Phenolic Profile, Antioxidant Capacity and Antimicrobial Activity of Nettle Leaves Extracts Obtained by Advanced Extraction Techniques
Abstract
:1. Introduction
2. Results
2.1. Optimization of MAE of Nettle Leaves’ Polyphenols
2.2. Comparison of Different Extraction Techniques for the Isolation of Nettle Leaves’ Polyphenols
2.3. Antimicrobial Activity of Nettle Leaves Extract
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals and Reagents
3.3. Extraction Procedures
3.3.1. MAE
3.3.2. PLE
3.3.3. CE
3.4. Polyphenols’ Extracts Analysis
3.4.1. Determination of TPC
3.4.2. UPLC/ESI MS2 Analysis
3.4.3. ORAC Assay
3.4.4. Antimicrobial Activity
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Đurović, S.; Pavlić, B.; Šorgić, S.; Popov, S.; Savić, S.; Pertonijević, M.; Radojković, M.; Cvetanović, A.; Zeković, Z. Chemical composition of stinging nettle leaves obtained by different analytical approaches. J. Funct. Foods 2017, 32, 18–26. [Google Scholar] [CrossRef]
- Kregiel, D.; Pawlikowska, E.; Antolak, H. Urtica spp.: Ordinary plants with extraordinary properties. Molecules 2018, 23, 1664. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.R.; Costa, G.; Figueirinha, A.; Liberal, J.; Prior, J.A.V.; Lopes, M.C.; Cruz, M.T.; Batista, M.T. Urtica spp.: Phenolic composition, safety, antioxidant and anti-inflammatory activities. Food Res. Int. 2017, 99, 485–494. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Current understanding of dietary polyphenols and their role in health and disease. Curr. Nutr. Food Sci. 2009, 5, 249–263. [Google Scholar] [CrossRef]
- Zeković, Z.; Cvetanović, A.; Švarc-Gajić, J.; Gorjanović, S.; Sužnjević, D.; Mašković, P.; Savić, S.; Radojković, M.; Đurović, S. Chemical and biological screening of stinging nettle leaves extracts obtained by modern extraction techniques. Ind. Crops Prod. 2017, 108, 423–430. [Google Scholar] [CrossRef]
- Ince, A.E.; Sahin, S.; Sumnu, G. Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle. J. Food Sci. Technol. 2014, 51, 2776–2782. [Google Scholar] [CrossRef] [PubMed]
- Repajić, M.; Cegledi, E.; Zorić, Z.; Pedisić, S.; Garofulić, I.E.; Radman, S.; Palčić, I.; Dragović-Uzelac, V. Bioactive compounds in wild nettle (Urtica dioica L.) leaves and stalks: Polyphenols and pigments upon seasonal and habitat variations. Foods 2021, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Kukrić, Z.Z.; Topalić-Trivunović, L.N.; Kukavica, B.M.; Matoš, S.B.; Pavičić, S.S.; Boroja, M.M.; Savić, A.V. Characterization of antioxidant and antimicrobial activities of nettle leaves (Urtica dioica L.). Acta Period. Technol. 2012, 257–272. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rombaut, N.; Tixier, A.; Bily, A.; Chemat, F. Green extraction processes of natural products as tools for biorefinery. Biofuels Bioprod. Biorefining 2014, 8, 530–544. [Google Scholar] [CrossRef]
- Taamalli, A.; Arráez-Román, D.; Barrajón-Catalán, E.; Ruiz-Torres, V.; Pérez-Sánchez, A.; Herrero, M.; Ibañez, E.; Micol, V.; Zarrouk, M.; Segura-Carretero, A. Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves: Phenolic composition and cytotoxicity against human breast cancer cells. Food Chem. Toxicol. 2012, 50, 1817–1825. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Pérez, C.; Gilbert-López, B.; Mendiola, J.A.; Quirantes-Piné, R.; Segura-Carretero, A.; Ibáñez, E. Optimization of microwave-assisted extraction and pressurized liquid extraction of phenolic compounds from Moringa oleifera leaves by multiresponse surface methodology. Electrophoresis 2016, 37, 1938–1946. [Google Scholar] [CrossRef] [PubMed]
