Recent Advances and Perspectives in Lithium−Sulfur Pouch Cells
Abstract
:1. Introduction
2. Li–S Pouch Cell Cathodes
2.1. Design of Cathode Composite Architecture
2.2. Cathode Compaction
3. Electrolytes for Li–S Pouch Cells
3.1. Strategies to Regulate Polysulfide Conversion under Lean Electrolytes
3.2. Interfacial Engineering
3.2.1. Additives in Liquid Electrolyte for SEI Construction
3.2.2. Inorganic Solid-State Electrolytes
3.2.3. Polymer-Based Solid Electrolytes
4. Separator Modification
4.1. Thermal Management of Separators
4.2. Polysulfide Restriction
5. Strategies for the Lithium Metal Anode
5.1. Hosts for Metallic Lithium Deposition
5.2. Artificial Protective Layer
6. Safety Concerns
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winter, M.; Barnett, B.; Xu, K. Before Li Ion Batteries. Chem. Rev. 2018, 118, 11433–11456. [Google Scholar] [CrossRef]
- Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 10403–10473. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Liu, J.; Bao, Z.; Cui, Y.; Dufek, E.J.; Goodenough, J.B.; Khalifah, P.; Li, Q.; Liaw, B.Y.; Liu, P.; Manthiram, A.; et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186. [Google Scholar] [CrossRef]
- Manthiram, A.; Fu, Y.; Chung, S.H.; Zu, C.; Su, Y.S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787. [Google Scholar] [CrossRef]
- Manthiram, A.; Chung, S.-H.; Zu, C. Lithium-Sulfur Batteries: Progress and Prospects. Adv. Mater. 2015, 27, 1980–2006. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Lee, K.T.; Nazar, L.F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, W.; Zheng, J.; Lv, M.; Song, H.; Du, L. Inhibition of Polysulfide Shuttles in Li–S Batteries: Modified Separators and Solid-State Electrolytes. Adv. Energy Mater. 2021, 11, 2000779. [Google Scholar] [CrossRef]
- Peng, H.-J.; Huang, J.-Q.; Cheng, X.-B.; Zhang, Q. Review on High-Loading and High-Energy Lithium-Sulfur Batteries. Adv. Energy Mater. 2017, 7, 1700260. [Google Scholar] [CrossRef]
- Dörfler, S.; Althues, H.; Härtel, P.; Abendroth, T.; Schumm, B.; Kaskel, S. Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level. Joule 2020, 4, 539–554. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.-B.; Yan, C.; Huang, J.-Q.; Li, P.; Zhu, L.; Zhao, L.; Zhang, Y.; Zhu, W.; Yang, S.-T.; Zhang, Q. The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection. Energy Storage Mater. 2017, 6, 18–25. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.; Wang, M.; Zhang, H.; Li, X.; Zhang, H. Phase Inversion: A Universal Method to Create High-Performance Porous Electrodes for Nanoparticle-Based Energy Storage Devices. Adv. Funct. Mater. 2016, 26, 8427–8434. [Google Scholar] [CrossRef]
- Song, R.; Fang, R.; Wen, L.; Shi, Y.; Wang, S.; Li, F. A trilayer separator with dual function for high performance lithium–sulfur batteries. J. Power Sources 2016, 301, 179–186. [Google Scholar] [CrossRef]
- Sun, C.; Huang, X.; Jin, J.; Lu, Y.; Wang, Q.; Yang, J.; Wen, Z. An ion-conductive Li1.5Al0.5Ge1.5(PO4)3-based composite protective layer for lithium metal anode in lithium-sulfur batteries. J. Power Sources 2018, 377, 36–43. [Google Scholar] [CrossRef]
- Lu, Y.; Gu, S.; Hong, X.; Rui, K.; Huang, X.; Jin, J.; Chen, C.; Yang, J.; Wen, Z. Pre-modified Li3PS4 based interphase for lithium anode towards high-performance Li-S battery. Energy Storage Mater. 2018, 11, 16–23. [Google Scholar] [CrossRef]
