The Ectodomains of rBAT and 4F2hc Are Fake or Orphan α-Glucosidases
Abstract
:1. Introduction
2. Structural Information about 4F2hc and rBAT
3. Structure of the Ectodomains of 4F2hc and rBAT
4. Sequence and Structure Relationship of rBAT-ED and 4F2-ED with α-Glucosidases
5. Efforts to Prove Any rBAT-ED and 4F2-ED Glucosidase-Related Activity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palacín, M.; Nunes, V.; Font-Llitjós, M.; Jiménez-Vidal, M.; Fort, J.; Gasol, E.; Pineda, M.; Feliubadaló, L.; Chillarón, J.; Zorzano, A. The genetics of heteromeric amino acid transporters. Physiology 2005, 20, 112–124. [Google Scholar] [CrossRef]
- Chillarón, J.; Roca, R.; Valencia, A.; Zorzano, A.; Palacín, M. Heteromeric Amino Acid Transporters: Biochemistry, Genetics, and Physiology. Am. J. Physiol. Ren. Physiol. 2001, 281, F995–F1018. [Google Scholar] [CrossRef] [Green Version]
- Fotiadis, D.; Kanai, Y.; Palacín, M. The SLC3 and SLC7 Families of Amino Acid Transporters. Mol. Asp. Med. 2013, 34, 139–158. [Google Scholar] [CrossRef]
- Gabrisko, M.; Janecek, S. Looking for the Ancestry of the Heavy-Chain Subunits of Heteromeric Amino Acid Transporters RBAT and 4F2hc within the GH13 Alpha-Amylase Family. FEBS J. 2009, 276, 7265–7278. [Google Scholar] [CrossRef] [PubMed]
- Fort, J.; de la Ballina, L.R.; Burghardt, H.E.; Ferrer-Costa, C.; Turnay, J.; Ferrer-Orta, C.; Usón, I.; Zorzano, A.; Fernández-Recio, J.; Orozco, M.; et al. The Structure of Human 4F2hc Ectodomain Provides a Model for Homodimerization and Electrostatic Interaction with Plasma Membrane. J. Biol. Chem. 2007, 282, 31444–31452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janeček, Š.; Gabriško, M. Remarkable Evolutionary Relatedness among the Enzymes and Proteins from the α-Amylase Family. Cell. Mol. Life Sci. 2016, 73, 2707–2725. [Google Scholar] [CrossRef]
- Yan, R.; Zhou, J.; Li, Y.; Lei, J.; Zhou, Q. Structural Insight into the Substrate Recognition and Transport Mechanism of the Human LAT2-4F2hc Complex. Cell Discov. 2020, 6, 82. [Google Scholar] [CrossRef]
- Yan, R.; Li, Y.; Müller, J.; Zhang, Y.; Singer, S.; Xia, L.; Zhong, X.; Gertsch, J.; Altmann, K.H.; Zhou, Q. Mechanism of Substrate Transport and Inhibition of the Human LAT1-4F2hc Amino Acid Transporter. Cell Discov. 2021, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Li, Y.; Shi, Y.; Zhou, J.; Lei, J.; Huang, J.; Zhou, Q. Cryo-EM Structure of the Human Heteromeric Amino Acid Transporter b0,+AT-RBAT. Sci. Adv. 2020, 6, eaay6379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palacín, M.; Kanai, Y. The Ancillary Proteins of HATs: SLC3 Family of Amino Acid Transporters. Pflug. Arch. Eur. J. Physiol. 2004, 447, 490–494. [Google Scholar] [CrossRef]
- Verrey, F.; Closs, E.I.; Wagner, C.A.; Palacin, M.; Endou, H.; Kanai, Y. CATs and HATs: The SLC7 Family of Amino Acid Transporters. Pflug. Arch. Eur. J. Physiol. 2004, 447, 532–542. [Google Scholar] [CrossRef] [Green Version]
