and psoriatic arthritis: Influence on disease activity and quality of life. Acta Reumatol. Port. 2019, 44, 322–324. [Google Scholar] [PubMed]
- Zhao, H.; Xu, H.; Qiao, S.; Lu, C.; Wang, G.; Liu, M.; Guo, B.; Tan, Y.; Ju, D.; Xiao, C. Boldine isolated from Litsea cubeba inhibits bone resorption by suppressing the osteoclast differentiation in collagen-induced arthritis. Int. Immunopharmacol. 2017, 51, 114–123. [Google Scholar] [CrossRef]
- Song, C.; Cao, J.; Lei, Y.; Chi, H.; Kong, P.; Chen, G.; Yu, T.; Li, J.; Kumar Prajapati, R.; Xia, J.; et al. Nuciferine prevents bone loss by disrupting multinucleated osteoclast formation and promoting type H vessel formation. FASEB J. 2020, 34, 4798–4811. [Google Scholar] [CrossRef] [Green Version]
Compounds | Model | Function and Possible Molecular Mechanisms | Ref. |
---|---|---|---|
Prevention of insulin resistance and type 2 diabetes | |||
Thaliporphine | In situ rat intestinal perfusion. | Decrease in intestinal glucose absorption. | [7] |
Thaliporphine | Diabetic rats induced by streptozocinor nicotinamide/streptozotocin. | Reduction in plasma glucose level, stimulation of insulin release, increase in skeletal muscle glycogen synthesis. | [8] |
Nuciferine | Isolated islets and insulin secreting beta cell derived line cells. | Stimulation of insulin secretion, closing KATP channel. | [11] |
Nuciferine | High-fat diet combined with streptozocin-induced diabetic mice. | Restoration of glucose tolerance impairment and insulin resistance. | [12] |
Nuciferine | Streptozotocin-induced diabetic rats. | Decrease in serum blood glucose level. | [13] |
Magnoflorine | Streptozotocin-induced diabetic rats. | Decrease in fasting blood glucose level, prevention of skeletal muscle atrophy, increase in SOD and GSH-Px activity, decrease in β-glucuronidase activity, prevention of catalase activity alteration, regulation of Akt/mTOR/FoxO signaling, down-regulation of ubiquitin-proteasomal E3-ligases, and autophagy. | [14] |
Boldine | Streptozotocin-induced diabetic rats. | Restoration of GSH-Px activity change, inhibition of oxidative tissue damage and antioxidant enzyme activity alteration in liver and pancreas, attenuation of MDA, carbonyl formation and thiol oxidation in pancreas homogenates. | [16] |
Boldine | Streptozocin-induced diabetic rats | Reduction in plasma glucose level | [8] |
Nuciferine Pronuciferine | Insulin resistant 3T3-L1 adipocytes. | Increase in glucose uptake, up-regulation of GLUT-4, triggering the phosphorylation of activation of AMPK. | [10] |
Anonaine Isolaureline Xylopine | Molecular docking. | Nucleus FOXO1 protein inactivation. Binding ability towards 33% amino acid residues (hydrogen bond type). | [15] |
Restoration of endothelial dysfunction, hypertension, cardiovascular disease | |||
Boldine | Spontaneously hypertensive rats. | Endothelial protection of hypertension and diabetes mellitus, improvement of endothelial function, decrease in aortic superoxide and peroxynitrite production, down-regulation of p47(phox). | [22] |
Boldine | Streptozotocin-induced diabetic rats. | Reduction in blood pressure. | [17] |
Boldine | Streptozotocin-induced diabetic rats. | Attenuation of endothelial dysfunction andROS overproduction, inhibition of oxidative stress, increase in NO bioavailability, reduction in NOX2 and p47(phox). | [23] |
Boldine | Non-diabetic mice. | Restoration of high glucose or angiotensin II-induced impairment of relaxation in aortas. | [24] |
Boldine | db/db mice. | Reduction in ROS overproduction and increase in eNOS phosphorylation in aortas, suppression of BMP4, nitrotyrosine and AT1 in aortas. | [24] |
Boldine | Spontaneously hypertensive rats, db/db mice and streptozotocin-induced diabetic rats. | Restoration of acetylcholine-induced endothelium-dependent relaxation in isolated thoracic aortas. | [25] |
Nuciferine | Isoproterenol-stimulated rats. | Increase in endogenous antioxidant content and decrease in lipid peroxidation | [26] |
Nuciferine | Rats or vascular smooth muscle cells. | Vasorelaxant effect in rings of main mesenteric arteriesphosphorylation of eNOS at Ser1177 and increase in cytosolic NO level, suppression of Ca2+ influx | [27] |