- Zhang, S.; Ueno, K.; Dokko, K.; Watanabe, M. Recent Advances in Electrolytes for Lithium-Sulfur Batteries. Adv. Energy Mater. 2015, 5, 1500117. [Google Scholar] [CrossRef]
- Pang, Q.; Liang, X.; Kwok, C.Y.; Nazar, L.F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132. [Google Scholar] [CrossRef]
- Zhao, M.; Li, B.-Q.; Peng, H.-J.; Yuan, H.; Wei, J.-Y.; Huang, J.-Q. Lithium–Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities. Angew. Chem. Int. Ed. 2020, 59, 12636–12652. [Google Scholar] [CrossRef]
- Kang, N.; Lin, Y.; Yang, L.; Lu, D.; Xiao, J.; Qi, Y.; Cai, M. Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Cheng, X.-B.; Huang, J.Q.; Zhang, Q. Review–Li Metal Anode in Working Lithium-Sulfur Batteries. J. Electrochem. Soc. 2017, 165, A6058–A6072. [Google Scholar] [CrossRef]
- Xue, W.; Shi, Z.; Suo, L.; Wang, C.; Wang, Z.; Wang, H.; So, K.P.; Maurano, A.; Yu, D.; Chen, Y.; et al. Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 2019, 4, 374–382. [Google Scholar] [CrossRef]
- Chung, S.-H.; Chang, C.-H.; Manthiram, A. Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Viable. Adv. Funct. Mater. 2018, 28, 1801188. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, W.; Wang, L.; Hu, Y.; Zhu, G.; Wang, Y.; Chen, R.; Chen, T.; Tie, Z.; Liu, J.; et al. Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium–Sulfur Batteries. ACS Nano 2018, 12, 4868–4876. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, P.; Hou, R.; Li, B.; Zhang, Y.; Liu, K.; Zhang, X.; Shao, G. In situ sulfur-doped graphene nanofiber network as efficient metal-free electrocatalyst for polysulfides redox reactions in lithium–sulfur batteries. J. Energy Chem. 2020, 47, 281–290. [Google Scholar] [CrossRef]
- Hu, G.; Xu, C.; Sun, Z.; Wang, S.; Cheng, H.-M.; Li, F.; Ren, W. 3D Graphene-Foam-Reduced-Graphene-Oxide Hybrid Nested Hierarchical Networks for High-Performance Li-S Batteries. Adv. Mater. 2016, 28, 1603–1609. [Google Scholar] [CrossRef]
- Yi, H.; Yang, Y.; Lan, T.; Zhang, T.; Xiang, S.; Tang, T.; Zeng, H.; Wang, C.; Cao, Y.; Deng, Y. Water-Based Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2020, 12, 29316–29323. [Google Scholar] [CrossRef]
- Maiga, O.I.A.; Li, R.; Ye, K.F.; Liu, B.H.; Li, Z.P. Sulfide heave: Key factor governing cathode deterioration in pouch Li S cells. Electrochim. Acta 2019, 300, 150–155. [Google Scholar] [CrossRef]
- Peng, H.J.; Huang, J.Q.; Zhao, M.Q.; Zhang, Q.; Cheng, X.B.; Liu, X.Y.; Qian, W.Z.; Wei, F. Nanoarchitectured Gra-phene/CNT@Porous Carbon with Extraordinary Electrical Conductivity and Interconnected Micro/Mesopores for Lithium-Sulfur Batteries. Adv. Funct. Mater. 2014, 24, 2772–2781. [Google Scholar] [CrossRef]
- Zhang, Z.; Jing, H.-K.; Liu, S.; Li, G.-R.; Gao, X.-P. Encapsulating sulfur into a hybrid porous carbon/CNT substrate as a cathode for lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 6827–6834. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, W.; Zhao, W.; Li, G.; Hou, Y.; Liu, M.; Zhou, L.; Ye, F.; Li, H.; Wei, Z.; et al. High-Rate, Ultralong Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene. Nano Lett. 2014, 14, 4821–4827. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Liang, Y.; Robinson, J.T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H. Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano Lett. 2011, 11, 2644–2647. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Rao, M.; Aloni, S.; Wang, L.; Cairns, E.J.; Zhang, Y. Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 2011, 4, 5053–5059. [Google Scholar] [CrossRef]
