Total Aseptization of Boar Semen, to Increase the Biosecurity of Reproduction in Swine
Abstract
:1. Introduction
2. Results
2.1. Microbiological Spermogram
2.2. Identification of Sources of Sperm Contamination
2.3. Antifungal Aseptization of Sperm by Potentiated Extenders
2.4. Testing Semen Extenders Added with Fluconazole by Determining Sperm Progressivity in Storage Dynamics
2.5. Validation of Additive Extenders by AI on the Farm
3. Discussion
4. Materials and Methods
4.1. Pig Farms
4.2. Biological Material
4.3. Reproduction Organization
4.3.1. Boar Semen Collection
4.3.2. Examination of Ejaculate Quality
4.3.3. Dilution of Semen
4.3.4. Preparation of AI Doses and Their Preservation
4.3.5. Artificial Insemination
4.4. Microbiological Spermogram
4.4.1. Quantitative Determinations (CFU)
4.4.2. Qualitative Determinations (Typification of Bacterial and Fungal Genera)
4.5. Identifying the Sources of Sperm Contamination and Eliminating Them
4.5.1. Critical Points of Sperm Contamination
4.5.2. Possibilities to Optimize the Decrease of Contamination in Critical Points by HPBC Protocol
4.6. Antifungal Aseptization of Sperm by Potentiated Extenders
4.7. Testing Semen Extenders Added with Fluconazole by Determining Sperm Progressivity in Storage Dynamics
4.8. Validation of Additive Extenders by AI on the Farm
4.9. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Althouse, G.C.; Lu, K.G. Bacteriospermia in extended porcine semen. Theriogenology 2005, 63, 573–584. [Google Scholar] [CrossRef]
- Bussalleu, E.; Torner, E. Quality Improvement of Boar Seminal Doses. In Boar Reproduction; Bonet, S., Casas, I., Holt, W., Yeste, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Dahmani, Y.; Ausejo, R.; Ubeda, J.L. Bacterial contamination of boar semen and its effect of sperm quality parameters during conservation. Reprod. Domest. Anim. 2011, 46, 106. [Google Scholar]
- Maroto Martin, L.O.; Munoz, E.C.; De Cupere, F.; Van Driessche, E.; Echemendia Blanco, D.; Rodriguez, J.M.; Beeckmans, S. Bacterial contamination of boar semen affects the litter size. Anim. Reprod. Sci. 2010, 120, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Danowski, K.M. Qualitative and Quantitative Investigations of the Germ Content in Boar Semen and the Antibiotic Sensitivity of the Prevailing Germ Spectrum. Diploma Thesis, Tierarztliche Hochschule, Hannover, Germany, 1989. [Google Scholar]
- Althouse, G.C.; Reicks, D.; Spronk, G.D.; Trayer, T.P. Health, hygiene, and sanitation guidelines for boar studs providing semen to the domestic market. J. Swine Health Prod. 2003, 11, 204–206. [Google Scholar]
- Pinto, M.; Ramalho, S.; Perestrelo-Vielra, R.; Rodrigues, J. Microbiological profile of pure semen and seminal doses of boars used in artificial insemination in Portugal. Veterinaria-Tecnica. 2000, 10, 24–28. [Google Scholar]
- Akhter, S.; Ansari, M.S.; Andrabi, S.M.; Ullah, N.; Qayyum, M. Effect of antibiotics in extender on bacterial and spermatozoal quality of cooled buffalo (Bubalus bubalis) bull semen. Reprod. Domest. Anim. 2008, 43, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, A.; Cruz, E.; Lazo, L.; Arredondo, C.; Brito, A. The preliminary evaluation of the lectin effect of Escherichia coli on spermatic agglutination. Revista-Salud-Anim. 2001, 23, 73–79. [Google Scholar]
- Althouse, G.C.; Kuster, C.E.; Clark, S.G.; Weisiger, R.M. Field investigation of bacterial contaminants and their effects on extended porcine semen. Theriogenology 2000, 53, 1167–1176. [Google Scholar] [CrossRef]
