An Overview of Linear Dielectric Polymers and Their Nanocomposites for Energy Storage
Abstract
:1. Introduction: Basic Knowledge of Dielectric Capacitors
2. Classification of Dielectric Materials
2.1. Four Typical Dielectric Materials
2.2. Linear Dielectric Polymers
2.2.1. BOPP
2.2.2. Polyimide (PI)
2.2.3. PEI
2.2.4. Other Linear Dielectric Polymers
2.3. Linear Dielectric Polymer Blends
2.4. Ferroelectric/Linear Dielectric Polymer Blends
3. Linear Polymer Nanocomposites
3.1. The 0D Nanoparticle/Linear Polymer Nanocomposites
3.1.1. Nanoparticles with High Permittivity
3.1.2. Surface-Modified High Permittivity Nanoparticles
3.1.3. Wide Bandgap Nanoparticles
3.2. The 1D Nanofiber/Linear Polymer Nanocomposites
3.3. The 2D Nanoplate/Linear Polymer Nanocomposites
4. Conclusions and Future Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Hao, X.H. A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 2013, 3, 1330001. [Google Scholar] [CrossRef]
- Palneedi, H.; Peddigari, M.; Hwang, G.T.; Jeong, D.Y.; Ryu, J. High-performance dielectric ceramic films for energy storage capacitors: Progress and outlook. Adv. Funct. Mater. 2018, 28, 1803665. [Google Scholar] [CrossRef]
- Pan, H.; Li, F.; Liu, Y.; Zhang, Q.H.; Wang, M.; Lan, S.; Zheng, Y.P.; Ma, J.; Gu, L.; Shen, Y.; et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019, 365, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Song, Y.F.; Xia, Y.Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.S. The Li-Ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.X.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Safari, A. Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev. 2012, 16, 981–989. [Google Scholar] [CrossRef]
- Sharaf, O.Z.; Orhan, M.F. An overview of fuel cell technology: Fundamentals and applications. Renew. Sustain. Energy Rev. 2014, 32, 810–853. [Google Scholar] [CrossRef]
- Pan, H.; Ma, J.; Ma, J.; Zhang, Q.H.; Liu, X.Z.; Guan, B.; Gu, L.; Zhang, X.; Zhang, Y.J.; Li, L.L.; et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 2018, 9, 1813. [Google Scholar] [CrossRef] [Green Version]
- Ali, F.Z.; Liu, X.H.; Zhou, D.Y.; Yang, X.R.; Xu, J.; Schenk, T.; Müller, J.; Schroeder, U.; Cao, F.; Dong, X.L. Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage. J. Appl. Phys. 2017, 122, 144105. [Google Scholar] [CrossRef]
- Ramesh, S.; Shutzberg, B.A.; Huang, C.; Jie, G.; Giannelis, E.P. Dielectric nanocomposites for integral thin film capacitors: Materials design, fabrication and integration issues. IEEE Trans. Adv. Packag. 2003, 26, 17–24. [Google Scholar] [CrossRef]
- Li, Q.; Han, K.; Gadinski, M.R.; Zhang, G.; Wang, Q. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 2014, 26, 6244–6249. [Google Scholar] [CrossRef]
- Li, J.L.; Shen, Z.H.; Chen, X.H.; Yang, S.; Zhou, W.L.; Wang, M.W.; Wang, L.H.; Kou, Q.W.; Liu, Y.C.; Li, Q.; et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat. Mater. 2020, 19, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Shi, Z.C.; Liang, L.; Wei, S.; Wang, H.L.; Dastan, D.; Sun, K.; Fan, R.H. Layer-structured BaTiO3/P(VDF-HFP) composites with concurrently improved dielectric permittivity and breakdown strength toward capacitive energy-storage applications. J. Mater. Chem. C 2020, 8, 10257–10265. [Google Scholar] [CrossRef]