- Yun, J.H.; Kim, J.-H.; Kim, D.K.; Lee, H.-W. Suppressing Polysulfide Dissolution via Cohesive Forces by Interwoven Carbon Nanofibers for High-Areal-Capacity Lithium–Sulfur Batteries. Nano Lett. 2018, 18, 475–481. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, C.-P.; Yin, Y.-X.; Wan, L.-J.; Guo, Y.-G. Sulfur Encapsulated in Graphitic Carbon Nanocages for High-Rate and Long-Cycle Lithium-Sulfur Batteries. Adv. Mater. 2016, 28, 9539–9544. [Google Scholar] [CrossRef]
- Xu, T.; Song, J.; Gordin, M.L.; Sohn, H.; Yu, Z.; Chen, S.; Wang, D. Mesoporous Carbon–Carbon Nanotube–Sulfur Composite Microspheres for High-Areal-Capacity Lithium–Sulfur Battery Cathodes. ACS Appl. Mater. Interfaces 2013, 5, 11355–11362. [Google Scholar] [CrossRef] [PubMed]
- Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K.T.; Bein, T.; Nazar, L.F. Spherical ordered mesoporous carbon nanopar-ticles with high porosity for lithium-sulfur batteries. Angew. Chem. Int. Ed. 2012, 51, 3591–3595. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Liu, K.; Fan, Y.; Yuan, M.; Liu, B.; Liu, W.; Shi, F.; Liu, Y.; Chen, W.; Lopez, J.; et al. An Aqueous Inorganic Polymer Binder for High Performance Lithium–Sulfur Batteries with Flame-Retardant Properties. ACS Central Sci. 2018, 4, 260–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Galpaya, D.G.D.; Yan, L.; Sun, M.; Lin, Z.; Yan, C.; Liang, C.; Zhang, S. Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li–S battery. Energy Environ. Sci. 2017, 10, 750–755. [Google Scholar] [CrossRef]
- Waluś, S.; Offer, G.; Hunt, I.; Patel, Y.; Stockley, T.; Williams, J.; Purkayastha, R. Volumetric expansion of Lithium-Sulfur cell during operation–Fundamental insight into applicable characteristics. Energy Storage Mater. 2018, 10, 233–245. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, D.; Chen, Y.; Wu, W.; Su, D.; Li, B.; Wang, G. Strong charge polarization effect enabled by surface oxidized titanium nitride for lithium-sulfur batteries. Commun. Chem. 2019, 2, 66. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, J.; Liu, J.; Xu, X.; Liu, Z.; Hu, R.; Yang, L.; Feng, Y.; Liu, J.; Shi, Z.; et al. Self-Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for High-Energy-Density Lithium-Sulfur Batteries. Adv. Mater. 2019, 31, 1902228. [Google Scholar] [CrossRef]
- Razzaq, A.A.; Yuan, X.; Chen, Y.; Hu, J.; Mu, Q.; Ma, Y.; Zhao, X.; Miao, L.; Ahn, J.-H.; Peng, Y.; et al. Anchoring MOF-derived CoS2 on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium–sulfur batteries. J. Mater. Chem. A 2020, 8, 1298–1306. [Google Scholar] [CrossRef]
- Xiao, Z.; Kong, D.; Song, Q.; Zhou, S.; Zhang, Y.; Badshah, A.; Liang, J.; Zhi, L. A facile Schiff base chemical approach: Towards molecular-scale engineering of N-C interface for high performance lithium-sulfur batteries. Nano Energy 2018, 46, 365–371. [Google Scholar] [CrossRef]
