Effect of Vitamin C Source on Its Stability during Storage and the Properties of Milk Fermented by Lactobacillus rhamnosus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties of Fermented Milk
The pH Value and Total Acidity
2.2. The Vitamin C
2.3. Syneresis
2.4. Color
2.5. Parameters of Texture
2.6. Microbiology Analysis
2.7. Organoleptic Evaluation
3. Material and Methods
3.1. Materials
Preliminary Studies
3.2. Preparation of Fermented Milk
- K—control milk;
- AC—fermented milk with acerola;
- DR—fermented milk with rosehip;
- VC—fermented milk with L(+) ascorbic acid.
3.3. Determination of Acidity
3.4. Microbiological Analysis
3.5. Syneresis
3.6. Color of Fermented Milk
3.7. Determination of Vitamin C Content
3.8. Parameters of Texture
3.9. Organoleptic Evaluation
- Milky-creamy taste: the taste stimulated by milk powder.
- Sour taste: the taste stimulated by lactic acid.
- Taste of additives: the taste stimulated by added vitamin C depending on the source of origin.
- Sweet taste: the taste stimulated by sucrose.
- Off-taste: an unidentified taste that is not characteristic.
- Fermentation odor: the intensity of odor associated with sour milk, i.e., lactic acid.
- Odor of additives: odor characteristic stimulated by added vitamin C depending on the source of origin.
- Off-odor: unidentified odor that is not characteristic.
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cremonini, F.; Di Caro, S.; Nista, E.C.; Bartolozzi, F.; Capelli, G.; Gasbarrini, G.; Gasbarrini, A. Meta-analysis: The effect of probiotic administration on antibiotic-associated diarrhea. Aliment. Pharmacol. Ther. 2002, 16, 1461–1467. [Google Scholar] [CrossRef] [Green Version]
- Johnston, B.C.; Supina, A.L.; Ospina, M.; Vohra, S. Probiotics for the prevention of pediatric antibotic-associated diarrhea. Cochrane Database Syst. Rev. 2007, 18, CD004827. [Google Scholar] [CrossRef]
- Lee, J.; Seto, D.; Bielory, L. Meta-analysis of clinical trials of probiotics for prevention and treatment of pedatric atopic dermatitis. J. Allergy Clin. Immunol. 2008, 121, 116–121. [Google Scholar] [CrossRef]
- Oleksy-Sobczak, M.; Klewicka, E.; Piekarska-Radzik, L. Exopolysaccharides production by Lactobacillus rhamnosus strains–Optimization of synthesis and extraction conditions. LWT-Food Sci. Technol. 2020, 122, 109055. [Google Scholar] [CrossRef]
- Sharareh, H.; Soltani, H.; Reid, G. Growth and survival of Lactobacillus reuteri RC-14 and Lactobacillus rhamnosus GR-1 in yogurt for use as a functional food. Innov. Food Sci. Emerg. Technol. 2009, 10, 293–296. [Google Scholar] [CrossRef]
- Jyoti, B.D.; Suresh, A.K.; Venkatesh, K.V. Effect of preculturing conditions on growth of Lactobacillus rhamnosus, on medium containing glucose and citrate. Microbiol. Res. 2004, 159, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Innocente, N.; Biasutti, M.; Rita, F.; Brichese, R.; Comi, G.; Iacumin, L. Effect of indigenous Lactobacillus rhamnosus isolated from bovine milk on microbiological characteristics and aromatic profile of traditional yogurt, Lebensm. Wiss. Technol. 2016, 66, 158–164. [Google Scholar] [CrossRef]