- Dragović-Uzelac, V.; Garofulić, I.E.; Jukić, M.; Penić, M.; Dent, M. The influence of microwave-assisted extraction on the isolation of sage (Salvia officinalis L.) Polyphenols. Food Technol. Biotechnol. 2012, 50, 377–383. [Google Scholar]
- Panja, P. Green extraction methods of food polyphenols from vegetable materials. Curr. Opin. Food Sci. 2018, 23, 173–182. [Google Scholar] [CrossRef]
- Garofulić, I.E.; Kruk, V.; Martić, A.; Martić, I.; Zorić, Z.; Pedisić, S.; Dragović, S.; Dragović-Uzelac, V. Evaluation of polyphenolic profile and antioxidant activity of Pistacia lentiscus L. Leaves and fruit extract obtained by optimized microwave-assisted extraction. Foods 2020, 9, 1556. [Google Scholar] [CrossRef] [PubMed]
- Kaderides, K.; Papaoikonomou, L.; Serafim, M.; Goula, A.M. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem. Eng. Process.-Process Intensif. 2019, 137, 1–11. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I.; Azhari, N.H. Vernonia cinerea leaves as the source of phenolic compounds, antioxidants, and anti-diabetic activity using microwave-assisted extraction technique. Ind. Crops Prod. 2018, 122, 533–544. [Google Scholar] [CrossRef]
- Galan, A.-M.; Calinescu, I.; Trifan, A.; Winkworth-Smith, C.; Calvo-Carrascal, M.; Dodds, C.; Binner, E. New insights into the role of selective and volumetric heating during microwave extraction: Investigation of the extraction of polyphenolic compounds from sea buckthorn leaves using microwave-assisted extraction and conventional solvent extraction. Chem. Eng. Process. Process Intensif. 2017, 116, 29–39. [Google Scholar] [CrossRef]
- Dent, M.; Dragovic-Uzelac, V.; Garofulic, I.E.; Bosiljkov, T.; Ježek, D.; Brncic, M. Comparison of conventional and ultrasound-assisted extraction techniques on mass fraction of phenolic compounds from sage (Salvia officinalis L.). Chem. Biochem. Eng. Q. 2015, 29, 475–484. [Google Scholar] [CrossRef]
- Zhao, C.N.; Zhang, J.J.; Li, Y.; Meng, X.; Li, H.B. Microwave-assisted extraction of phenolic compounds from Melastoma sanguineum fruit: Optimization and identification. Molecules 2018, 23, 2498. [Google Scholar] [CrossRef] [Green Version]
- Belščak-Cvitanović, A.; Komes, D.; Durgo, K.; Vojvodić, A.; Bušić, A. Nettle (Urtica dioica L.) extracts as functional ingredients for production of chocolates with improved bioactive composition and sensory properties. J. Food Sci. Technol. 2015, 52, 7723–7734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zenão, S.; Aires, A.; Dias, C.; Saavedra, M.J.; Fernandes, C. Antibacterial potential of Urtica dioica and Lavandula angustifolia extracts against methicillin resistant Staphylococcus aureus isolated from diabetic foot ulcers. J. Herb. Med. 2017, 10, 53–58. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Sajak, A.A.B.; Ooi, K.L.; Seow, E.M. Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. J. Food Compos. Anal. 2011, 24, 506–515. [Google Scholar] [CrossRef]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef]