Nuciferine | Isoproterenol-induced rats. | Prevention of myocardial infarction, decrease in heart weight, cardiac markers lactate dehydrogenase, and CK-BM levels. | [26] |
Dicentrine | Lipopolysaccharide-exposed RAW264.7 Macrophages. | Anti-inflammation. | [29] |
Attenuation of hyperlipidemia and obesity | |||
Nuciferine | 3T3-L1 preadipocytes. | Inhibition of proliferation and differentiation of 3T3-L1 preadipocytes. | [31] |
Nuciferine | 3T3-L1 preadipocytes molecular docking. | A mixed-type inhibitor of lipase located in an α-helix and a β-sheet. | [32] |
Nuciferine | Fully differentiated adipocytes | Promotion of FGF21 and ZAG expression. | [31] |
Nuciferine Pronuciferine | Insulin resistant 3T3-L1 adipocytes. | Suppression of proliferation of 3T3-L1 preadipocytes, amelioration of lipid metabolism. | [10] |
Boldine | 3T3-L1 cells. | Modulation of adiponectin expression and its regulators. | [35] |
Boldine | In vitro and atherosclerosis in vivo in LDLR(-/-) mice. | Decrease in ex-vivo oxidation of LDL, inhibition of atherosclerosis. | [36] |
Anonaine Isolaureline | High-fat diet-induced obese rats. | Down-regulation of FTO. | [39] |
Amelioration of NAFLD | |||
Nuciferine | High-fat diet-fed rats. | Alleviation of hepatic steatosis. | [41] |
Nuciferine | High-fat diet-induced dyslipidemia hamsters | Prevention of hepatic steatosis, adipose tissue weight, dyslipidemia, alleviation of mild necroinflammation, restoration of serum markers of metabolic syndrome. | [42] |
Nuciferine | Oleic acid-exposed HepG2 cells. | Inhibition of TG accumulation, decrease in FFAs, increase in total antioxidant capacity and SOD, reduction in MDA, TNF-α, IL-6, and IL-8, increase in IL-10. | [43] |
Nuciferine | Broiler chickens. | Reduction in fat deposition, plasma concentration of triiodothyronine, free triiodothyronine, thyroxine, and free thyroxine, and increase in plasma glucagon concentration. | [44] |
Nuciferine | Streptozocin-induced diabetic mice combined with high-fat diet. | Reduction in hepatic TC, TG, and LDL levels, lipid droplets. | [12] |
Nuciferine | Streptozotocin-induced diabetic rats. | Decrease in liver TC, TG, and FFAs levels. | [13] |
Boldine | High-sucrose diet-induced hereditary hypertriglyceridemic rats. | Increase in biliary glutathione secretion and attenuation of cholestasis associated with non-alcoholic fatty liver disease. | [45] |
Alleviation of hyperuricemia and kidney damage | |||
Roemerine | UHPLC-Q-TOF-MS and 3D docking analysis. | Inhibition of XOD activity. | [50] |
Nuciferine | Mic with folic acid-induced acute kidney injury. | Mitigation of pathological alterations, amelioration of inflammatory cell infiltration and kidney dysfunction. | [51] |
Nuciferine | HK-2 and HEK293T cells. | Inhibition of RSL3-induced ferroptosis | [51] |
Nuciferine | Potassium oxonate-induced hyperuricemic mice. | Decrease in serum urate levels, improvement of kidney function, attenuation of expression alteration of renal ion transporters. | [52] |
Boldine | 2K1C hypertensive rats. | Reduction in ACE-1 and TGF-β levels, alleviation of kidney damage. | [53] |
Boldine | Streptozotocin-induced diabetic rats. | Prevention of the increased levels of glycemia, blood pressure, renal thiobarbituric acid reactive substances, and urinary protein/creatinine ratio. | [17] |
Boldine | High glucose and proinflammatory cytokines- induced MES-13 cells. | Reduction in oxidative stress, improvement of gap junctional communication, and cell permeability. | [17] |
Recovery of erectile function | |||
Boldine | Metabolic syndrome rats. | Enhancement of intracavernous pressure/mean arterial pressure value, improvement of erectile function. | [58] |
Nuciferine with diallyl thiosulfinate and diosgenin | Patients with premature ejaculation. | Improvement of the control of ejaculation, and erectile dysfunction. | [64] |
Improvement of brain function | |||
Boldine | Primary hippocampal neurons and HT22 hippocampal-derived cell line treated with AβO. | Interaction with Aβ, prevention of oxidative stress and mitochondrial dysfunction, neuroprotection. | [67] |