- Kotz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483–2498. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Zhang, S.H.; Zhang, Q.M. Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 2015, 45, 433–458. [Google Scholar] [CrossRef]
- Yao, Z.; Song, Z.; Hao, H.; Yu, Z.; Cao, M.; Zhang, S.; Lanagan, M.T.; Liu, H. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 2017, 29, 1601727. [Google Scholar] [CrossRef]
- Fredin, L.A.; Li, Z.; Ratner, M.A.; Lanagan, M.T.; Marks, T.J. Enhanced energy storage and suppressed dielectric loss in oxide core-shell-polyolefin nanocomposites by moderating internal surface area and increasing shell thickness. Adv. Mater. 2012, 24, 5946–5953. [Google Scholar] [CrossRef]
- Fletcher, N.H.; Hilton, A.D.; Ricketts, B.W. Optimization of energy storage density in ceramic capacitors. J. Phys. D Appl. Phys. 1996, 29, 253–258. [Google Scholar] [CrossRef]
- Huang, X.Y.; Sun, B.; Zhu, Y.K.; Li, S.T.; Jiang, P.K. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater. Sci. 2019, 100, 187–225. [Google Scholar] [CrossRef]
- Kwon, S.; Hackenberger, W.; Alberta, E.; Furman, E.; Lanagan, M. Nonlinear dielectric ceramics and their applications to capacitors and tunable dielectrics. IEEE Electr. Insul. Mag. 2011, 27, 43–55. [Google Scholar] [CrossRef]
- Jiang, Y.D.; Zhou, M.J.; Shen, Z.H.; Zhang, X.; Pan, H.; Lin, Y.H. Ferroelectric polymers and their nanocomposites for dielectric energy storage applications. APL Mater. 2021, 9, 020905. [Google Scholar] [CrossRef]
- Zhang, H.B.; Marwat, M.A.; Xie, B.; Ashtar, M.; Liu, K.; Zhu, Y.W.; Zhang, L.; Fan, P.Y.; Samart, C.; Ye, Z.G. Polymer matrix nanocomposites with 1D Ceramic nanofillers for energy storage capacitor applications. ACS Appl. Mater. Interfaces 2020, 12, 1–37. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.J.; Yang, T.N.; Xu, Z.; Zhang, N.; Liu, G.; Wang, J.J.; Wang, J.; Cheng, Z.X.; Ye, Z.G.; et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 2016, 7, 13807. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liu, Q.; Gao, J.; Zhang, S.J.; Li, J.F. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater. 2017, 29, 1071824. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Li, F.; Xu, Z.; Zhang, S.J. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 2018, 30, 1802155. [Google Scholar] [CrossRef]
- Han, C.C.; Zhang, X.H.; Chen, D.; Ma, Y.H.; Zhao, C.W.; Yang, W.T. Enhanced dielectric properties of sandwich—Structured biaxially oriented polypropylene by grafting hyper—Branched aromatic polyamide as surface layers. J. Appl. Polym. Sci. 2020, 137, 48990. [Google Scholar] [CrossRef]
- Choudhury, A. Dielectric and piezoelectric properties of polyetherimide/BaTiO3 nanocomposites. Mater. Chem. Phys. 2010, 121, 280–285. [Google Scholar] [CrossRef]
- Wu, S.Y.; Huang, Y.L.; Ma, C.-C.M.; Yuen, S.M.; Teng, C.C.; Yang, S.Y. Mechanical, thermal and electrical properties of aluminum nitride/polyetherimide composites. Compos. Part A 2011, 42, 1573–1583. [Google Scholar] [CrossRef]