- Kamal, R.M.; Alnakip, M.E.; Abd El Aal, S.F.; Bayoumi, M.A. Bio-controlling capability of probiotic strain Lactobacillus rhamnosus against some common foodborne pathogens in yoghurt. Int. Dairy J. 2018, 85, 1–7. [Google Scholar] [CrossRef]
- Maćkowiak, K.; Torliński, L. Współczesne poglądy na rolę witaminy C w filozjologii i patologii człowieka. Contemporary view on the role of vitamin c in human physiology and pathology. Now. Lek. 2007, 76, 349–356. (In Polish) [Google Scholar]
- Miktus, M. Witaminy część II: Ogólna charakterystyka witaminy C. Vitamins part II: General characteristics of vitamin C. Zyw. i Zdrowie. 2000, 3, 1–4. (In Polish) [Google Scholar]
- Kleszczewska, E. Biologiczne znaczenie witaminy C ze szczególnym uwzględnieniem jej znaczenia w metabolizmie skóry. Biological role of vitamin C and importance in the skin metabolism. Pol. Merkur. Lek. 2007, 138, 462–465. (In Polish) [Google Scholar]
- Zhang, P.Y.; Xu, X.; Li, X.C. Cardiovascular diseases: Oxidative damage and antioxidant protection. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3091–3096. [Google Scholar]
- Prakash, A.; Baskaran, R. Acerola, an untapped functional superfruit: A review on latest frontiers. J. Food Sci. Technol. 2018, 55, 3373–3384. [Google Scholar] [CrossRef]
- Marques, T.R.; Caetano, A.A.; Simão, A.A.; Castro, F.C.D.O.; Ramos, V.D.O.; Corrêa, A.D. Methanolic extract of Malpighia emarginata bagasse: Phenolic compounds and inhibitory potential on digestive enzymes. Rev. Bras. Farmacogn. 2016, 26, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Hanamura, T.; Uchida, E.; Aoki, H. Changes of the composition in acerola (Malpighia emarginata DC.) fruit in relation to cultivar, growing region and maturity. J. Sci. Food Agric. 2008, 88, 1813–1820. [Google Scholar] [CrossRef]
- Hanamura, T.; Uchida, E.; Aoki, H. Skin-lightening effect of a polyphenol extract from Acerola (Malpighia emarginata DC.) fruit on UV-induced pigmentation. Biosci. Biotechnol. Biochem. 2008, 72, 3211–3218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Righetto, A.M.; Netto, F.M.; Carraro, F. Chemical composition and antioxidant activity of juices from mature and immature acerola (Malpighia emarginata DC). Food Sci. Technol. Int. 2005, 11, 315–321. [Google Scholar] [CrossRef]
- Vendramini, A.L.; Trugo, L.C. Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity. Food Chem. 2000, 71, 195–198. [Google Scholar] [CrossRef]
- Mármol, I.; Sánchez-de-Diego, C.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Therapeutic Applications of Rose Hips from Different Rosa Species. Int. J. Mol. Sci. 2017, 18, 1137. [Google Scholar] [CrossRef]
- Hvattum, E. Determination of phenolic compounds in rose hip (Rosa canina) using liquid chromatography soupled to electrospray ionization tandem mass spectrometry and diode-array detection. Rapid Commun. Mass Spetrometry 2002, 16, 655–662. [Google Scholar] [CrossRef]
- Adamczak, A.; Buchwald, W.; Zieliński, J.; Mielcarek, S. Flavonoid and organic acid content in rose hips (Rosa, L., sect. Caninae DC. EM. Christ.). Acta Biol. Crac. Ser. Bot. 2012, 54, 105–112. [Google Scholar] [CrossRef]