- Kantipudi, S.; Jeckelmann, J.-M.; Ucurum, Z.; Bosshart, P.D.; Fotiadis, D. The Heavy Chain 4F2hc Modulates the Substrate Affinity and Specificity of the Light Chains LAT1 and LAT2. Int. J. Mol. Sci. 2020, 21, 7573. [Google Scholar] [CrossRef] [PubMed]
- Bröer, A.; Friedrich, B.; Wagner, C.A.; Fillon, S.; Ganapathy, V.; Lang, F.; Bröer, S. Association of 4F2hc with Light Chains LAT1, LAT2 or Y+LAT2 Requires Different Domains. Biochem. J. 2001, 355, 725–731. [Google Scholar] [CrossRef]
- Rosell, A.; Meury, M.; Álvarez-Marimon, E.; Costa, M.; Pérez-Cano, L.; Zorzano, A.; Fernández-Recio, J.; Palacín, M.; Fotiadis, D. Structural Bases for the Interaction and Stabilization of the Human Amino Acid Transporter LAT2 with Its Ancillary Protein 4F2hc. Proc. Natl. Acad. Sci. USA 2014, 111, 2966–2971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantor, J.; Browne, C.D.; Ruppert, R.; Féral, C.C.; Fässler, R.; Rickert, R.C.; Ginsberg, M.H. CD98hc Facilitates B Cell Proliferation and Adaptive Humoral Immunity. Nat. Immunol. 2009, 10, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Fogelstrand, P.; Féral, C.C.; Zargham, R.; Ginsberg, M.H. Dependence of Proliferative Vascular Smooth Muscle Cells on CD98hc (4F2hc, SLC3A2). J. Exp. Med. 2009, 206, 2397–2406. [Google Scholar] [CrossRef] [Green Version]
- Cano-Crespo, S.; Chillarón, J.; Junza, A.; Fernández-Miranda, G.; García, J.; Polte, C.; de la Ballina, R.L.; Ignatova, Z.; Yanes, Ó.; Zorzano, A.; et al. CD98hc (SLC3A2) Sustains Amino Acid and Nucleotide Availability for Cell Cycle Progression. Sci. Rep. 2019, 9, 1–19. [Google Scholar] [CrossRef]
- del Amo, E.M.; Urtti, A.; Yliperttula, M. Pharmacokinetic Role of L-Type Amino Acid Transporters LAT1 and LAT2. Eur. J. Pharm. Sci. 2008, 35, 161–174. [Google Scholar] [CrossRef]
- Savaskan, N.E.; Eyüpoglu, I.Y. XCT Modulation in Gliomas: Relevance to Energy Metabolism and Tumor Microenvironment Normalization. Ann. Anat. 2010, 192, 309–313. [Google Scholar] [CrossRef]
- Maimaiti, M.; Sakamoto, S.; Sugiura, M.; Kanesaka, M.; Fujimoto, A.; Matsusaka, K.; Xu, M.; Ando, K.; Saito, S.; Wakai, K.; et al. The Heavy Chain of 4F2 Antigen Promote Prostate Cancer Progression via SKP-2. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Haynes, B.F. Human T Lymphocyte Antigens as Defined by Monoclonal Antibodies. Immunol. Rev. 1981, 57, 127–161. [Google Scholar] [CrossRef] [PubMed]
- Feral, C.C.; Nishiya, N.; Fenczik, C.A.; Stuhlmann, H.; Slepak, M.; Ginsberg, M.H. CD98hc (SLC3A2) Mediates Integrin Signaling. Proc. Natl. Acad. Sci. USA 2005, 102, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takesono, A.; Moger, J.; Faroq, S.; Cartwright, E.; Dawid, I.B.; Wilson, S.W.; Kudoh, T. Solute Carrier Family 3 Member 2 (Slc3a2) Controls Yolk Syncytial Layer (YSL) Formation by Regulating Microtubule Networks in the Zebrafish Embryo. Proc. Natl. Acad. Sci. USA 2012, 109, 3371–3376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenczik, C.; Zent, R.; Dellos, M.; Calderwood, D.; Satriano, J.; Kelly, C.; Ginsberg, M. Distinct Domains of CD98hc Regulate Integrins and Amino Acid Transport. J. Biol. Chem. 2001, 276, 8746–8752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zent, R.; Fenczik, C.A.; Calderwood, D.A.; Liu, S.; Dellos, M.; Ginsberg, M.H. Class- and Splice Variant-Specific Association of CD98 with Integrin Beta Cytoplasmic Domains. J. Biol. Chem. 2000, 275, 5059–5064. [Google Scholar] [CrossRef] [Green Version]