- Ciornei, Ş.G. Materialul seminal de vier si biotehnologii de reproductie la suine. In Boar Semen in Swine Breeding and Biotechnology; Editura Ion Ionescu de la Brad: Iași, Romania, 2012; ISBN 978-973-147-102-0. (In Romanian) [Google Scholar]
- Dias, C.P.; Castagna, C.D.; Reis, G.R.; Simonetti, R.; Bortolozzo, F.P.; Wentz, I.V.O.; Cardoso, M. Degree of bacterial contamination of swine ejaculate submitted to two hygienic and collection methods. Arq.-Fac.-Vet.-UFRGS 2000, 28, 32–40. [Google Scholar]
- Runceanu, L.; Ciornei, Ş.G.; Drugociu, D.; Roşca, P. Biosecuritatea Însămânţărilor Artificiale Prinspermogra Mamicrobiologică, Taurine şi Suine, Biosafety of Artificial Insemination by Microbiological Spermogram, Taurine and Swine; Editura Ion Ionescu de da Brad: Iași, Romania, 2008; ISBN 978-973-147-011-5. (In Romanian) [Google Scholar]
- Vyt, P.; Maes, D.; Dejonckheere, E.; Castryck, F.; Van Soom, A. Comparative Study on Five Different Commercial Extenders for Boar Semen. Reprod. Dom. Anim. 2004, 39, 8–12. [Google Scholar] [CrossRef]
- Gadea, J. Reviw: Semen extenders used in the artificial insemination of swine. Span. J. Agric. Res. 2003, 1, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Ciornei, Ş.G.; Roşca, P.; Drugociu, D. Bacterial and fungal burden in boar semen. Res. J. Biotechnol. 2012, 7, 23–27. [Google Scholar]
- Mohamed, A.; Hassan, A.; Amer, M.; Abdel-Aziz, E.S. The effects of oral ketoconazole and griseofulvin on the fertility of male rabbits. Mansoura Vet. Med J. 2020, 21, 32–38. [Google Scholar] [CrossRef]
- Knox, R.V. Practicalities and pitfalls of semen evaluation. Adv. Pork Prod. 2004, 15, 315–322. [Google Scholar]
- Schulze, M.; Ammon, C.; Rüdiger, K.; Jung, M.; Grobbel, M. Analysis of hygienic critical control points in boar semen production. Theriogenology 2015, 83, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Sone, M.; Kawarasaki, T.; Ogasa, A.; Nakahara, T. Effects of bacteria-contaminated boar semen on the reproductive performance. Jpn. J. Anim. Reprod. 1989, 35, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Lellbach, C.; Leiding, C.; Rath, D.; Staehr, B. Effects of automated collection methods on semen quality and economic efficiency of boar semen production. Theriogenology 2008, 70, 1389. [Google Scholar] [CrossRef]
- Waberski, D.; Luther, A.M.; Grunther, B.; Jakel, H.; Henning, H.; Vogel, C.; Peralta, W.; Weitze, K.F. Sperm function in vitro and fertility after antibiotic-free, hypothermic storage of liquid preserved boar semen. Sci. Rep. 2019, 9, 14748. [Google Scholar] [CrossRef] [PubMed]
- Rota, A.; Calicchio, E.; Nardoni, S.; Fratini, F.; Ebani, V.V.; Sgorbini, M.; Panzani, D.; Camillo, F.; Mancianti, F. Presence and distribution of fungi and bacteria in the reproductive tract of healthy stallions. Theriogenology 2011, 76, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Ubeda, J.L.; Ausejo, R.; Dahmani, Y.; Falceto, M.V.; Usan, A.; Malo, C.; Perez-Martinez, F.C. Adverse effects of members of the Enterobacteriaceae family on boar sperm quality. Theriogenology 2013, 80, 565–570. [Google Scholar] [CrossRef]
- Kuster, C.E.; Althouse, G.C. The impact of bacteriospermia on boar sperm storage and reproductive performance. Theriogenology 2016, 85, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Junkes, C.; Müller, P.; Speck, S.; Rüdiger, K.; Dathe, M.; Mueller, K. Effects of cationic antimicrobial peptides on liquid-preserved boar spermatozoa. PLoS ONE 2014, 9, e100490. [Google Scholar] [CrossRef] [Green Version]
- Morrell, J.; Wallgren, M. Removal of bacteria from boar ejaculates by Single Layer Centrifugation can reduce the use of antibiotics in semen extenders. Anim. Reprod. Sci. 2011, 123, 64–69. [Google Scholar] [CrossRef]