- Kensy, C.; Härtel, P.; Maschita, J.; Dörfler, S.; Schumm, B.; Abendroth, T.; Althues, H.; Lotsch, B.V.; Kaskel, S. Scalable pro-duction of nitrogen-doped carbons for multilayer lithium-sulfur battery cells. Carbon 2020, 161, 190–197. [Google Scholar] [CrossRef]
- Zhang, J.; You, C.; Wang, J.; Xu, H.; Zhu, C.; Guo, S.; Zhang, W.; Yang, R.; Xu, Y. Confinement of sulfur species into het-eroatom-doped, porous carbon container. Chem. Eng. J. 2019, 368, 340–349. [Google Scholar] [CrossRef]
- Shaibani, M.; Mirshekarloo, M.S.; Singh, R.; Easton, C.D.; Cooray, M.C.D.; Eshraghi, N.; Abendroth, T.; Dörfler, S.; Althues, H.; Kaskel, S.; et al. Expansion-tolerant architectures for stable cycling of ultra-high-loading sulfur cathodes in lithium-sulfur batteries. Sci. Adv. 2020, 6, eaay2757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gou, J.; Zhang, H.; Yang, X.; Chen, Y.; Yu, Y.; Li, X.; Zhang, H. Quasi-Stable Electroless Ni-P Deposition: A Pivotal Strategy to Create Flexible Li-S Pouch Batteries with Bench Mark Cycle Stability and Specific Capacity. Adv. Funct. Mater. 2018, 28, 1707272. [Google Scholar] [CrossRef]
- Qie, L.; Manthiram, A. High-Energy-Density Lithium–Sulfur Batteries Based on Blade-Cast Pure Sulfur Electrodes. ACS Energy Lett. 2016, 1, 46–51. [Google Scholar] [CrossRef]
- Kim, H.M.; Hwang, J.-Y.; Aurbach, D.; Sun, Y.-K. Electrochemical Properties of Sulfurized-Polyacrylonitrile Cathode for Lithium–Sulfur Batteries: Effect of Polyacrylic Acid Binder and Fluoroethylene Carbonate Additive. J. Phys. Chem. Lett. 2017, 8, 5331–5337. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.-M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436. [Google Scholar] [CrossRef]
- Scheers, J.; Fantini, S.; Johansson, P. A review of electrolytes for lithium–sulphur batteries. J. Power Sources 2014, 255, 204–218. [Google Scholar] [CrossRef]
- Zhang, G.; Peng, H.J.; Zhao, C.Z.; Chen, X.; Zhao, L.D.; Li, P.; Huang, J.Q.; Zhang, Q. The Radical Pathway Based on a Lithium-Metal-Compatible High-Dielectric Electrolyte for Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2018, 57, 16732–16736. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Xu, W.; Yang, X.; Yu, Y.; Li, X.; Zhang, H. Polysulfide Stabilization: A Pivotal Strategy to Achieve High Energy Density Li-S Batteries with Long Cycle Life. Adv. Funct. Mater. 2018, 28, 1704987. [Google Scholar] [CrossRef]
- Xu, R.; Belharouak, I.; Li, J.C.M.; Zhang, X.; Bloom, I.; Bareño, J. Role of Polysulfides in Self-Healing Lithium-Sulfur Batteries. Adv. Energy Mater. 2013, 3, 833–838. [Google Scholar] [CrossRef]
- Cao, X.; Jia, H.; Xu, W.; Zhang, J.-G. Review—Localized High-Concentration Electrolytes for Lithium Batteries. J. Electrochem. Soc. 2021, 168, 010522. [Google Scholar] [CrossRef]
- Yu, L.; Chen, S.; Lee, H.; Zhang, L.; Engelhard, M.H.; Li, Q.; Jiao, S.; Liu, J.; Xu, W.; Zhang, J.-G. A Localized High-Concentration Electrolyte with Optimized Solvents and Lithium Difluoro(oxalate)borate Additive for Stable Lithium Metal Batteries. ACS Energy Lett. 2018, 3, 2059–2067. [Google Scholar] [CrossRef]
- Yang, X.; Luo, J.; Sun, X. Towards high-performance solid-state Li–S batteries: From fundamental understanding to engineering design. Chem. Soc. Rev. 2020, 49, 2140–2195. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Xu, H.; Xu, B.; Li, X.; Li, Y.; Goodenough, J.B. Reaction Mechanism Optimization of Solid-State Li–S Batteries with a PEO-Based Electrolyte. Adv. Funct. Mater. 2020, 31, 2001812. [Google Scholar] [CrossRef]