- Hao, J.G.; Li, W.; Zhai, J.W.; Chen, H. Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R Rep. 2019, 135, 1–57. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, L. Polymer nanocomposites for electrical energy storage. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1421–1429. [Google Scholar] [CrossRef]
- Chu, B.J.; Zhou, X.; Ren, K.L.; Neese, B.; Lin, M.R.; Wang, Q.; Bauer, F.; Zhang, Q.M. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006, 313, 334–336. [Google Scholar] [CrossRef]
- Dang, Z.M.; Yuan, J.K.; Zha, J.W.; Zhou, T.; Li, S.T.; Hu, G.H. Fundamentals, processes and applications of high-permittivity polymer matrix composites. Prog. Mater. Sci. 2012, 57, 660–723. [Google Scholar] [CrossRef]
- Tan, D.Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv. Funct. Mater. 2020, 30, 1808567. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, X.; Zhang, X.; Xie, Y.C.; Lu, J.Y.; Zhang, Z.C. How the biaxially stretching mode influence dielectric and energy storage properties of polypropylene films. J. Appl. Polym. Sci. 2020, 138, 50029. [Google Scholar] [CrossRef]
- Rabuffi, M.; Picci, G. Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans. Plasma Sci. 2002, 30, 1939–1942. [Google Scholar] [CrossRef]
- Li, Q.; Yao, F.Z.; Liu, Y.; Zhang, G.Z.; Wang, H.; Wang, Q. High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 2018, 48, 219–243. [Google Scholar] [CrossRef]
- Vanherck, K.; Koeckelberghs, G.; Vankelecom, I.F.J. Crosslinking polyimides for membrane applications: A review. Prog. Polym. Sci. 2013, 38, 874–896. [Google Scholar] [CrossRef]
- Li, Q.; Chen, L.; Gadinski, M.R.; Zhang, S.; Zhang, G.; Li, U.; Iagodkine, E.; Haque, A.; Chen, L.Q.; Jackson, N.; et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576–579. [Google Scholar] [CrossRef]
- Azizi, A.; Gadinski, M.R.; Li, Q.; Al Saud, M.A.; Wang, J.; Wang, Y.; Wang, B.; Liu, F.; Chen, L.Q.; Alem, N.; et al. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 2017, 29, 1701864. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.C.; Bi, Y.J.; Xie, J.H.; Hu, J.; Sun, S.L.; Song, S.X. Enhanced dielectric, energy storage and tensile properties of BaTiO3–NH2/low-density polyethylene nanocomposites with POE-GMA as interfacial modifier. Polym. Test. 2021, 95, 107094. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Thakur, Y.; Lu, B.; Zhang, Q.Y.; Runt, J.; Zhang, Q.M. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 2020, 6, eaax6622. [Google Scholar] [CrossRef] [Green Version]
- Mittal, A.; Jain, V.; Mittal, J. Temperature dependence of dielectric constant on pure polymethyl methacrylate. Asian J. Chem. 2001, 13, 1216–1218. [Google Scholar]
- Liu, G.; Zhang, T.D.; Feng, Y.; Zhang, Y.Q.; Zhang, C.H.; Zhang, Y.; Wang, X.B.; Chi, Q.G.; Chen, Q.G.; Lei, Q.Q. Sandwich-structured polymers with electrospun boron nitrides layers as high-temperature energy storage dielectrics. Chem. Eng. J. 2020, 389, 124443. [Google Scholar] [CrossRef]
- Marwat, M.A.; Xie, B.; Zhu, Y.W.; Fan, P.Y.; Ma, W.G.; Liu, H.M.; Ashtar, M.; Xiao, J.Z.; Salamon, D.; Samart, C.; et al. Largely enhanced discharge energy density in linear polymer nanocomposites by designing a sandwich structure. Compos. Part A 2019, 121, 115–122. [Google Scholar] [CrossRef]