- Bussalleu, E.; Sancho, S.; Briz, M.D.; Yeste, M.; Bonet, S. Do antimicrobial peptides PR-39, PMAP-36 and PMAP-37 have any effect on bacterial growth and quality of liquid-stored boar semen? Theriogenology 2017, 89, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Hensel, B.; Jakop, U.; Scheinpflug, K.; Mühldorfer, K.; Schroter, F.; Schäfer, J.; Greber, K.; Jung, M.; Schulze, M. Low temperature preservation of porcine semen: Influence of short antimicrobial lipopeptides on sperm quality and bacterial load. Sci. Rep. 2020, 10, 13225. [Google Scholar] [CrossRef] [PubMed]
- Puig-Timonet, A.; Castillo-Martin, M.; Pereira, B.A.; Pinart, E.; Bonet, S.; Yeste, M. Evaluation of porcine beta defensins-1 and -2 as antimicrobial peptides for liquid-stored boar semen: Effects on bacterial growth and sperm quality. Theriogenology 2018, 111, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Hensel, B.; Jakop, U.; Scheinpflug, K.; Schroter, F.; Sandmann, M.; Mühldorfer, K.; Schulze, M. Low temperature preservation: Influence of putative bioactive microalgae and hop extracts on sperm quality and bacterial load in porcine semen. Sustain. Chem. Pharm. 2021, 19, 100359. [Google Scholar] [CrossRef]
- Menezes, T.A.; Mellagi, A.P.G.; da Silva Oliveira, G.; Bernardi, M.L.; Wentz, I.; Ulguim, R.R.; Bortolozzo, F.P. Antibiotic-free extended boar semen preserved under low temperature maintains acceptable in-vitro sperm quality and reduces bacterial load. Theriogenology 2020, 149, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Jakop, U.; Hensel, B.; Orquera, S.; Rößner, A.; Alter, T.; Schröter, F.; Grossfeld, R.; Jung, M.; Simmet, C.; Schulze, M. Development of a new antimicrobial concept for boar semen preservation based on bacteriocins. Theriogenology 2021, 173, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Althouse, G.C. Artificial Insemination: Current Therapy in Large Animal Theriogenology, 2nd ed.; Youngquist, R.S., Threrfall, W.R., Eds.; Saunders Elsevier: St. Louis, MO, USA, 2007; pp. 731–738. [Google Scholar]
- Bompart, D.; García-Molina, A.; Valverde, A.; Caldeira, C.; Yániz, J.; de Murga, M.N.; Soler, C. CASA-Mot technology: How results are affected by the frame rate and counting chamber. Reprod. Fertil. Dev. 2018, 30, 810–819. [Google Scholar] [CrossRef]
- Del Gallego, R.; Sadeghi, S.; Blasco, E.; Soler, C.; Yániz, J.L.; Silvestre, M.A. Effect of chamber characteristics, loading and analysis time on motility and kinetic variables analysed with the CASA-mot system in goat sperm. Anim. Reprod. Sci. 2017, 177, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Ibănescu, I.; Leiding, C.; Ciornei, Ş.; Roşca, P.; Sfartz, I.; Drugociu, D. Differences in CASA output according to the chamber type when analyzing frozen-thawed bull sperm. Anim. Reprod. Sci. 2016, 166, 72–79. [Google Scholar] [CrossRef]
- Ibănescu, I.; Drugociu, D.; Roșca, P.; Sfartz, I.; Leiding, C. The effect of chamber type on boar semen examined with computer-assisted instruments. Rom. Biotechnol. Lett. 2016, 22, 12039–12046. [Google Scholar]
- Broekhuijse, M.L.W.J.; Šoštaric, E.; Feitsmad, H.; Gadella, B.M. Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology 2011, 76, 1473–1486. [Google Scholar] [CrossRef] [PubMed]
- Hafez, E.S.E. Reproduction in Farm Animal, 7th ed.; Lippincott Williams & Wilkins: Philadelphya, PA, USA, 2000. [Google Scholar]
- Merck. Microbial air Monitoring—MAS 100 Air Sampler: Technical Information. Net. Taiwan. 2001. Available online: http://www.merck.com.tw/ (accessed on 1 July 2021).