Boldine | Swiss albino male young and aged mice. | Improvement of learning and memory. | [68] |
Boldine | Permanent middle cerebral artery occlusion mice. | Decrease in the infarct area, improvement of neurological scores, increase in cell viability. | [69] |
Nuciferine | Rats with middle cerebral artery occlusion. | Improvement of neurological deficit score and amelioration of cerebral edema and infarction. | [72] |
Potent restoration of intestinal microbiota-mediated metabolic syndrome | |||
Nuciferine | High-fat diet-fed rats with NAFLD. | Prevention of weight gain, reduction in fat accumulation and amelioration of lipid metabolic disorder, change of the diversity and composition of gut microbiota, promotion of SCFA production, and enhancement of intestinal integrity. | [83] |
Nuciferine | High-fat diet obese mice. | Alleviation of dysbacteriosis, decrease in IL-6, IL-1β, and TNF-α levels in adipose tissue or serum. | [88] |
Nuciferine | Lipopolysaccharide-exposed Caco-2 and HT-29 cells. | Promotion of the formation of autophagosomes and autophagolysosomes, alleviation of intestinal permeability reduction, improvement of autophagy with intestinal permeability. | [84] |
Nuciferine | Rats with potassium oxanate-induced hyperuricemia. | Restrain of the pathological process of hyperuricemia. | [87] |
Thaliporphine | Rats with lipopolysaccharide-induced endotoxaemia. | Reduction in serum superoxide anion and TNF-α levels, increase in late-phase decrease in blood glucose, attenuation ofendotoxaemia-induced multiple organ injury in the liver, kidney and heart. | [89] |
Thaliporphine | Lipopolysaccharide-induced endotoxemic rabbits. | Recover of the impairment of left ventricular systolic function. | [90] |
Possible effect on other disorders | |||
Boldine | Asthmatic patients. | Potential drug for asthma treatment. | [93] |
Boldine | Patients with functional gastrointestinal disorders. | Inhibition of 5-HT-induced activation of 5-HT3 receptor, alleviation of functional gastrointestinal disorders. | [95] |
Boldine | Ethanol/HCl or indomethacin-induced mice. | Protection of against gastric mucosa damage, reduction in oxidative stress, and inflammatory mediators. | [96] |
Boldine | Mice with ligature-induced periodontitis. | Inhibition of the alveolar bone resorption and modulation of the Th17/Treg imbalance. | [99] |
Boldine | Estrogen deficiency-induced osteoporosis mice. RANKL-induced osteoclast formation. | Prevention of osteoporosis by inhibiting bone resorption. Regulation of AKT signaling. | [103] |
Boldine | Rats with collagen-induced arthritis. | Reduction in ankle swelling, alleviation of pathological damage, prevention of bone destruction, inhibition of RANK/RANKL signaling. | [105] |
Nuciferine | Ovariectomized mice. | Preservation of Trap+ preosteoclasts, decrease in multinucleated osteoclast formation, promotion of type H vessel formation, suppression of MAPK and NF-κB signaling, inhibition of osteoclastogenesis and prevention of bone loss. | [106] |
Nuciferine | High K+-contracted mice. | Induction of relaxation in contracted tracheal rings. | [94] |
Nuciferine | Acetylcholine-stimulated mice. | Inhibition of tracheal rings. | [94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.-X.; Zhu, N.; Zhou, F.; Lin, D.-X. Natural Aporphine Alkaloids with Potential to Impact Metabolic Syndrome. Molecules 2021, 26, 6117. https://doi.org/10.3390/molecules26206117
Wang F-X, Zhu N, Zhou F, Lin D-X. Natural Aporphine Alkaloids with Potential to Impact Metabolic Syndrome. Molecules. 2021; 26(20):6117. https://doi.org/10.3390/molecules26206117
Chicago/Turabian StyleWang, Fei-Xuan, Nan Zhu, Fan Zhou, and Dong-Xiang Lin. 2021. "Natural Aporphine Alkaloids with Potential to Impact Metabolic Syndrome" Molecules 26, no. 20: 6117. https://doi.org/10.3390/molecules26206117
APA StyleWang, F. -X., Zhu, N., Zhou, F., & Lin, D. -X. (2021). Natural Aporphine Alkaloids with Potential to Impact Metabolic Syndrome. Molecules, 26(20), 6117. https://doi.org/10.3390/molecules26206117