- Chen, C.; Xing, J.W.; Cui, Y.; Zhang, C.H.; Feng, Y.; Zhang, Y.Q.; Zhang, T.D.; Chi, Q.G.; Wang, X.; Lei, Q.Q. Designing of ferroelectric/linear dielectric bilayer films: An effective way to improve the energy storage performances of polymer-based capacitors. J. Phys. Chem. C 2020, 124, 5920–5927. [Google Scholar] [CrossRef]
- Li, W.P.; Jiang, L.; Zhang, X.; Shen, Y.; Nan, C.W. High-energy-density dielectric films based on polyvinylidene fluoride and aromatic polythiourea for capacitors. J. Mater. Chem. A 2014, 2, 15803–15807. [Google Scholar] [CrossRef]
- Wang, J.; Xie, Y.C.; Liu, J.J.; Zhang, Z.C.; Zhuang, Q.; Kong, J. Improved energy storage performance of linear dielectric Polymer nanodielectrics with polydopamine coated BN Nanosheets. Polymers 2018, 10, 1349. [Google Scholar] [CrossRef] [Green Version]
- Artbauer, J. Electric strength of polymers. J. Phys. Chem. D 1996, 29, 446–456. [Google Scholar] [CrossRef]
- White, R.P.; Lipson, J.E.G. Polymer free volume and its connection to the glass transition. Macromolecules 2016, 49, 3987–4007. [Google Scholar] [CrossRef]
- Yong, W.F.; Chung, T.S. Mechanically strong and flexible hydrolyzed polymers of intrinsic microporosity (PIM-1) membranes. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 344–354. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Chen, X.; Zhang, B.; Zhang, T.; Lu, W.C.; Chen, Z.; Liu, Z.Y.; Kim, S.H.; Donovan, B.; Warzoha, R.J.; et al. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends. Matter 2021, 4, 1–12. [Google Scholar] [CrossRef]
- Halasa, A.F.; Wathen, G.D.; Hsu, W.L.; Matrana, B.A.; Massie, J.M. Relationship between interchain spacing of amorphous polymers and blend miscibility as determined by wide-angle X-ray-scattering. J. Appl. Polym. Sci. 1991, 43, 183–190. [Google Scholar] [CrossRef]
- Xu, J.; Wang, S.H.; Wang, G.-J.N.; Zhu, C.X.; Luo, S.C.; Jin, L.H.; Gu, X.D.; Chen, S.C.; Feig, V.R.; To, J.W.F.; et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017, 355, 59. [Google Scholar] [CrossRef]
- Xu, Y.F.; Wang, X.X.; Zhou, J.W.; Song, B.; Jiang, Z.; Lee, E.M.Y.; Huberman, S.; Gleason, K.K.; Chen, G. Molecular engineered conjugated polymer with high thermal conductivity. Sci. Adv. 2018, 4, eaar3031. [Google Scholar] [CrossRef] [Green Version]
- Shanker, A.; Li, C.; Kim, G.H.; Gidley, D.; Pipe, K.P.; Kim, J. High thermal conductivity in electrostatically engineered amorphous polymers. Sci. Adv. 2017, 3, e1700342. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.X.; Lin, M.R.; Wu, S.; Thakur, Y.; Zhou, Y.; Jeong, D.Y.; Shen, Q.D.; Zhang, Q.M. Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors. Appl. Phys. Lett. 2015, 106, 202902. [Google Scholar] [CrossRef]
- Thakur, Y.; Dong, R.; Lin, M.R.; Wu, S.; Cheng, Z.X.; Hou, Y.; Bernholc, J.; Zhang, Q.M. Optimizing nanostructure to achieve high dielectric response with low loss in strongly dipolar polymers. Nano Energy 2015, 16, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Tong, H.; Fan, T.; Xu, J. All—Organic polymer blend dielectrics of poly (arylene ether urea) and polyimide: Toward high energy density and high temperature applications. J. Polym. Sci. 2021, 59, 1414–1423. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, Y.; Zhang, Q.; Gu, L.; Hu, Y.; Du, J.; Lin, Y.; Nan, C.W. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 2015, 27, 819–824. [Google Scholar] [CrossRef]