- Rezaie, M.; Farhoosh, R.; Iranshahi, M.; Sharif, A.; Golmohamadzadeh, S. Ultrasonic-assisted extraction of antioxidative compounds from Bene (Pistacia atlantica subsp. mutica) hull using various solvents of different physicochemical properties. Food Chem. 2015, 173, 577–583. [Google Scholar]
- Casazza, A.A.; Pettinato, M.; Perego, P. Polyphenols from apple skins: A study on microwave-assisted extraction optimization and exhausted solid characterization. Sep. Purif. Technol. 2020, 240, 116640. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol. 2012, 5, 409–424. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ali, H.A.; Zain, N.M. Microwave-assisted extraction of phenolic compounds from Carica papaya leaves: An optimization study and LC-QTOF-MS analysis. Future Foods 2021, 3, 100035. [Google Scholar] [CrossRef]
- Hannachi, H.; Benmoussa, H.; Saadaoui, E.; Saanoun, I.; Negri, N.; Elfalleh, W. Optimization of ultrasound and microwave-assisted extraction of phenolic compounds from olive leaves by response surface methodology. Res. J. Biotechnol. 2019, 14, 28–37. [Google Scholar]
- Alara, O.R.; Abdurahman, N.H.; Abdul Mudalip, S.K. Optimizing Microwave-Assisted Extraction Conditions to Obtain Phenolic-Rich Extract from Chromolaena odorata Leaves. Chem. Eng. Technol. 2019, 42, 1733–1740. [Google Scholar] [CrossRef]
- Mellinas, A.C.; Jiménez, A.; Garrigós, M.C. Optimization of microwave-assisted extraction of cocoa bean shell waste and evaluation of its antioxidant, physicochemical and functional properties. LWT 2020, 127, 109361. [Google Scholar] [CrossRef]
- Machado, A.P.D.F.; Pasquel-Reátegui, J.L.; Barbero, G.F.; Martínez, J. Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: A comparison with conventional methods. Food Res. Int. 2015, 77, 675–683. [Google Scholar] [CrossRef]
- Ciulu, M.; Quirantes-Piné, R.; Spano, N.; Sanna, G.; Borrás-Linares, I.; Segura-Carretero, A. Evaluation of new extraction approaches to obtain phenolic compound-rich extracts from Stevia rebaudiana Bertoni leaves. Ind. Crops Prod. 2017, 108, 106–112. [Google Scholar] [CrossRef]
- Liazid, A.; Palma, M.; Brigui, J.; Barroso, C.G. Investigation on phenolic compounds stability during microwave-assisted extraction. J. Chromatogr. A 2007, 1140, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.; Dahmoune, F.; Moussi, K.; Remini, H.; Dairi, S.; Aoun, O.; Khodir, M. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chem. 2015, 187, 507–516. [Google Scholar] [CrossRef]
- Dobrinčić, A.; Repajic, M.; Elez Garofulić, I.; Tuđen, L.; Dragović-Uzelac, V.; Levaj, B. Comparison of Different Extraction Methods for the recovery of olive leaves polyphenols. Processes 2020, 8, 1008. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A. Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods. Food Chem. 2018, 258, 137–143. [Google Scholar] [CrossRef]
- Luo, Q.; Zhang, J.-R.; Li, H.-B.; Wu, D.-T.; Geng, F.; Corke, H.; Wei, X.-L.; Gan, R.-Y. Green extraction of antioxidant polyphenols from green tea (Camellia sinensis). Antioxidants 2020, 9, 785. [Google Scholar] [CrossRef]
- El-Hamidi, M.; Zaher, F.A.; El-Shami, S.M. Interaction of oilseed pigments and phospholipids in the determination of total phenolic compounds using the Folin-Ciocalteu reagent. Int. J. Pharm. Tech. Res. 2016, 9, 207–214. [Google Scholar]