- Nojavan, S.; Khalilian, F.; Kiaie, F.M.; Rahimi, A.; Arabanian, A.; Chalavi, S. Extraction and quantitative determination of ascorbic acid during different maturity stages of Rosa canina L. fruit. J. Food Compos. Anal. 2008, 21, 300–305. [Google Scholar] [CrossRef]
- Ball, G.F.M. Vitamins in Foods/Analysis, Bioavailability, and Stability; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Linares, D.; Michaud, P.; Delort, A.M.; Traïkia, M.; Warrand, J. Catabolism of L-ascorbate by Lactobacillus rhamnosus GG. J. Agric. Food Chem. 2011, 59, 4140–4147. [Google Scholar] [CrossRef]
- Pérez-Vicente, A.; Gil-Izquierdo, A.; García-Viguera, C. In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. J. Agric. Food Chem. 2002, 50, 2308–2312. [Google Scholar] [CrossRef]
- Yuan, J.P.; Chen, F. Degradation of ascorbic acid in aqueous solution. J. Agric. Food Chem. 1998, 46, 5078–5082. [Google Scholar] [CrossRef]
- Budsławski, J. Zarys chemii mleka. Outline of milk chemistry Państwowe Wydawnictwo Rolnicze i Leśne; PWRiL: Warszawa, Poland, 1971. (In Polish) [Google Scholar]
- Klupsch, H.J.; Verlag, T. Acid Milk Products, Milk Beverage and Desserts; Verlag Th. Mann: Gelsenkirchen–Buer, Germany, 1992. [Google Scholar]
- Ogah, O.; Watkins, C.S.; Ubi, B.E.; Oraguzie, N.C. Phenolic compounds in Rosaceae fruit and nut crops. J. Agric. Food Chem. 2014, 62, 9369–9386. [Google Scholar] [CrossRef] [PubMed]
- Demir, N.; Yildiz, O.; Alpaslan, M.; Hayaloglu, A. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT-Food Sci. Technol. 2014, 57, 126–133. [Google Scholar] [CrossRef]
- Elmastas, M.; Demir, A.; Genc, N.; Dölek, Ü.; Günes, M. Changes in flavonoid and phenolic acid contents in some Rosa species during ripening. Food Chem. 2017, 235, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Nadpal, J.D.; Lesjak, M.M.; Šibul, F.S.; Anackov, G.T.; Cetojevic’-Simin, D.D.; Mimica-Dukic, N.M.; Beara, I.N. Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis Huds. Food Chem. 2016, 192, 907–914. [Google Scholar] [CrossRef]
- Tumbas, V.T.; Canadanovic-Brunet, J.M.; Cetojevic-Simin, D.D.; Cetkovic, G.S.; Ethilas, S.M.; Gille, L. Effect of rosehip (Rosa canina L.) phytochemicals on stable free radicals and human cancer cells. J. Sci. Food Agric. 2012, 92, 1273–1281. [Google Scholar] [CrossRef]
- Hosni, K.; Chrif, R.; Zahed, N.; Abid, I.; Medfei, W.; Sebei, H.; Brahim, N.B. Fatty acid and phenolic constituents of leaves, flowers and fruits of tunisian dog rose (Rosa canina L.). Riv. Ital. Sostanze Grasse 2010, 87, 117–123. [Google Scholar]
- Türkben, C.; Uylaşer, V.; İncedayı, B.; Çelikkol, I. Effects of different maturity periods and processes on nutritional components of rose hip (Rosa canina L.). J. Food Agric. Environ. 2010, 8, 26–30. [Google Scholar]
- Olsson, M.E.; Gustavsson, K.E.; Andersson, S.; Nilsson, A.; Duan, R.D. Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J. Agric. Food Chem. 2004, 52, 7264–7271. [Google Scholar] [CrossRef] [PubMed]