- Mao, X.; Guo, W.F.; Li, C.Z.; Yang, J.; Du, L.R.; Hu, W.C.; Tang, X.Z. Low-temperature synthesis of polyimide/poly(vinylidene fluoride) composites with excellent dielectric property. Mater. Lett. 2017, 193, 213–215. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Liu, Q.X.; Chen, F.J.; Zhao, Y.T.; Yang, W.Y.; He, X.; Mao, X.L.; Yang, Y.J.; Xu, J.H. Enhanced breakdown strength and energy storage density in polyurea all-organic composite films. Mater. Res. Express 2019, 6, 115325. [Google Scholar] [CrossRef]
- Mansour, D.-E.A.; Abdel-Gawad, N.M.K.; El Dein, A.Z.; Ahmed, H.M.; Darwish, M.M.F.; Lehtonen, M. Recent advances in polymer nanocomposites based on polyethylene and polyvinylchloride for power cables. Materials 2021, 14, 66. [Google Scholar] [CrossRef]
- Prateek, S.; Thakur, V.K.; Gupta, R.K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects. Chem. Rev. 2016, 116, 4260–4317. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.W.; Dong, L.J.; Liu, H.X.; Chen, W.; Shen, Y.; Nan, C.W. Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Adv. Mater. Interfaces 2018, 5, 1800096. [Google Scholar] [CrossRef]
- Ai, D.; Li, H.; Zhou, Y.; Ren, L.K.; Han, Z.B.; Yao, B.; Zhou, W.; Zhao, L.; Xu, J.M.; Wang, Q. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Adv. Energy Mater. 2020, 10, 1903881. [Google Scholar] [CrossRef]
- Jiang, B.; Iocozzia, J.; Zhao, L.; Zhang, H.F.; Harn, Y.W.; Chen, Y.H.; Lin, Z.Q. Barium titanate at the nanoscale: Controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev. 2019, 48, 1194–1228. [Google Scholar] [CrossRef]
- Stamate, M.D. On the dielectric properties of dc magnetron TiO2 thin films. Appl. Surf. Sci. 2003, 218, 317–322. [Google Scholar] [CrossRef]
- Qi, P.; Zhai, J.W.; Yao, X. Microwave dielectric properties of the (BaxSr1-x)TiO3 thin films on alumina substrate. Ceram. Int. 2012, 38, 197–200. [Google Scholar] [CrossRef]
- Sun, W.D.; Lu, X.J.; Jiang, J.Y.; Zhang, X.; Hu, P.H.; Li, M.; Lin, Y.H.; Nan, C.W.; Shen, Y. Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. J. Appl. Phys. 2017, 121, 244101. [Google Scholar] [CrossRef]
- Niu, Y.J.; Wang, H. Dielectric nanomaterials for power energy storage: Surface modification and characterization. ACS Appl. Nano Mater. 2019, 2, 627–642. [Google Scholar] [CrossRef]
- Dang, Z.M.; Wang, H.Y.; Xu, H.P. Influence of silane coupling agent on morphology and dielectric property in BaTiO3/polyvinylidene fluoride composites. Appl. Phys. Lett. 2006, 89, 112902. [Google Scholar] [CrossRef]
- Zhou, T.; Zha, J.W.; Cui, R.Y.; Fan, B.H.; Yuan, J.K.; Dang, Z.M. Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 2184–2188. [Google Scholar] [CrossRef]
- Yu, K.; Niu, Y.J.; Zhou, Y.C.; Bai, Y.Y.; Wang, H.; Randall, C. Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density. J. Am. Ceram. Soc. 2013, 96, 2519–2524. [Google Scholar] [CrossRef]
- Fan, M.Z.; Hu, P.H.; Dan, Z.K.; Jiang, J.Y.; Sun, B.Z.; Shen, Y. Significantly increased energy density and discharge efficiency at high temperature in polyetherimide nanocomposites by a small amount of Al2O3 nanoparticles. J. Mater. Chem. A 2020, 8, 24536–24542. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F.; Dou, L.; Cheng, X.; Si, Y.; Yu, J.; Ding, B. Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 degrees C. ACS Nano 2020, 14, 15616–15625. [Google Scholar] [CrossRef]