- Cha, K.H.; Lee, H.J.; Koo, S.Y.; Song, D.-G.; Lee, D.-U.; Pan, C.-H. Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris. J. Agric. Food Chem. 2010, 58, 793–797. [Google Scholar] [CrossRef]
- Herrero, M.; Jaime, L.; Martín-Álvarez, P.J.; Cifuentes, A.; Ibáñez, E. Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids. J. Agric. Food Chem. 2006, 54, 5597–5603. [Google Scholar] [CrossRef]
- Rodríguez-Meizoso, I.; Jaime, L.; Santoyo, S.; Cifuentes, A.; Garcia-Blairsy Reina, G.; Senorans, F.J.; Ibáñez, E. Pressurized fluid extraction of bioactive compounds from Phormidium species. J. Agric. Food Chem. 2008, 56, 3517–3523. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L. Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits. J. Funct. Foods 2015, 18, 797–810. [Google Scholar] [CrossRef]
- Tamokou, J.D.D.; Mbaveng, A.T.; Kuete, V. Antimicrobial activities of African medicinal spices and vegetables. In Medicinal Spices and Vegetables from Africa; Academic Press: Amsterdam, The Netherlands, 2017; pp. 207–237. [Google Scholar] [CrossRef]
- Sterniša, M.; Bucar, F.; Kunert, O.; Možina, S.S. Targeting fish spoilers Pseudomonas and Shewanella with oregano and nettle extracts. Int. J. Food Microbiol. 2020, 328, 108664. [Google Scholar] [CrossRef] [PubMed]
- Rajput, P.; Choudhary, M.; Sharma, R.A. Comparing Antibacterial Potential and Phytochemical Constituents of Two Species of Genus Urtica. Int. J. Life Sci. Pharma Res. 2019, 9, 90–102. [Google Scholar]
- Mahmoudi, R.; Amini, K.; Fakhri, O.; Alem, M. Aroma profile and antimicrobial properties of alcoholic and aqueous extracts from root, leaf and stalk of nettle (Urtica dioica L.). J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 220–224. [Google Scholar] [CrossRef]
- Calderon-Montano, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef]
- Guzman, J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules 2014, 19, 19292–19349. [Google Scholar] [CrossRef]
- Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef]
- Yilmaz, S.; Sova, M.; Ergün, S. Antimicrobial activity of trans-cinnamic acid and commonly used antibiotics against important fish pathogens and nonpathogenic isolates. J. Appl. Microbiol. 2018, 125, 1714–1727. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.T.; Smagghe, G.; Gonzales, G.B.; Van Camp, J.; Raes, K. Bioconversion of Kaempferol and Quercetin Glucosides from Plant Sources Using Rhizopus spp. Fermentation 2018, 4, 102. [Google Scholar] [CrossRef] [Green Version]
- Repajić, M.; Cegledi, E.; Kruk, V.; Pedisić, S.; Çinar, F.; Kovačević, D.B.; Žutić, I.; Dragović-Uzelac, V. Accelerated solvent extraction as a green tool for the recovery of polyphenols and pigments fromwild nettle leaves. Processes 2020, 8, 803. [Google Scholar] [CrossRef]
- Shortle, E.; O’grady, M.N.; Gilroy, D.; Furey, A.; Quinn, N.; Kerry, J.P. Influence of extraction technique on the anti-oxidative potential of hawthorn (Crataegus monogyna) extracts in bovine muscle homogenates. Meat Sci. 2014, 98, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Brnčić, M.; Dragović-Uzelac, V. UPLC-MS2 Profiling of Blackthorn Flower Polyphenols Isolated by Ultrasound-Assisted Extraction. J. Food Sci. 2018, 83, 2782–2789. [Google Scholar] [CrossRef]