- Poettler, M.; Unseld, M.; Braemswig, K.; Haitel, A.; Zielinski, C.C.; Prager, G.W. CD98hc (SLC3A2) Drives Integrin-Dependent Renal Cancer Cell Behavior. Mol. Cancer 2013, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hara, K.; Kudoh, H.; Enomoto, T.; Hashimoto, Y.; Masuko, T. Enhanced Tumorigenicity Caused by Truncation of the Extracellular Domain of GP125/CD98 Heavy Chain. Oncogene 2000, 19, 6209–6215. [Google Scholar] [CrossRef] [Green Version]
- Dalton, P.; Christian, H.C.; Redman, C.W.; Sargent, I.L.; Boyd, C.A. Membrane Trafficking of CD98 and Its Ligand Galectin 3 in BeWo Cells—Implication for Placental Cell Fusion. FEBS J. 2007, 274, 2715–2727. [Google Scholar] [CrossRef]
- Bröer, S.; Palacín, M. The Role of Amino Acid Transporters in Inherited and Acquired Diseases. Biochem. J. 2011, 436, 193–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calonge, M.J.; Gasparini, P.; Chillarón, J.; Chillón, M.; Gallucci, M.; Rousaud, F.; Zelante, L.; Testar, X.; Dallapiccola, B.; di Silverio, F. Cystinuria Caused by Mutations in RBAT, a Gene Involved in the Transport of Cystine. Nat. Genet. 1994, 6, 420–425. [Google Scholar] [CrossRef]
- Bartoccioni, P.; Rius, M.; Zorzano, A.; Palacín, M.; Chillarón, J. Distinct Classes of Trafficking RBAT Mutants Cause the Type I Cystinuria Phenotype. Hum. Mol. Genet. 2008, 17, 1845–1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, E.; Jiménez-Vidal, M.; Calvo, M.; Zorzano, A.; Tebar, F.; Palacín, M.; Chillarón, J. The Structural and Functional Units of Heteromeric Amino Acid Transporters. The Heavy Subunit RBAT Dictates Oligomerization of the Heteromeric Amino Acid Transporters. J. Biol. Chem. 2006, 281, 26552–26561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Grund, T.N.; Welsch, S.; Mills, D.J.; Michel, M.; Safarian, S.; Michel, H. Structural Basis for Amino Acid Exchange by a Human Heteromeric Amino Acid Transporter. Proc. Natl. Acad. Sci. USA 2020, 117, 21281–21287. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Wiriyasermkul, P.; Moriyama, S.; Mills, D.J.; Kühlbrandt, W.; Nagamori, S. Ca2+-Mediated Higher-Order Assembly of b0,+AT–RBAT Is a Key Step for System b0,+ Biogenesis and Cystinuria. bioRxiv 2021. [Google Scholar] [CrossRef]
- Deuschle, F.C.; Morath, V.; Schiefner, A.; Brandt, C.; Ballke, S.; Reder, S.; Steiger, K.; Schwaiger, M.; Weber, W.; Skerra, A. Development of a High Affinity Anticalin ® Directed against Human CD98hc for Theranostic Applications. Theranostics 2020, 10, 2172–2187. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Wiriyasermkul, P.; Jin, C.; Quan, L.; Ohgaki, R.; Okuda, S.; Kusakizako, T.; Nishizawa, T.; Oda, K.; Ishitani, R.; et al. Cryo-EM Structure of the Human L-Type Amino Acid Transporter 1 in Complex with Glycoprotein CD98hc. Nat. Struct. Mol. Biol. 2019, 26, 510–517. [Google Scholar] [CrossRef]
- Yan, R.; Zhao, X.; Lei, J.; Zhou, Q. Structure of the Human LAT1–4F2hc Heteromeric Amino Acid Transporter Complex. Nature 2019, 568, 127–130. [Google Scholar] [CrossRef]
- Parker, J.L.; Deme, J.C.; Kolokouris, D.; Kuteyi, G.; Biggin, P.C.; Lea, S.M.; Newstead, S. Molecular Basis for Redox Control by the Human Cystine/Glutamate Antiporter System Xc−. bioRxiv 2021. [Google Scholar] [CrossRef]
- Oda, K.; Lee, Y.; Wiriyasermkul, P.; Tanaka, Y.; Takemoto, M.; Yamashita, K.; Nagamori, S.; Nishizawa, T.; Nureki, O. Consensus Mutagenesis Approach Improves the Thermal Stability of System Xc− Transporter, XCT, and Enables Cryo-EM Analyses. Protein Sci. 2020, 29, 2398–2407. [Google Scholar] [CrossRef]
- Janecek, S.; Svensson, B.; Henrissat, B. Domain Evolution in the Alpha-Amylase Family. J. Mol. Evol. 1997, 45, 322–331. [Google Scholar] [CrossRef]
- Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The Carbohydrate-Active Enzymes Database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [Green Version]
- Svensson, B. Protein Engineering in the α-Amylase Family: Catalytic Mechanism, Substrate Specificity, and Stability. Plant Mol. Biol. 1994, 25, 141–157. [Google Scholar] [CrossRef]
- Janeček, Š. How many conserved sequence regions are there in the alpha-amylase family? Biologia 2002, 57 (Suppl. S11), 29–41. [Google Scholar]
- Kuriki, T.; Imanaka, T. The Concept of the Alpha-Amylase Family: Structural Similarity and Common Catalytic Mechanism. J. Biosci. Bioeng. 1999, 87, 557–565. [Google Scholar] [CrossRef]
- MacGregor, E.A.; Janecek, S.; Svensson, B. Relationship of Sequence and Structure to Specificity in the Alpha-Amylase Family of Enzymes. Biochim. Biophys. Acta 2001, 1546, 1–20. [Google Scholar] [CrossRef]
- Seo, E.S.; Christiansen, C.; Abou Hachem, M.; Nielsen, M.M.; Fukuda, K.; Bozonnet, S.; Blennow, A.; Aghajari, N.; Haser, R.; Svensson, B. An Enzyme Family Reunion—Similarities, Differences and Eccentricities in Actions on α-Glucans. Biologia 2008, 63, 967–979. [Google Scholar] [CrossRef]
- MacGregor, E.A. An Overview of Clan GH-H and Distantly-Related Families. Biologia 2005, 60, 5–12. [Google Scholar]
- van der Maarel, M.J.; van der Veen, B.; Uitdehaag, J.C.; Leemhuis, H.; Dijkhuizen, L. Properties and Applications of Starch-Converting Enzymes of the Alpha-Amylase Family. J. Biotechnol. 2002, 94, 137–155. [Google Scholar] [CrossRef] [Green Version]
- Kuriki, T.; Takata, H.; Yanase, M.; Ohdan, K.; Fujii, K.; Terada, Y.; Takaha, T.; Hondoh, H.; Matsuura, Y.; Imanaka, T. The Concept of the ALPHA-Amylase Family: A Rational Tool for Interconverting Glucanohydrolases/Glucanotransferases, and Their Specificities. J. Appl. Glycosci. 2006, 53, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Majzlová, K.; Pukajová, Z.; Janeček, S. Tracing the Evolution of the α-Amylase Subfamily GH13_36 Covering the Amylolytic Enzymes Intermediate between Oligo-1,6-Glucosidases and Neopullulanases. Carbohydr. Res. 2013, 367, 48–57. [Google Scholar] [CrossRef]
- Stam, M.R.; Danchin, E.G.J.; Rancurel, C.; Coutinho, P.M.; Henrissat, B. Dividing the Large Glycoside Hydrolase Family 13 into Subfamilies: Towards Improved Functional Annotations of α-Amylase-Related Proteins. Protein Eng. Des. Sel. 2006, 19, 555–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolàs-Aragó, A.; Fort, J.; Palacín, M.; Errasti-Murugarren, E. Rush Hour of LATs towards Their Transport Cycle. Membranes 2021, 11, 602. [Google Scholar] [CrossRef] [PubMed]
- Rius, M.; Sala, L.; Chillarón, J. The Role of N-Glycans and the C-Terminal Loop of the Subunit RBAT in the Biogenesis of the Cystinuria-Associated Transporter. Biochem. J. 2016, 473, 233–244. [Google Scholar] [CrossRef]
- Rius, M.; Chillarón, J. Carrier Subunit of Plasma Membrane Transporter Is Required for Oxidative Folding of Its Helper Subunit. J. Biol. Chem. 2012, 287, 18190–18200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Declerck, N.; Machius, M.; Joyet, P.; Wiegand, G.; Huber, R.; Gaillardin, C. Hyperthermostabilization of Bacillus Licheniformis Alpha-Amylase and Modulation of Its Stability over a 50 Degrees C Temperature Range. Protein Eng. 2003, 16, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Torrance, J.W.; Macarthur, M.W.; Thornton, J.M. Evolution of Binding Sites for Zinc and Calcium Ions Playing Structural Roles. Proteins 2008, 71, 813–830. [Google Scholar] [CrossRef]
- Chai, K.P.; Othman, N.F.; Teh, A.H.; Ho, K.L.; Chan, K.G.; Shamsir, M.S.; Goh, K.M.; Ng, C.L. Crystal Structure of Anoxybacillus α-Amylase Provides Insights into Maltose Binding of a New Glycosyl Hydrolase Subclass. Sci. Rep. 2016, 6, 23126. [Google Scholar] [CrossRef] [Green Version]
- Pineda, M.; Wagner, C.A.; Bröer, A.; Stehberger, P.A.; Kaltenbach, S.; Gelpí, J.L.; Martín Del Río, R.; Zorzano, A.; Palacín, M.; Lang, F.; et al. Cystinuria-Specific RBAT(R365W) Mutation Reveals Two Translocation Pathways in the Amino Acid Transporter RBAT-b0,+AT. Biochem. J. 2004, 377, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Takashima, S.; Amano, J.; Takashima, S.; Amano, J. Glycosylation and Secretion of Human α-Amylases. Adv. Biol. Chem. 2012, 2, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Ochiai, A.; Sugai, H.; Harada, K.; Tanaka, S.; Ishiyama, Y.; Ito, K.; Tanaka, T.; Uchiumi, T.; Taniguchi, M.; Mitsui, T. Crystal Structure of α-Amylase from Oryza sativa: Molecular Insights into Enzyme Activity and Thermostability. OUP 2014, 78, 989–997. [Google Scholar] [CrossRef] [Green Version]
- Eriksen, S.H.; Jensen, B.; Olsen, J. Effect of N-Linked Glycosylation on Secretion, Activity, and Stability of Alpha-Amylase from Aspergillus oryzae. Curr. Microbiol. 1998, 37, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Xu, B.; Bai, Y.; Luo, H.; Ma, R.; Shi, P.; Yao, B. Role of N-Linked Glycosylation in the Enzymatic Properties of a Thermophilic GH 10 Xylanase from Aspergillus fumigatus Expressed in Pichia pastoris. PLoS ONE 2017, 12, e0171111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnay, J.; Fort, J.; Olmo, N.; Santiago-Gómez, A.; Palacín, M.; Lizarbe, M.A.M.A. Structural Characterization and Unfolding Mechanism of Human 4F2hc Ectodomain. Biochim. Biophys. Acta Proteins Proteom. 2011, 1814, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Kumar, V. Crystal Structure of BinAB Toxin Receptor (Cqm1) Protein and Molecular Dynamics Simulations Reveal the Role of Unique Ca(II) Ion. Int. J. Biol. Macromol. 2019, 140, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Saburi, W.; Gai, Z.; Kato, K.; Ojima-Kato, T.; Yu, J.; Komoda, K.; Kido, Y.; Matsui, H.; Mori, H.; et al. Structural Analysis of the α-Glucosidase HaG Provides New Insights into Substrate Specificity and Catalytic Mechanism. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015, 71, 1382–1391. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Miyake, H.; Kusunoki, M.; Osaki, S. Steric Hindrance by 2 Amino Acid Residues Determines the Substrate Specificity of Isomaltase from Saccharomyces cerevisiae. J. Biosci. Bioeng. 2011, 112, 545–550. [Google Scholar] [CrossRef]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed Atlas of Surface Topography of Proteins. Nucleic Acids Res. 2018, 46, W363–W367. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Hata, Y.; Kizaki, H.; Katsube, Y.; Suzuki, Y. The Refined Crystal Structure of Bacillus cereus Oligo-1,6-Glucosidase at 2.0 Å Resolution: Structural Characterization of Proline-Substitution Sites for Protein Thermostabilization. J. Mol. Biol. 1997, 269, 142–153. [Google Scholar] [CrossRef]
- Chang, N.C.; Hung, S.I.; Hwa, K.Y.; Kato, I.; Chen, J.E.; Liu, C.H.; Chang, A.C. Macrophage Protein, Ym1, Transiently Expressed during Inflammation Is a Novel Mammalian Lectin. J. Biol. Chem. 2001, 276, 17497–17506. [Google Scholar] [CrossRef] [Green Version]
- Hosokawa, N.; Wada, I.; Hasegawa, K.; Yorihuzi, T.; Tremblay, L.O.; Herscovics, A.; Nagata, K. A Novel ER α-Mannosidase-like Protein Accelerates ER-Associated Degradation. EMBO Rep. 2001, 2, 415. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, G.; Epp, O.; Huber, R. The Crystal Structure of Porcine Pancreatic Alpha-Amylase in Complex with the Microbial Inhibitor Tendamistat. J. Mol. Biol. 1995, 247, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Hughes, R.C. Macrophage Surface Glycoproteins Binding to Galectin-3 (Mac-2-Antigen). Glycoconj. J. 1997, 14, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Charrier, L.; Gewirtz, A.; Sitaraman, S.; Merlin, D. CD98 and Intracellular Adhesion Molecule I Regulate the Activity of Amino Acid Transporter LAT-2 in Polarized Intestinal Epithelia. J. Biol. Chem. 2003, 278, 23672–23677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Hemler, M.E. Metabolic Activation-Related CD147-CD98 Complex. Mol. Cell. Proteom. 2005, 4, 1061–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakugawa, K.; Hattori, M.; Beauchemin, N.; Minato, N. Activation of CEA-CAM-1-Mediated Cell Adhesion via CD98: Involvement of PKCdelta. FEBS Lett. 2003, 552, 184–188. [Google Scholar] [CrossRef] [Green Version]
Name of Structure | Uniprot | Residues | Tech. | (Å) | PDB | Structure Details | Ref. |
---|---|---|---|---|---|---|---|
human 4F2hc-ED | P08195 | 212–630 | X-ray | 2.10 | 2DH2 | Monomer | [5] |
P08195 | 212–630 | X-ray | 2.80 | 2DH3 | Homodimer | [5] | |
P08195 | 212–630 | X-ray | 1.80 | 6S8V | Monomer-Antivalin P3D11 | [35] | |
P08195 | 210–630 | Cryo-EM | 4.10 | 6JMR | + Fab HBJ127 + Fab MEM-108 | [36] | |
mouse 4F2hc-ED | P10852 | 105–526 | X-ray | 2.75 | 6SUA | Monomer-Lipocalin C1B12 | [35] |
P10852 | 108–526 | X-ray | 2.10 | 6I9Q | Monomer | [35] | |
human 4F2hc- LAT1 | J3KPF3 | 163–631 | Cryo-EM | 3.50 | 6IRT | (A36E) + BCH* | [37] |
J3KPF3 | 163–631 | Cryo-EM | 3.30 | 6IRS | (A36E) | [37] | |
P08195 | 180–630 | Cryo-EM | 3.31 | 6JMQ | + MEM-108 Fab | [36] | |
J3KPF3 | 161–631 | Cryo-EM | 2.90 | 7DSK | + JX-075* | [8] | |
J3KPF3 | 161–631 | Cryo-EM | 2.90 | 7DSL | + JX-078* | [8] | |
J3KPF3 | 161–631 | Cryo-EM | 3.10 | 7DSN | + JX-119* | [8] | |
J3KPF3 | 162–631 | Cryo-EM | 3.40 | 7DSQ | + Diiodo-Tyr* | [8] | |
human 4F2hc-xCT | Cryo-EM | 3.40 | 7P9V | [38] | |||
P08195 | 162–630 | Cryo-EM | 6.20 | 7CCS | (consensus mutated) | [39] | |
human 4F2hc-LAT2 | J3KPF3 | 163–631 | Cryo-EM | 2.90 | 7CMI | + l-Leu | [7] |
J3KPF3 | 163–631 | Cryo-EM | 3.40 | 7CMH | + l-Trp | [7] | |
ovine rBAT-ED | W5P8K2 | Cryo-EM | 2.68 | 7NF7 | Monomer | [34] | |
human rBAT homodimer | Q07837 | 92–685 | Cryo-EM | 2.80 | 6YUZ | Homodimer | [33] |
human rBAT-b0,+AT heterotetramer | Q07837 | 63–685 | Cryo-EM | 2.70 | 6LID | [9] | |
Q07837 | 63–685 | Cryo-EM | 2.30 | 6LI9 | + l-Arg | [9] | |
Q07837 | 92–685 | Cryo-EM | 2.90 | 6YUP | [33] | ||
ovine rBAT-b0,+AT heterotetramer | W5P8K2 | Cryo-EM | 2.86 | 7NF8 | Reconstituted in ND | [34] | |
ovine rBAT-b0,+AT heterodimer | W5P8K2 | Cryo-EM | 3.05 | 7NF6 | Reconstituted in ND | [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fort, J.; Nicolàs-Aragó, A.; Palacín, M. The Ectodomains of rBAT and 4F2hc Are Fake or Orphan α-Glucosidases. Molecules 2021, 26, 6231. https://doi.org/10.3390/molecules26206231
Fort J, Nicolàs-Aragó A, Palacín M. The Ectodomains of rBAT and 4F2hc Are Fake or Orphan α-Glucosidases. Molecules. 2021; 26(20):6231. https://doi.org/10.3390/molecules26206231
Chicago/Turabian StyleFort, Joana, Adrià Nicolàs-Aragó, and Manuel Palacín. 2021. "The Ectodomains of rBAT and 4F2hc Are Fake or Orphan α-Glucosidases" Molecules 26, no. 20: 6231. https://doi.org/10.3390/molecules26206231
APA StyleFort, J., Nicolàs-Aragó, A., & Palacín, M. (2021). The Ectodomains of rBAT and 4F2hc Are Fake or Orphan α-Glucosidases. Molecules, 26(20), 6231. https://doi.org/10.3390/molecules26206231