- Hu, P.H.; Sun, W.D.; Fan, M.Z.; Qian, J.F.; Jiang, J.Y.; Dan, Z.K.; Lin, Y.H.; Nan, C.W.; Li, M.; Shen, Y. Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers. Appl. Surf. Sci. 2018, 458, 743–750. [Google Scholar] [CrossRef]
- Guo, F.M.; Shen, X.; Zhou, J.M.; Liu, D.; Zheng, Q.B.; Yang, J.L.; Jia, B.H.; Lau, A.K.T.; Kim, J.-K. Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv. Funct. Mater. 2020, 30, 1910826. [Google Scholar] [CrossRef]
- Kuang, B.Y.; Song, W.L.; Ning, M.Q.; Li, J.B.; Zhao, Z.J.; Guo, D.Y.; Cao, M.S.; Jin, H.B. Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 2018, 127, 209–217. [Google Scholar] [CrossRef]
- Lin, M.Y.; Li, Y.H.; Xu, K.; Ou, Y.H.; Su, L.F.; Feng, X.; Li, J.; Qi, H.S.; Liu, D.T. Thermally conductive nanostructured, aramid dielectric composite films with boron nitride nanosheets. Compos. Sci. Technol. 2019, 175, 85–91. [Google Scholar] [CrossRef]
- Liang, G.D.; Sun, G.X.; Bi, J.Q.; Wang, W.L.; Yang, X.N.; Li, Y.H. Mechanical and dielectric properties of functionalized boron nitride nanosheets/silicon nitride composites. Ceram. Int. 2021, 47, 2058–2067. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Q.; Dang, B.; Yang, Y.; Shao, T.; Li, H.; Hu, J.; Zeng, R.; He, J.; Wang, Q. A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv. Mater. 2018, 30, e1805672. [Google Scholar] [CrossRef]
- Li, H.; Ai, D.; Ren, L.; Yao, B.; Han, Z.; Shen, Z.; Wang, J.; Chen, L.Q.; Wang, Q. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 2019, 31, e1900875. [Google Scholar] [CrossRef]
Polymer | Max Operating Temperature (°C) | Permittivity (at 1 kHz) | Dissipation Factor (at 1 kHz) (%) | Breakdown Strength (MV/m) (Film Thickness in Parentheses) |
---|---|---|---|---|
BOPP | 105 | 2.2 | <0.02 | 449–555 (3–5 μm) |
PI (Kapton) | 360–410 | 2.7–3.5 | 0.13–0.26 | 154–303 (7.6–127 μm) |
PI (UPILEX) | 285–500 | 3.2–3.5 | 0.13–0.7 | 147–320 (12.5–125 μm) |
PEI (ULTEM) | 217–247 | 3.15 | 0.12 | 200 (25 μm) |
LDPE | 95–113 | 3 | <0.05 | 200 (30 μm) |
PEEU | 250 | 4.7 | <1 | 600 (2–3 μm) |
PMMA | 150 | 3.3 | <5 | 550 (13–24 μm) |
PET | 125 | 3.3 | <0.5 | 570 (3 μm) |
PC | 125 | 2.9 | <0.2 | 550 (0–13 μm) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, L.; Lin, Y.-H.; Nan, C.-W. An Overview of Linear Dielectric Polymers and Their Nanocomposites for Energy Storage. Molecules 2021, 26, 6148. https://doi.org/10.3390/molecules26206148
Dou L, Lin Y-H, Nan C-W. An Overview of Linear Dielectric Polymers and Their Nanocomposites for Energy Storage. Molecules. 2021; 26(20):6148. https://doi.org/10.3390/molecules26206148
Chicago/Turabian StyleDou, Lvye, Yuan-Hua Lin, and Ce-Wen Nan. 2021. "An Overview of Linear Dielectric Polymers and Their Nanocomposites for Energy Storage" Molecules 26, no. 20: 6148. https://doi.org/10.3390/molecules26206148
APA StyleDou, L., Lin, Y. -H., & Nan, C. -W. (2021). An Overview of Linear Dielectric Polymers and Their Nanocomposites for Energy Storage. Molecules, 26(20), 6148. https://doi.org/10.3390/molecules26206148