- Bender, C.; Graziano, S.; Zimmerman, B.F.; Weidlich, H.H. Antioxidant potential of aqueous plant extracts assessed by the cellular antioxidant activity assay. Am. J. Biol. Life Sci. 2014, 2, 72–79. [Google Scholar]
- Klančnik, A.; Piskernik, S.; Jeršek, B.; Možina, S.S. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J. Microbiol. Methods 2010, 81, 121–126. [Google Scholar] [CrossRef]
Solvent | Temperature, °C | Microwave Power, W | Time, min | TPC, mg GAE/100 g |
---|---|---|---|---|
Water | 40 | 300 | 5 | 490.12 ± 9.47 |
10 | 530.17 ± 22.84 | |||
600 | 5 | 359.51 ± 14.58 | ||
10 | 398.48 ± 1.96 | |||
60 | 300 | 5 | 1527.78 ± 28.06 | |
10 | 1489.61 ± 25.21 | |||
600 | 5 | 1274.32 ± 23.01 | ||
10 | 1161.25 ± 24.60 | |||
80 | 300 | 5 | 1243.47 ± 8.05 | |
10 | 1598.67 ± 38.39 | |||
600 | 5 | 1476.47 ± 2.95 | ||
10 | 980.27 ± 13.22 | |||
30% Ethanol | 40 | 300 | 5 | 1623.83 ± 13.81 |
10 | 1714.06 ± 66.06 | |||
600 | 5 | 1789.61 ± 34.07 | ||
10 | 1765.06 ± 29.46 | |||
60 | 300 | 5 | 1705.78 ± 65.31 | |
10 | 1698.21 ± 28.11 | |||
600 | 5 | 1670.68 ± 16.02 | ||
10 | 1954.55 ± 53.50 | |||
80 | 300 | 5 | 1584.62 ± 38.12 | |
10 | 1461.67 ± 18.08 | |||
600 | 5 | 1893.07 ± 72.25 | ||
10 | 1837.77 ± 54.96 | |||
30% Acetone | 40 | 300 | 5 | 1565.56 ± 4.01 |
10 | 2007.04 ± 42.77 | |||
600 | 5 | 1820.70 ± 42.41 | ||
10 | 1784.35 ± 44.34 | |||
60 | 300 | 5 | 2368.89 ± 30.11 | |
10 | 2024.00 ± 38.11 | |||
600 | 5 | 2063.77 ± 11.96 | ||
10 | 2211.71 ± 19.97 | |||
80 | 300 | 5 | 2065.42 ± 37.93 | |
10 | 2040.21 ± 16.07 | |||
600 | 5 | 2063.25 ± 33.40 | ||
10 | 2135.76 ± 35.77 |
MAE Parameters | TPC, mg GAE/100 g |
---|---|
Solvent | p < 0.05 * |
Water | 1044.18 ± 6.98 a |
30% ethanol | 1724.91 ± 6.98 b |
30% acetone | 2012.55 ± 6.98 c |
Temperature, °C | p < 0.05 * |
40 | 1320.71 ± 6.98 a |
60 | 1762.55 ± 6.98 c |
80 | 1698.39 ± 6.98 b |
Microwave power, W | p = 0.50 |
300 | 1596.62 ± 5.70 a |
600 | 1591.14 ± 5.70 a |
Time, min | p = 0.16 |
5 | 1588.16 ± 5.70 a |
10 | 1599.60 ± 5.70 a |
Mass Spectrometric Data | Concentration (mg/100 g) | ||||
---|---|---|---|---|---|
Percursor Ion (m/z) | Fragment Ion (m/z) | MAE | PLE | CE | |
Benzoic acids | |||||
Protocatechuic acid | 153 | 109 | 4.90 ± 0.04 c | 4.27 ± 0.08 b | 2.25 ± 0.04 a |
Gentisic acid | 153 | 109 | 2.10 ± 0.06 a | 8.12 ± 0.20 b | 2.17 ± 0.03 a |
p-hydroxybenzoic acid | 137 | 93 | 11.88 ± 0.59 a | 16.12 ± 0.51 b | 10.42 ± 0.42 a |
Gallic acid * | 169 | 125 | 9.76 ± 0.44 c | 3.24 ± 0.08 a | 5.81 ± 0.14 b |
Cinnamic acids | |||||
Caffeic acid * | 179 | 135 | 1.25 ± 0.04 a | 5.97 ± 0.34 b | nd |
p-coumaric acid * | 163 | 119 | 7.04 ± 0.35 b | 8.07 ± 0.30 b | 1.78 ± 0.04 a |
Cinnamic acid * | 147 | 103 | 178.29 ± 4.85 b | 121.50 ± 5.01 a | 148.52 ± 9.40 a |
Ferullic acid * | 193 | 178 | 15.22 ± 0.41 c | 4.74 ± 0.21 a | 7.28 ± 0.38 b |
Other phenolic acids | |||||
Quinic acid * | 191 | 85 | 1.59 ± 0.04 a | 4.02 ± 0.13 b | 10.71 ± 0.61 c |
Flavonols | |||||
Isorhamnetin 3-O-rutinoside | 625 | 317 | 1.65 ± 0.06 a | 2.63 ± 0.10 b | 2.69 ± 0.11 b |
Kaempferol-3-O-rutinoside * | 595 | 287 | 10.56 ± 0.55 c | 4.94 ± 0.08 b | 3.43 ± 0.06 a |
Kaempferol hexoside | 449 | 287 | 3.61 ± 0.13 b | 5.29 ± 0.24 c | 2.72 ± 0.04 a |
Myricetin * | 319 | 273 | 2.59 ± 0.03 a | 4.21 ± 0.07 b | nd |
Quercetin-3-rutinoside * | 611 | 303 | 18.68 ± 1.02 a | 42.38 ± 1.74 b | 17.56 ± 0.68 a |