- Wang, L.; Ye, Y.; Chen, N.; Huang, Y.; Li, L.; Wu, F.; Chen, R. Development and Challenges of Functional Electrolytes for High-Performance Lithium-Sulfur Batteries. Adv. Funct. Mater. 2018, 28, 1800919. [Google Scholar] [CrossRef]
- Sun, M.; Wang, X.; Wang, J.; Yang, H.; Wang, L.; Liu, T. Assessment on the Self-Discharge Behavior of Lithium–Sulfur Batteries with LiNO3-Possessing Electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 35175–35183. [Google Scholar] [CrossRef]
- Xu, S.M.; McOwen, D.W.; Zhang, L.; Hitz, G.T.; Wang, C.W.; Ma, Z.H.; Chen, C.J.; Luo, W.; Dai, J.Q.; Kuang, Y.; et al. All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Mater. 2018, 15, 458–464. [Google Scholar] [CrossRef]
- Chen, L.; Fan, L.Z. Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte. Energy Storage Mater. 2018, 15, 37–45. [Google Scholar] [CrossRef]
- Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Lochala, J.A.; Kwok, A.; Deng, Z.D.; Xiao, J. Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. Adv. Sci. 2017, 4, 1700032. [Google Scholar] [CrossRef] [PubMed]
- Weller, C.; Thieme, S.; Härtel, P.; Althues, H.; Kaskel, S. Intrinsic Shuttle Suppression in Lithium-Sulfur Batteries for Pouch Cell Application. J. Electrochem. Soc. 2017, 164, A3766–A3771. [Google Scholar] [CrossRef]
- Wu, F.; Chu, F.; Ferrero, G.A.; Sevilla, M.; Fuertes, A.B.; Borodin, O.; Yu, Y.; Yushin, G. Boosting High-Performance in Lith-ium-Sulfur Batteries via Dilute Electrolyte. Nano Lett. 2020, 20, 5391–5399. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Wen, Z.; Liu, Y.; Wu, M.; Jin, J.; Zhang, H.; Wu, X. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power Sources 2011, 196, 9839–9843. [Google Scholar] [CrossRef]
- Jozwiuk, A.; Berkes, B.B.; Weiß, T.; Sommer, H.; Janek, J.; Brezesinski, T. The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries. Energy Environ. Sci. 2016, 9, 2603–2608. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 2012, 70, 344–348. [Google Scholar] [CrossRef]
- Zhai, P.Y.; Peng, H.J.; Cheng, X.B.; Zhu, L.; Huang, J.Q.; Zhu, W.; Zhang, Q. Scaled-up fabrication of po-rous-graphene-modified separators for high-capacity lithium–sulfur batteries. Energy Storage Mater. 2017, 7, 56–63. [Google Scholar] [CrossRef]
- Chen, J.; Yang, H.; Zhang, X.; Lei, J.; Zhang, H.; Yuan, H.; Yang, J.; Nuli, Y.; Wang, J. Highly Reversible Lithium-Metal Anode and Lithium–Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte. ACS Appl. Mater. Interfaces 2019, 11, 33419–33427. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, M.; Zhang, Y.; Shan, Z.; Zhao, Y.; Li, J.; Liu, G.; Liang, C.; Bakenov, Z.; Li, Q. All-Purpose Electrode Design of Flexible Conductive Scaffold toward High-Performance Li–S Batteries. Adv. Funct. Mater. 2020, 30, 2000613. [Google Scholar] [CrossRef]
- He, Y.; Chang, Z.; Wu, S.; Qiao, Y.; Bai, S.; Jiang, K.; He, P.; Zhou, H. Simultaneously Inhibiting Lithium Dendrites Growth and Polysulfides Shuttle by a Flexible MOF-Based Membrane in Li-S Batteries. Adv. Energy Mater. 2018, 8, 1802130. [Google Scholar] [CrossRef]
- Zhu, G.L.; Zhao, C.Z.; Peng, H.J.; Yuan, H.; Hu, J.K.; