Stereoselective Synthesis of the Di-Spirooxindole Analogs Based Oxindole and Cyclohexanone Moieties as Potential Anticancer Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of (4a–n)
2.2. Biological Activity
2.3. Molecular Docking Study
3. Materials and Methods
3.1. General Procedure for the Synthesis of Di-spirooxindoles (4a–n) (GP1)
3.1.1. (1. S,1′S,3′S,4a′S,8a′S,9a′R)-3-((E)-Benzylidene)-1′-phenyl-4a′,5′,6′,7′,8′,8a′,9′,9a′-octahydro-1′H-dispiro[cyclohexane-1,2′-pyrrolo[1,2-a]indole-3′,3″-indoline]-2,2″-dione (4a)
3.1.2. (1. S,1′S,3′S,4a′S,8a′S,9a′R)-3-((E)-Benzylidene)-6″-chloro-1′-phenyl-4a′,5′,6′,7′,8′,8a′,9′,9a′-octahydro-1′H-dispiro[cyclohexane-1,2′-pyrrolo[1,2-a]indole-3′,3″-indoline]-2,2″-dione (4b)
3.1.3. (1. S,1′S,3′S,4a′S,8a′S,9a′R)-3-((E)-Benzylidene)-5″-fluoro-1′-phenyl-4a′,5′,6′,7′,8′,8a′,9′,9a′-octahydro-1′H-dispiro[cyclohexane-1,2′-pyrrolo[1,2-a]indole-3′,3″-indoline]-2,2″-dione (4c)
3.1.4. (1. S,1′S,3′S,4a′S,8a′S,9a′R)-3-((E)-Benzylidene)-5″-nitro-1′-phenyl-4a′,5′,6′,7′,8′,8a′,9′,9a′-octahydro-1′H-dispiro[cyclohexane-1,2′-pyrrolo[1,2-a]indole-3′,3″-indoline]-2,2″-dione (4d)
3.1.5. (1. S,1′S,3′S,4a′S,8a′S,9a′R)-3-((E)-Benzylidene)-5″-methoxy-1′-phenyl-4a′,5′,6′,7′,8′,8a′,9′,9a′-octahydro-1′H-dispiro[cyclohexane-1,2′-pyrrolo[1,2-a]indole-3′,3″-indoline]-2,2″-dione (4e)
3.1.6. (1. S,1′S,3′S,4a′S,8a′S,9a′R)-3-((E)-4-Bromobenzylidene)-1′-(4-bromophenyl)-6″-chloro-4a′,5′,6′,7′,8′,8a′,9′,9a′-octahydro-1′H-dispiro[cyclohexane-1,2′-pyrrolo[1,2-a]indole-3′,3″-indoline]-2,2″-dione (4f)
3.1.7. (1. S,1′S,3′S,4a′S,8a′S,9a′R)-3-((E)-4-bromobenzylidene)-1′-(4-bromophenyl)-5″-nitro-4a′,5′,6′,7′,8′,8a′,9′,9a′-octahydro-1′H-dispiro[cyclohexane-1,2′-pyrrolo[1,2-a]indole-3′,3″-indoline]-2,2″-dione (4g)
3.1.8. (1. S,1′S,3′S,4a′S,8a′S,9a′R)-6″-Chloro-3-((E)-3-fluorobenzylidene)-1′-(3-fluorophenyl)-4a′,5′,6′,7′,8′,8a′,9′,9a′-octahydro-1′H-dispiro[cyclohexane-1,2′-pyrrolo[1,2-a]indole-3′,3″-indoline]-2,2″-dione (4h)
3.1.9. (1. S,1′S,3′S,4a′S,8a′S,9a′R)-3-((E)-3-Fluorobenzylidene)-1′-(3-fluorophenyl)-5″-nitro-4a′,5′,6′,7′,8′,8a′,9′,9a′-octahydro-1′H-dispiro[cyclohexane-1,2′-pyrrolo[1,2-a]indole-3′,3″-indoline]-2,2″-dione (4i)
3.1.10. (1. S,1′S,3′S,4a′S,8a′S,9a′R)-3-((E)-3-Fluorobenzylidene)-1′-(3-fluorophenyl)-5″-methoxy-4a′,5′,6′,7′,8′,8a′,9′,9a′-octahydro-1′H-dispiro[cyclohexane-1,2′-pyrrolo[1,2-a]indole-3′,3″-indoline]-2,2″-dione (4j)
3.1.11. (1. S,1′S,3′S,4a′S,8a′S,9a′R)-3-((E)-3-Bromobenzylidene)-1′-(3-bromophenyl)-6″-chloro-4a′,5′,6′,7′,8′,8a′,9′,9a′-octahydro-1′H-dispiro[cyclohexane-1,2′-pyrrolo[1,2-a]indole-3′,3″-indoline]-2,2″-dione (4k)
3.1.12. (1. S,1′S,3′S,4a′S,8a′S,9a′R)-6″-Chloro-3-((E)-4-fluorobenzylidene)-1′-(4-fluorophenyl)-4a′,5′,6′,7′,8′,8a′,9′,9a′-octahydro-1′H-dispiro[cyclohexane-1,2′-pyrrolo[1,2-a]indole-3′,3″-indoline]-2,2″-dione (4l)
3.1.13. (1. S,1′S,3′S,4a′S,8a′S,9a′R)-6″-Chloro-3-((E)-4-(trifluoromethyl)benzylidene)-1′-(4-(trifluoromethyl)phenyl)-4a′,5′,6′,7′,8′,8a′,9′,9a′-octahydro-1′H-dispiro[cyclohexane-1,2′-pyrrolo[1,2-a]indole-3′,3″-indoline]-2,2″-dione (4m)
3.1.14. (1. S,1′S,3′S,4a′S,8a′S,9a′R)-5″-Methyl-3-((E)-4-(trifluoromethyl)benzylidene)-1′-(4-(trifluorom-thyl)phenyl)-4a′,5′,6′,7′,8′,8a′,9′,9a′-octahydro-1′H-dispiro[cyclohexane-1,2′-pyrrolo[1,2-a]indole-3′,3″-indoline]-2,2″-dione (4n)
3.2. The Biological Activity Assay Protocols
3.3. Molecular Docking Methodology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.Z.; Wei, X.; Shi, J.Y. Therapeutic potential of spirooxindoles as agents for various diseases. Pract. J. Clin. Med. 2018, 15, 255–260. [Google Scholar]
- Li, G.; Lou, H.X. Strategies to diversify natural products for drug discovery. Med. Res. Rev. 2018, 38, 1255–1294. [Google Scholar] [CrossRef] [PubMed]
- Aziz, Y.M.A.; Lotfy, G.; Said, M.M.; El-Ashry, E.-S.H.; El Tamany, E.-S.H.; Soliman, S.M.; Abu-Serie, M.M.; Teleb, M.; Yousuf, S.; Domingo, L.R.; et al. Design, synthesis, chemical and biochemical insights on to novel hybrid spirooxindoles-based p53-MDM2 inhibitors with potential Bcl2 signaling attenuation. Front. Chem.-Supramol. Chem 2021, 915, in press. [Google Scholar] [CrossRef]
- Omer, A.M.; Ahmed, M.S.; El-Subruiti, G.M.; Khalifa, R.E.; Eltaweil, A.S. pH-Sensitive alginate/carboxymethyl chitosan/aminated chitosan microcapsules for efficient encapsulation and delivery of diclofenac sodium. Pharmaceutics 2021, 13, 338. [Google Scholar] [CrossRef]
- Hosny, M.; Fawzy, M.; Abdelfatah, A.M.; Fawzy, E.E.; Eltaweil, A.S. Comparative study on the potentialities of two halophytic species in the green synthesis of gold nanoparticles and their anticancer, antioxidant and catalytic efficiencies. Adv. Powder Technol. 2021, 32, 3220–3233. [Google Scholar] [CrossRef]
- Omer, A.M.; Tamer, T.M.; Khalifa, R.E.; Eltaweil, A.S.; Agwa, M.M.; Sabra, S.; Abd-Elmonem, M.S.; Mohy-Eldin, M.S.; Ziora, Z.M. Formulation and antibacterial activity evaluation of quaternized aminochitosan membrane for wound dressing applications. Polymers 2021, 13, 2428. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Singh, M.; Chadha, N.; Silakari, O. Oxindole: A chemical prism carrying plethora of therapeutic benefits. Eur. J. Med. Chem. 2016, 123, 858–894. [Google Scholar] [CrossRef]
- Tantawy, M.A.; Nafie, M.S.; Elmegeed, G.A.; Ali, I.A. Auspicious role of the steroidal heterocyclic derivatives as a platform for anti-cancer drugs. Bioorg. Chem. 2017, 73, 128–146. [Google Scholar] [CrossRef]
- Panda, S.S.; Jones, R.A.; Bachawala, P.; Mohapatra, P.P. Spirooxindoles as potential pharmacophores. Mini.-Rev. Med. Chem. 2017, 17, 1515–1536. [Google Scholar] [CrossRef]
- Lotfy, G.A.; Aziz, Y.M.A.; Said, M.M.; El Ashry, E.S.H.; El Tamany, E.S.H.; Abu-Serie, M.M.; Teleb, M.; Dömling, A.; Barakat, A. Molecular hybridization design and synthesis of novel spirooxindole-based MDM2 inhibitors endowed with BCL2 signaling attenuation; a step towards the next generation p53 activators. Bioorg. Chem. 2021, 105427, in press. [Google Scholar] [CrossRef]
- Mei, G.J.; Shi, F. Catalytic asymmetric synthesis of spirooxindoles: Recent developments. Chem. Commun. 2018, 54, 6607–6621. [Google Scholar] [CrossRef]
- Monteiro, Â.; Gonçalves, L.M.; Santos, M.M. Synthesis of novel spiropyrazoline oxindoles and evaluation of cytotoxicity in cancer cell lines. Eur. J. Med. Chem. 2014, 79, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, X.W.; Wang, D.D.; Tian, M.Y.; Han, S.N.; Feng, T.T.; Liu, X.L.; Mei, R.Q.; Zhou, Y. Diversity-oriented one-pot multicomponent synthesis of spirooxindole derivatives and their biological evaluation for anticancer activities. Tetrahedron 2016, 72, 8523–8536. [Google Scholar] [CrossRef]
- Barakat, A.; Islam, M.S.; Al Majid, A.M.; Ghawas, H.M.; El-Senduny, F.F.; Badria, F.A.; Elshaier, Y.A.M.M.; Ghabbour, H.A. Substituted spirooxindole derivatives as potent anticancer agents through inhibition of phosphodiesterase 1. RSC Adv. 2018, 8, 14335. [Google Scholar] [CrossRef] [Green Version]
- Lotfy, G.; Said, M.M.; El Sayed, H.; El Sayed, H.; Al-Dhfyan, A.; Aziz, Y.M.A.; Barakat, A. Synthesis of new spirooxindole-pyrrolothiazoles derivatives: Anti-cancer activity and molecular docking. Bioorg. Med. Chem. 2017, 25, 1514–1523. [Google Scholar] [CrossRef] [PubMed]
- Lotfy, G.; El Sayed, H.; Said, M.M.; Aziz, Y.M.A.; Al-Dhfyan, A.; Al-Majid, A.M.; Barakat, A. Regio- and stereoselective synthesis of novel spiro-oxindole via 1,3-dipolar cycloaddition reaction. Anti-cancer and molecular docking studies. J. Photochem. Photobiol. B 2018, 180, 98–108. [Google Scholar] [CrossRef]
- Tumskiy, R.S.; Burygin, G.L.; Anis’kov, A.A.; Klochkova, I.N. Synthesis of novel spirooxindole-pyrrolidines and evaluation of their cytotoxic activity. Pharmacol. Rep. 2019, 71, 357–360. [Google Scholar] [CrossRef]
- Barakat, A.; Islam, M.S.; Ghawas, H.M.; Al-Majid, A.M.; El-Senduny, F.F.; Badria, F.A.; Elshaier, Y.A.; Ghabbour, H.A. Design and synthesis of new substituted spirooxindoles as potential inhibitors of the MDM2–p53 interaction. Bioorg. Chem. 2019, 86, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Altowyan, M.S.; Atef, S.; Al-Agamy, M.H.; Soliman, S.M.; Ali, M.; Shaik, M.R.; Choudhary, M.I.; Ghabbour, H.A.; Barakat, A. Synthesis and characterization of a spiroindolone pyrothiazole analog via X-ray, biological, and computational studies. J. Mol. Struct. 2019, 1186, 384–392. [Google Scholar] [CrossRef]
- Al-Majid, A.M.; Ghawas, H.M.; Islam, M.S.; Soliman, S.M.; El-Senduny, F.F.; Badria, F.A.; Ali, M.; Shaik, M.R.; Ghabbour, H.A.; Barakat, A. Synthesis of spiroindolone analogue via three components reaction of olefin with isatin and sarcosine: Anti-proliferative activity and computational studies. J. Mol. Struct. 2020, 1204, 127500. [Google Scholar]
- Islam, M.S.; Ghawas, H.M.; El-Senduny, F.F.; Al-Majid, A.M.; Elshaier, Y.A.; Badria, F.A.; Barakat, A. Synthesis of new thiazolo-pyrrolidine-(spirooxindole) tethered to 3-acylindole as anticancer agents. Bioorg. Chem. 2019, 82, 423–430. [Google Scholar] [CrossRef]
- Lotfy, G.; Aziz, Y.M.A.; Said, M.M.; El Ashry, E.S.H.; El Tamany, E.S.H.; Barakat, A.; Ghabbour, H.A.; Yousuf, S.; Ul-Haq, Z.; Choudhary, M.I. Synthesis of oxindole analogues, biological activity and in silico investigation. ChemistrySelect 2019, 4, 10510–10516. [Google Scholar] [CrossRef]
- Al-Majid, A.M.; Soliman, S.M.; Haukka, M.; Ali, M.; Islam, M.S.; Shaik, M.R.; Barakat, A. Design, construction, and characterization of a new Regioisomer and diastereomer material based on the spirooxindole scaffold incorporating a sulphone function. Symmetry 2020, 12, 1337. [Google Scholar] [CrossRef]
- Chen, S.; Xiao, L.; Chen, Z.Y. Synthesis and antitumor activities of novel pyrimidine-fused spiropyrrolidine oxindoles. Chin. J. Synth. Chem. 2017, 25, 14–17. [Google Scholar]
- Arumugam, N.; Almansour, A.I.; Kumar, R.S.; Periasamy, V.S.; Athinarayanan, J.; Alshatwi, A.A.; Govindasami, P.; Altaf, M.; Menéndez, J.C. Regio- and diastereoselective synthesis of anticancer spirooxindoles derived from tryptophan and histidine via three-component 1,3-dipolar cycloadditions in an ionic liquid. Tetrahedron 2018, 74, 5358–5366. [Google Scholar] [CrossRef]
- Mali, P.R.; Shirsat, P.K.; Khomane, N.; Nayak, L.; Nanubolu, J.B.; Meshram, H.M. 1,3-dipolar cycloaddition reactions for the synthesis of novel oxindole derivatives and their cytotoxic properties. ACS Comb. Sci. 2017, 19, 633–639. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Y.X.; Sun, J.; Yan, C.G. A [3+2] cycloaddition reaction for the synthesis of spiro[indoline-3,3’-pyrrolidines] and evaluation of cytotoxicity towards cancer cells. New J. Chem. 2019, 43, 8903–8910. [Google Scholar] [CrossRef]
- Shyamsivappan, S.; Vivek, R.; Saravanan, A.; Arasakumar, T.; Subashini, G.; Suresh, T.; Shankar, R.; Mohan, P.S. Synthesis and X-ray study of dispiro 8-nitroquinolone analogues and their cytotoxic properties against human cervical cancer HeLa cells. Medchemcomm 2019, 10, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Gutiérrez, M.; Domingo, L.R. Unravelling the Mysteries of the [3+2] Cycloaddition Reactions. Eur. J. Org. Chem. 2019, 267–282. [Google Scholar] [CrossRef]
- Domingo, L.R.; Chamorro, E.; Pérez, P. Understanding the high reactivity of the azomethine ylides in [3+2] cycloaddition reactions. Lett. Org. Chem. 2010, 7, 432–439. [Google Scholar] [CrossRef]
- Domingo, L.R.; Kula, K.; Ríos-Gutiérrez, M. Unveiling the reactivity of cyclic azomethine ylides in [3+2] cycloaddition reactions within the molecular electron density theory. Eur. J. Org. Chem. 2020, 2020, 5938–5948. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Domingo, L.R.; Chamorro, E.; Pérez, P. Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J. Org. Chem. 2008, 73, 4615–4624. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. A molecular electron density theory study of the role of the copper metalation of azomethine ylides in [3+2] cycloaddition reactions. J. Org. Chem. 2018, 83, 10959–10973. [Google Scholar] [CrossRef] [PubMed]
- May, E.; Jenkins, J.R.; May, P. Endogenous HeLa p53 proteins are easily detected in HeLa cells transfected with mouse deletion mutant p53 gene. Oncogene 1991, 6, 1363–1365. [Google Scholar]
- Hui, L.; Zheng, Y.; Yan, Y.; Bargonetti, J.; Foster, D.A. Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene 2006, 25, 7305–7310. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liu, L.; Sun, W.; Lu, J.; McEachern, D.; Li, X.; Yu, S.; Bernard, D.; Ochsenbein, P.; Ferey, V.; et al. Diastereomeric spirooxindoles as highly potent and efficacious MDM2 inhibitors. J. Am. Chem. Soc. 2013, 135, 7223–7234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.C.; Peng, C.; Huang, H.; Yang, L.; He, X.H.; Huang, W.; Cui, H.L.; He, G.; Han, B. Organocatalytic asymmetric synthesis of spiro-oxindole piperidine derivatives that reduce cancer cell proliferation by inhibiting MDM2–p53 interaction. Org. Lett. 2017, 19, 6752–6755. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Xiong, S.S.; Li, X.; Huang, H.; Wu, F.B.; Shen, P.F.; Peng, C.; He, G.; Han, B. Design and organocatalytic synthesis of spirooxindole–cyclopentene–isoxazole hybrids as novel MDM2–p53 inhibitors. Org. Chem. Front. 2021, 8, 1836–1843. [Google Scholar] [CrossRef]
- Foye, W.O.; Lemke, T.L.; Williams, D.A. Principles of Medicinal Chemistry, 4th ed.; Williams and Wilkins: Philadelphia, PA, USA, 2002; p. 822. [Google Scholar]
- Mannerström, M.; Toimela, T.; Sarkanen, J.-R.; Heinonen, T. Human BJ Fibroblasts is an Alternative to Mouse BALB/c 3T3 Cells inIn VitroNeutral Red Uptake Assay. Basic Clin. Pharmacol. Toxicol. 2017, 121, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Price, P.; McMillan1, T.J. Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radiation. Cancer Res. 1990, 50, 1392–1396. Available online: https://cancerres.aacrjournals.org/content/canres/50/5/1392.full.pdf (accessed on 1 June 2020). [PubMed]
- Scudiero, D.A.; Shoemaker, R.H.; Paull, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Currens, M.J.; Seniff, D.; Boyd, M.R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 1988, 48, 4827–4833. [Google Scholar] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Grasberger, B.L.; Lu, T.; Schubert, C.; Parks, D.J.; Carver, T.E.; Koblish, H.K.; Cummings, M.D.; LaFrance, L.V.; Milkiewicz, K.L.; Calvo, R.R.; et al. Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J. Med. Chem. 2005, 48, 909–912. [Google Scholar] [CrossRef] [PubMed]
- Barakat, A.; Islam, M.S.; Ali, M.; Al-Majid, A.M.; Alshahrani, S.; Alamary, A.S.; Yousuf, S.; Choudhary, M.I. Regio- and Stereoselective Synthesis of a New Series of Spirooxindole Pyrrolidine Grafted Thiochromene Scaffolds as Potential Anticancer Agents. Symmetry 2021, 13, 1426. [Google Scholar] [CrossRef]
≠ | Chemical Structure 4a-n | Cancer Type/Cell Line (IC50, µM) a,b | ||||
---|---|---|---|---|---|---|
Human Fibroblast BJ | Prostate PC3 | Cervical HeLa | Breast MCF-7 | Breast MDA-MB231 | ||
4a | NA | 24.1 ± 1.1 | 7.1 ± 0.2 | 25.04 ± 0.57 | 19.50 ± 0.56 | |
4b | NA | 3.7 ± 1.0 | NA | 27.72 ± 0.59 | 24.08 ± 0.02 | |
4c | NA | 17.9 ± 0.2 | NA | 27.82 ± 1.02 | 20.62 ± 2.16 | |
4d | NA | 29.8 ± 0.1 | NA | NA | NA | |
4e | NA | 19.6 ± 1.2 | 26.5 ± 0.04 | NA | NA | |
4f | NA | NA | NA | NS c | NS | |
4g | 21.7 ± 0.2 | 14.3 ± 1.0 | NA | NA | NS | |
4h | NA | NA | NA | NA | 14.43 ± 0.09 | |
4i | NA | NA | NA | NA | 7.63 ± 0.08 | |
4j | NA | NA | 11.9 ± 0.04 | NA | 10.49 ± 0.71 | |
4k | NA | NA | NA | NA | NA | |
4l | NA | NA | 7.2 ± 0.5 | NA | 14.45 ± 0.08 | |
4m | NA | NA | 24.6 ± 0.4 | NA | NA | |
4n | NA | NA | NA | NA | NA | |
STD. | Doxorubicin | NA | 1.9 ± 0.4 | 0.9 ± 0.14 | 0.79 ± 0.05 | 0.32 ± 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Majid, A.M.; Ali, M.; Islam, M.S.; Alshahrani, S.; Alamary, A.S.; Yousuf, S.; Choudhary, M.I.; Barakat, A. Stereoselective Synthesis of the Di-Spirooxindole Analogs Based Oxindole and Cyclohexanone Moieties as Potential Anticancer Agents. Molecules 2021, 26, 6305. https://doi.org/10.3390/molecules26206305
Al-Majid AM, Ali M, Islam MS, Alshahrani S, Alamary AS, Yousuf S, Choudhary MI, Barakat A. Stereoselective Synthesis of the Di-Spirooxindole Analogs Based Oxindole and Cyclohexanone Moieties as Potential Anticancer Agents. Molecules. 2021; 26(20):6305. https://doi.org/10.3390/molecules26206305
Chicago/Turabian StyleAl-Majid, Abdullah Mohammed, M. Ali, Mohammad Shahidul Islam, Saeed Alshahrani, Abdullah Saleh Alamary, Sammer Yousuf, M. Iqbal Choudhary, and Assem Barakat. 2021. "Stereoselective Synthesis of the Di-Spirooxindole Analogs Based Oxindole and Cyclohexanone Moieties as Potential Anticancer Agents" Molecules 26, no. 20: 6305. https://doi.org/10.3390/molecules26206305
APA StyleAl-Majid, A. M., Ali, M., Islam, M. S., Alshahrani, S., Alamary, A. S., Yousuf, S., Choudhary, M. I., & Barakat, A. (2021). Stereoselective Synthesis of the Di-Spirooxindole Analogs Based Oxindole and Cyclohexanone Moieties as Potential Anticancer Agents. Molecules, 26(20), 6305. https://doi.org/10.3390/molecules26206305