Kaempferol pentoside | 419 | 287 | 2.49 ± 0.04 c | 2.34 ± 0.04 b | 0.46 ± 0.01 a |
Kaempferol rhamnoside | 433 | 287 | 4.48 ± 0.17 b | 4.22 ± 0.10 b | 1.33 ± 0.04 a |
Quercetin-acetyl-rutinoside | 653 | 303 | 12.14 ± 0.95 a | 11.19 ± 0.55 a | 10.43 ± 0.64 a |
Kaempferol-pentosyl-hexoside | 597 | 303 | 3.79 ± 0.24 b | 3.09 ± 0.08 a | 3.27 ± 0.08 ab |
Kaempferol | 285 | 285 | 116.13 ± 7.69 a | 107.89 ± 4.91 a | 94.03 ± 5.81 a |
Flavan-3-ols | |||||
Epigallocatechingallate * | 459 | 289, 139 | 4.16 ± 0.06 c | 1.76 ± 0.06 a | 2.89 ± 0.10 b |
Epicatechin * | 291 | 139 | 4.45 ± 0.11 a | 30.77 ± 1.71 b | 3.34 ± 0.07 a |
Epicatechingallate * | 443 | 291 | 2.18 ± 0.08 c | 1.76 ± 0.03 b | 1.11 ± 0.03 a |
Flavones | |||||
Apigenin hexoside | 433 | 271 | 2.25 ± 0.08 b | 4.39 ± 0.04 c | 1.75 ± 0.06 a |
Luteolin * | 287 | 153 | 5.40 ± 0.16 c | 0.64 ± 0.01 a | 1.93 ± 0.04 b |
Apigenin * | 271 | 153 | 14.07 ± 0.30 b | 15.31 ± 0.82 b | 3.58 ± 0.10 a |
Coumarins | |||||
Umbelliferone | 161 | 133 | 2.18 ± 0.03 b | 3.36 ± 0.07 c | 1.83 ± 0.04 a |
Esculetin * | 177 | 133 | 2.91 ± 0.08 b | 2.91 ± 0.03 b | 1.71 ± 0.04 a |
Total UPLC MS2 identified compounds (mg/100 g) | 445.75 ± 8.65 b | 425.13 ± 16.87 b | 343.00 ± 19.01 a | ||
TPC (mg GAE/100 g) | 2368.89 ± 30.11 a | 3301.20 ± 171.16 b | 2082 ± 84.38 a | ||
ORAC (µmol TE/100 g) | 929.80 ± 6.28 a | 1074.40 ± 31.20 b | 925.60 ± 6.70 a |
Microbial Strain | Nettle Leaves PLE Extract | |
---|---|---|
MIC [mg/mL] | MBC/MFC [mg/mL] | |
Staphylococcus aureus ATCC 25923 | 2 | 2 |
Listeria innocua ŽM39 | nd | nd |
Escherichia coli ATCC 11229 | nd | nd |
Pseudomonas fragi ATCC 4973 | 0.5 | 1 |
Shewanella putrefaciens ŽM654 | 2 | 2 |
Shewanella xiamenensis ŽM655 | 2 | 4 |
Shewanella baltica NCTC 10735 | 4 | nd |
Campylobacter jejuni NCTC 11168 | 0.5 | 1 |
Candida albicans ZIM 2202 | nd | nd |
Pichia anomala ZIM 1769 | nd | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elez Garofulić, I.; Malin, V.; Repajić, M.; Zorić, Z.; Pedisić, S.; Sterniša, M.; Smole Možina, S.; Dragović-Uzelac, V. Phenolic Profile, Antioxidant Capacity and Antimicrobial Activity of Nettle Leaves Extracts Obtained by Advanced Extraction Techniques. Molecules 2021, 26, 6153. https://doi.org/10.3390/molecules26206153
Elez Garofulić I, Malin V, Repajić M, Zorić Z, Pedisić S, Sterniša M, Smole Možina S, Dragović-Uzelac V. Phenolic Profile, Antioxidant Capacity and Antimicrobial Activity of Nettle Leaves Extracts Obtained by Advanced Extraction Techniques. Molecules. 2021; 26(20):6153. https://doi.org/10.3390/molecules26206153
Chicago/Turabian StyleElez Garofulić, Ivona, Valentina Malin, Maja Repajić, Zoran Zorić, Sandra Pedisić, Meta Sterniša, Sonja Smole Možina, and Verica Dragović-Uzelac. 2021. "Phenolic Profile, Antioxidant Capacity and Antimicrobial Activity of Nettle Leaves Extracts Obtained by Advanced Extraction Techniques" Molecules 26, no. 20: 6153. https://doi.org/10.3390/molecules26206153
APA StyleElez Garofulić, I., Malin, V., Repajić, M., Zorić, Z., Pedisić, S., Sterniša, M., Smole Možina, S., & Dragović-Uzelac, V. (2021). Phenolic Profile, Antioxidant Capacity and Antimicrobial Activity of Nettle Leaves Extracts Obtained by Advanced Extraction Techniques. Molecules, 26(20), 6153. https://doi.org/10.3390/molecules26206153