- Sveum, W.H.; Moberg, L.J.; Rude, R.; Frank, J.F. Microbiological monitoring of the food processing environment. In Compendium of Methods for the Microbiological Examination of Foods, 3rd ed.; Vanderzant, C., Splittstoeser, D.F., Eds.; APHA: Washington, DC, USA, 1992; pp. 51–75. [Google Scholar]
- Salustiano, V.C.; Andrade, N.J.; Brandão, S.C.C.; Azeredo, R.M.C.; Lima, S.A.K. Microbiological air quality of processing areas in a dairy plant as evaluated by the sedimentation technique and a one-stage air sampler. Braz. J. Microbiol. 2003, 34, 255–259. [Google Scholar] [CrossRef]
- García Herreros, M.; Aparicio, I.M.; Nuñez, I.; García-Marín, L.J.; Gil, M.C.; Peña, F.J. Boar sperm velocity and motility patterns under capacitating and non-capacitating incubation conditions. Theriogenology 2005, 63, 795–805. [Google Scholar] [CrossRef]
The Origin of Semen Samples | Bacterial Burden (103 CFU/mL) | Fungal Burden (103 CFU/mL) | |||
---|---|---|---|---|---|
Raw Semen | Diluted Semen | Raw Semen | Diluted Semen | ||
Farm 1 | Extender A * | 65.49 | 0.120 | 0.103 | 0.089 |
Farm 2 | Extender B ** | 99.33 | 0.588 | 0.194 | 0.192 |
Genus | Species | Frequency of Isolations % (n) | |
---|---|---|---|
Bacteria | Escherichia | coli | 81.2 (82) |
Staphylococcus | aureus, zooepidemicus, intermedius, hiyicus | 72.3 (73) | |
Pseudomonas | aeruginosa | 63.4 (64) | |
Streptococcus | suis | 45.5 (46) | |
Enterococcus | faecium, faecalis | 45.5 (46) | |
Proteus | vulgaris | 35.6 (37) | |
Yersinia | enterocolitica, ruckeri, pseudotuberculosis | 26.7 (27) | |
Tatumella | ptyseos | 26.7 (27) | |
Pantoea | spp. | 26.7 (27) | |
Serratia | ficaria, marcescens | 26.7 (27) | |
Shiqella | spp. | 26.7 (27) | |
Actinomyces | suis | 10.9 (11) | |
Bacillus | subtilis, cereus, megaterium | 10.9 (11) | |
Arcanobacterium | pyogenes | 10.9 (11) | |
Klebsialla | pneumoniae | 6.9 (7) | |
Fungus | Cladosporium | cladosporoides | 36.6 (37) |
Penicillium | spp. | 63.3 (64) | |
Fusarium | spp. | 36.6 (37) | |
Aspergillus | spp. | 63.3 (64) | |
Mucor | racemosus | 45.5 (46) | |
Alternaria | alternata | 18.8 (19) | |
Geotrichum | candidum | 72.3 (73) | |
Acremoniu | spp. | 18.8 (19) | |
Candida | parapsilosis, sake | 92.1 (93) |
m3/air | Before Collection | After Collection | ||
---|---|---|---|---|
Total | Total | |||
Bacteria | 19.7 × 103 | 30.9 × 103 | 26.8 × 103 | 44.2 × 103 |
Fungus | 11.2 × 103 | 17.3 × 10−2 |
Bacterial Burden (103 CFU/mL) | Fungal Burden (103 CFU/mL) | |||
---|---|---|---|---|
Raw Semen | Diluted Semen | Raw Semen | Diluted Semen | |
Before (HPBC) | 62.39 | 0.125 | 0.155 | 0.153 |
After (HPBC) | 31.29 | 0.016 | 0.140 | 0.139 |
CFU Evolution (%) | −49.85% | −87.2% | −9.67% | −915% |
Statistical Significance (p) | <0.00001 (yes) | 0.000726 (yes) | 0.111491 (no) | 0.08078 (no) |
Extender A | Extender B | |||
---|---|---|---|---|
M% | P% | M% | P% | |
M | 80.3 | 39.3 | 75.6 | 30.6 |
E1 | 72.0 | 39.0 | 64.3 | 20.3 |
E2 | 80.6 | 42.6 | 73.0 | 29.3 |
(%) M vs. E1 | −11.5% p = 0.0137 | −0.7% p = 0.265 | −29.1% p = 0.00632 | −50.2% p = 0.00018 |
(%) M vs. E2 | +0.37% | +8.39% p = 0.0297 | −3.5% | −4.4% |
Preservation Time | 12 h | 24 h | 48 h | ||||
---|---|---|---|---|---|---|---|
M% | P% | M% | P% | M% | P% | ||
V1 | M | 82 | 42 | 70 | 27 | 47 | 14 |
E1 | 82 | 47 | 73 | 33 | 46 | 17 | |
E2 | 84 | 46 | 65 | 27 | 42 | 12 | |
V2 | M | 78 | 36 | 69 | 36 | 70 | 36 |
E1 | 63 | 31 | 61 | 21 | 51 | 22 | |
E2 | 78 | 39 | 65 | 33 | 46 | 20 | |
X | M | 80 | 39 | 69.5 | 31.5 | 58.2 | 25 |
E1 | 72.5 | 39 | 67 | 27 | 48.5 | 19.5 | |
E2 | 81 | 42.5 | 65 | 30 | 44 | 16 |
Group | Number of Gilts AI (n) | Sperm/Dose × 109 | Fecundity | Prolificity | ||
---|---|---|---|---|---|---|
Nr. | % | Total Piglets (n) | Average/ Farrowing | |||
C.G. | 20 | 3.5 | 16 | 80 | 146 | 9.125 |
E.G. | 20 | 3.5 | 16 | 80 | 145 | 9.062 |
Statistical significance p = 0.279598 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciornei, Ş.; Drugociu, D.; Ciornei, L.M.; Mareş, M.; Roşca, P. Total Aseptization of Boar Semen, to Increase the Biosecurity of Reproduction in Swine. Molecules 2021, 26, 6183. https://doi.org/10.3390/molecules26206183
Ciornei Ş, Drugociu D, Ciornei LM, Mareş M, Roşca P. Total Aseptization of Boar Semen, to Increase the Biosecurity of Reproduction in Swine. Molecules. 2021; 26(20):6183. https://doi.org/10.3390/molecules26206183
Chicago/Turabian StyleCiornei, Ştefan, Dan Drugociu, Liliana Margareta Ciornei, Mihai Mareş, and Petru Roşca. 2021. "Total Aseptization of Boar Semen, to Increase the Biosecurity of Reproduction in Swine" Molecules 26, no. 20: 6183. https://doi.org/10.3390/molecules26206183
APA StyleCiornei, Ş., Drugociu, D., Ciornei, L. M., Mareş, M., & Roşca, P. (2021). Total Aseptization of Boar Semen, to Increase the Biosecurity of Reproduction in Swine. Molecules, 26(20), 6183. https://doi.org/10.3390/molecules26206183