- Ilic, D.B.; Ashoor, S.H. Stability of Vitamins A and C in Fortified Yogurt. J. Dairy Sci. 1988, 71, 1492–1498. [Google Scholar] [CrossRef]
- Dave, R.I.; Shah, N.P. Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures. Int. Dairy J. 1997, 7, 435–443. [Google Scholar] [CrossRef]
- Graulet, B. Ruminant milk: A source of vitamins in human nutrition. Anim. Front. 2014, 4, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Rani, R.; Dharaiya, C.N.; Unnikrishnan, V.; Singh, B. Factors Affecting Syneresis from Yoghurt for Preparation of Chakka. Indian J. Dairy Sci. 2012, 65, 135–140. [Google Scholar]
- Peng, Y.; Horne, D.S.; Lucey, J.A. Impact of preacidification of milk and fermentation time on the properties of yogurt. J. Dairy Sci. 2009, 92, 2977–2990. [Google Scholar] [CrossRef] [Green Version]
- Oktavia, H.; Radiati, L.E.; Rosyidi, D. Evaluation of Physicochemical Properties and Exopolysaccharides Production of Single Culture and Mixed Culture in Set Yoghurt. J-PAL 2016, 7, 52–59. [Google Scholar]
- Sun, J.; Chen, H.; Qiao, Y.; Liu, G.; Leng, C.; Zhang, Y.; Lv, X.; Feng, Z. The nutrient requirements of Lactobacillus rhamnosus GG and their application to fermented milk. J. Dairy Sci. 2019, 102, 5971–5978. [Google Scholar] [CrossRef]
- Kaszuba, M.; Viapiana, A.; Wesołowski, M. Dzika róża (Rosa canina L.) jako źródło witamin i przeciwutleniaczy w diecie człowieka. Rose hip (Rosa canina L.) as a vitamin and antioxidants source in human diet. Pol. Tow. Farm. 2019, 75, 97–102. (In Polish) [Google Scholar] [CrossRef]
- Belwal, T.; Devkota, H.P.; Hassan, H.A.; Ahluwalia, S.; Ramadan, M.F.; Mocan, A.; Atanasov, A.G. Phytopharmacology of Acerola (Malpighia spp.) and its potential as functional food. Trends Food Sci. Technol. 2018, 74, 99–106. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Damin, M.R.; Alcântara, M.R.; Nunes, A.P.; Oliveira, M.N. Effects of milk supplementation with skim milk powder, whey protein concentrate and sodium caseinate on acidification kinetics, rheological properties and structure of nonfat stirred yogurt. LWT-Food Sci. Technol. 2009, 42, 1744–1750. [Google Scholar] [CrossRef]
- Macit, E.; Bakirci, İ. Effect of different stablizers on quality characteristics of the set-type yoğurt. Afr. J. Biotechnol. 2017, 16, 2142–2151. [Google Scholar] [CrossRef]
- Bourne, M. Food Texture and Viscosity Concept and Measurement; Academic Press: New York, NY, USA, 2002. [Google Scholar]
- Mousavi, M.; Heshmati, A.; Daraei Garmakhany, A.; Vahidinia, A.; Taheri, M. Texture and sensory characterization of functional yogurt supplemented with flaxseed during cold storage. Food Sci. Nutr. 2019, 7, 907–917. [Google Scholar] [CrossRef] [Green Version]
- Ognyanova, M.; Remoroza, C.; Schols, H.A.; Georgiev, Y.; Kratchanova, M.; Kratchanov, C. Isolation and structure elucidation of pectic polysaccharide from rose hip fruits (Rosa canina L.). Carbohydr. Polym. 2016, 151, 803–811. [Google Scholar] [CrossRef]
- Albersheim, P.; Darvill, A.G.; O’Neill, M.A.; Schols, H.A.; Voragen, A.G.J. An Hypothesis: The Same Six Polysaccharides are Components of the Primary Cell Walls of All Higher Plants; Visser, J., Voragen, A.G.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 47–55. [Google Scholar]
- Sah, B.N.P.; Vasiljevic, T.; McKechnie, S.; Donkor, O.N. Physicochemical, textural and rheological properties of probiotic yogurt fortified with fibre-rich pineapple peel powder during refrigerated storage. LWT-Food Sci. Technol. 2016, 65, 978–986. [Google Scholar] [CrossRef]
- Tudorica, C.M.; Jones, T.E.R.; Kuri, V.; Brennan, C.S. The effects of refined barley beta-glucan on the physico-structural properties of low-fat dairy products: Curd yield, microstructure, texture and rheology. J. Sci. Food Agric. 2004, 84, 1159–1169. [Google Scholar] [CrossRef]
- Lee, W.J.; Lucey, J.A. Formation and physical properties of yogurt. Asian-Australas. J. Anim. Sci. 2010, 23, 1127–1136. [Google Scholar] [CrossRef]
- Santillan-Urquiza, E.; Mendez-Rojas, M.A.; Velez-Ruiz, J.F. Fortification of yogurt with nano and micro sized calcium, iron and zinc, effect on the physicochemical and rheological properties. LWT-Food Sci. Technol. 2017, 80, 462–469. [Google Scholar] [CrossRef]
- Tan, P.Y.; Tan, T.B.; Chang, H.W.; Tey, B.T.; Chan, E.S.; Lai, O.M.; Baharin, B.S.; Nehdi, I.A.; Tan, C.P. Effects of storage and yogurt matrix on the stability of tocotrienols encapsulated in chitosan-alginate microcapsules. Food Chem. 2018, 241, 79–85. [Google Scholar] [CrossRef]
- Curti, C.A.; Vidal, P.M.; Curti, R.N.; Ramon, A.N. Chemical characterization, texture and consumer acceptability of yogurts supplemented with quinoa flour. Food Sci. Technol. 2017, 37, 627–631. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.H.; Lim, Y.S. Viability of Probiotic Bacteria in Yogurt Supplemented with Enzyme-Bioconverted Ginseng, Ascorbic Acid, and Yeast Extract. J. Dairy Sci. Biotechnol. 2019, 37, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Collins, F.L.; Rios-Arce, N.D.; Schepper, J.D.; Parameswaran, N.; McCabe, L.R. The Potential of Probiotics as a Therapy for Osteoporosis. Microbiol. Spectr. 2017, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Talwalkar, A.; Kailasapathy, K. A review of oxygen toxicity in probiotic yogurts: Influence on the survival of probiotic bacteria and protective techniques. Compr. Rev. Food Sci. Food Saf. 2004, 3, 117–124. [Google Scholar] [CrossRef]
- Champagne, C.P.; . Gardner, N.J.; Roy, D. Challenges in the Addition of Probiotic Cultures to Foods. Crit. Rev. Food Sci. Nutr. 2005, 45, 61–84. [Google Scholar] [CrossRef]
- Szajnar, K.; Znamirowska, A.; Kuźniar, P. Sensory and textural properties of fermented milk with viability of Lactobacillus rhamnosus and Bifidobacterium animalis ssp. lactis Bb-12 and increased calcium concentration. Int. J. Food Prop. 2020, 23, 582–598. [Google Scholar] [CrossRef] [Green Version]
- Jemaa, M.B.; Falleh, H.; Neves, M.A.; Isoda, H.; Nakajima, M.; Ksouri, R. Quality Preservation of Deliberately Contaminated Milk Using Thyme Free and Nanoemulsified Essential Oils. Food Chem. 2017, 217, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Lima, K.G.; Kruger, M.F.; Behrens, J.; Destro, M.T.; Landgraf, M.; Franco, B.D.G. Evaluation of Culture Media for Enumeration of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium animalis in the presence of Lactobacillus delbrueckii subsp bulgaricus and Streptococcus thermophilus. LWT-Food Sci. Technol. 2009, 42, 491–495. [Google Scholar] [CrossRef]
- Szajnar, K.; Znamirowska, A.; Kalicka, D. Effects of various magnesium salts for the production of milk fermented by Bifidobacterium animalis ssp. lactis Bb-12. Int. J. Food Prop. 2019, 22, 1087–1099. [Google Scholar] [CrossRef] [Green Version]
- Szajnar, K.; Pawlos, M.; Znamirowska, A. The Effect of the Addition of Chokeberry Fiber on the Quality of Sheep’s Milk Fermented by Lactobacillus rhamnosus and Lactobacillus acidophilus. Int. J. Food Sci. 2021, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- PN-A-04019:1998. In Produkty Spożywcze—Oznaczanie Zawartości Witaminy C. Food Products—Determination of Vitamin C; Polish Committee for Standardization: Warsaw, Poland, 1998. (In Polish)
- Baryłko-Pikielna, N.; Matuszewska, I. Sensoryczne Badania Żywności. Podstawy—Metody—Zastosowania. Sensory Food Testing. Fundamentals-Methods-Applications. Wyd. Nauk. Pttż. Krakow. 2014, 66, 150–157. (In Polish) [Google Scholar]
- PN-ISO 22935-2:2013-07. In Milk and Milk Products—Sensory Analysis—Part. 2: Recommended Methods for Sensory Evaluation; Polish Committee for Standardization: Warsaw, Poland, 2013. (In Polish)
Properties | Storage Time | K 1 | DR 2 | AC 3 | VC 4 | |
---|---|---|---|---|---|---|
pH | 0 | 6.65 cB ± 0.03 | 5.33 aC ± 0.11 | 6.52 bC ± 0.06 | 6.26 dC ± 0.02 | |
1 | 4.65 bA ± 0.30 | 4.86 cB ± 0.02 | 4.38 aB ± 0.01 | 4.76 bB ± 0.05 | ||
21 | 4.39 aA ± 0.09 | 4.70 cA ± 0.02 | 4.30 aA ± 0.01 | 4.42 bA± 0.01 | ||
Total acidity, g lactic acid L−1 | 1 | 0.72 bA ± 0.02 | 0.69 bA ± 0.01 | 0.83 cA ± 0.05 | 0.65 aA ± 0.04 | |
21 | 0.74 aA ± 0.14 | 0.70 aA ± 0.01 | 0.75 aA ± 0.07 | 0.72 aA ± 0.04 | ||
Vitamin C, mg 100 g−1 | 0 | 10.58 aC ± 0.36 | 43.33 bC ± 0.20 | 43.06 bC ± 0.30 | 43.72 bB ± 0.30 | |
1 | 9.52 aB ± 0.26 | 42.30 bB ± 0.20 | 42.00 bB ± 0.10 | 43.06 cB ± 0.39 | ||
21 | 5.10 aA ± 0.51 | 40.72 bA ± 0.11 | 40.30 bA ± 0.21 | 40.22 bA ± 0.10 | ||
Syneresis, % | 1 | 64.23 bA ± 1.18 | 61.93 aA ± 1.05 | 72.53 cB ± 0.59 | 61.37 aA ± 1.29 | |
21 | 65.86 aA ± 0.66 | 60.20 cA ± 0.38 | 64.05 bA ± 0.34 | 63.19 bB ± 0.96 | ||
Color | L* | 1 | 94.96 cA ± 1.85 | 58.02 aB ± 1.66 | 86.95 bB ± 1.21 | 95.04 cA ± 1.46 |
21 | 90.60 aA ± 4.26 | 51.42 aA ± 2.52 | 82.38 bA ± 0.22 | 94.20 dA ± 0.42 | ||
a* | 1 | −1.81 aA ± 0.29 | 3.88 cA ± 0.30 | 1.54 bA ± 0.25 | −1.55 aB ± 0.18 | |
21 | −1.89 aA ± 0.35 | 6.37 dB ± 0.27 | 1.69 cA ± 0.33 | −1.32 bA ± 0.02 | ||
b* | 1 | 8.54 aA ± 0.97 | 17.74 cA ± 1.21 | 9.06 bA ± 0.55 | 6.89 aA ± 0.47 | |
21 | 8.12 bA ± 0.21 | 19.24 dA ± 0.74 | 10.20 cA ± 0.89 | 6.84 aA ± 0.12 | ||
C | 1 | 8.76 aA ± 1.98 | 18.16 bA ± 1.21 | 9.19 aA ± 1.57 | 7.06 aA ± 0.47 | |
21 | 8.39 bA ± 0.24 | 20.56 dB ± 0.04 | 10.35 cA ± 0.91 | 6.96 aA ± 0.11 | ||
h0 | 1 | 102.30 cA ± 1.34 | 77.67 aB ± 0.31 | 99.72 bA ± 0.42 | 102.72 cA ± 1.52 | |
21 | 103.37 cA ± 0.28 | 72.07 aA ± 0.99 | 99.42 bA ± 0.88 | 100.92 bA ± 0.29 |
Properties | Storage Time p-Values | Source of Vitamin C p-Values | Storage Time × Source of Vitamin C p-Values |
---|---|---|---|
Vitamin C | 0.0018↑ | 0.1010 n.s. | 0.0510 n.s. |
pH | 0.0003↑ | 0.0003↑ | 0.0138↑ |
Total acidity | 0.9937 n.s. | 0.0139↑ | 0.5691 n.s. |
Syneresis | 0.0073↑ | 0.0262↑ | 0.0065↑ |
L* | 0.0907↑ | 0.0000↑ | 0.0091↑ |
a* | 0.0000↑ | 0.0000↑ | 0.0000↑ |
b* | 0.0907 n.s. | 0.0000↑ | 0.0863 n.s. |
C | 0.0719 n.s. | 0.0000↑ | 0.0482 |
h0 | 0.0503 n.s. | 0.0000↑ | 0.0512 n.s. |
Hardness | 0.7351 n.s. | 0.0000↑ | 0.8059 n.s. |
Adhesiveness | 0.6535 n.s. | 0.1805 n.s. | 0.7476↑ |
Cohesiveness | 0.3739 n.s. | 0.0860 n.s. | 0.9642 n.s. |
Springiness | 0.4008 n.s. | 0.0514 n.s. | 0.7199 n.s. |
Consistency | 0.0002↑ | 0.0006↑ | 0.0003↑ |
Milky-creamy taste | 0.0004↑ | 0.0126↑ | 0.0261↑ |
Sour taste | 0.0003↑ | 0.1947 n.s. | 0.1588 n.s. |
Taste of additives | 0.0824 n.s. | 0.0340↑ | 0.4515 n.s. |
Sweet taste | 0.0321↑ | 0.0451↑ | 0.0472↑ |
Off-taste | 0.8451 n.s. | 0.7142 n.s. | 0.9411 n.s. |
Fermentation odor | 0.0295↑ | 0.0140↑ | 0.0092↑ |
Odor of additives | 0.7419 n.s | 0.0121↑ | 0.8134 n.s. |
Off-odor | 0.6912 n.s. | 0.4120 n.s. | 0.0529 n.s. |
L. rhamnosus | 0.0228↑ | 0.0362↑ | 0.0014↑ |
Properties | Storage Time | K 1 | DR 2 | AC 3 | VC 4 |
---|---|---|---|---|---|
Hardness, N | 1 | 0.91 aA ± 0.52 | 2.29 bA ± 0.18 | 1.37 bA ± 0.20 | 0.78 aA ± 0.05 |
21 | 0.92 aA ± 0.45 | 1.93 bA ± 0.27 | 1.51 bA ± 0.04 | 0.78 aA ± 0.13 | |
Adhesiveness, mJ | 1 | 1.10 aA ± 0.95 | 1.73 bB ± 0.19 | 1.77 bA ± 0.21 | 1.70 bB ± 0.26 |
21 | 1.04 bA ± 0.17 | 1.13 bA ± 0.13 | 1.83 cA ± 0.05 | 0.67 aA ± 0.06 | |
Cohesiveness | 1 | 0.63 aA ± 0.19 | 0.55 aA ± 0.21 | 0.46 aA ± 0.02 | 0.63 aA ± 0.22 |
21 | 0.56 aA ± 0.09 | 0.50 aA ± 0.07 | 0.44 aA ± 0.12 | 0.59 aA ± 0.06 | |
Springiness, mm | 1 | 13.64 aA ± 0.54 | 14.74 aA ± 0.67 | 13.45 aA ± 0.27 | 13.94 aA ± 0.53 |
21 | 13.41 aA ± 0.75 | 14.02 aA ± 0.56 | 13.55aA ± 0.35 | 13.93aA ± 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Znamirowska, A.; Szajnar, K.; Pawlos, M. Effect of Vitamin C Source on Its Stability during Storage and the Properties of Milk Fermented by Lactobacillus rhamnosus. Molecules 2021, 26, 6187. https://doi.org/10.3390/molecules26206187
Znamirowska A, Szajnar K, Pawlos M. Effect of Vitamin C Source on Its Stability during Storage and the Properties of Milk Fermented by Lactobacillus rhamnosus. Molecules. 2021; 26(20):6187. https://doi.org/10.3390/molecules26206187
Chicago/Turabian StyleZnamirowska, Agata, Katarzyna Szajnar, and Małgorzata Pawlos. 2021. "Effect of Vitamin C Source on Its Stability during Storage and the Properties of Milk Fermented by Lactobacillus rhamnosus" Molecules 26, no. 20: 6187. https://doi.org/10.3390/molecules26206187
APA StyleZnamirowska, A., Szajnar, K., & Pawlos, M. (2021). Effect of Vitamin C Source on Its Stability during Storage and the Properties of Milk Fermented by Lactobacillus rhamnosus. Molecules, 26(20), 6187. https://doi.org/10.3390/molecules26206187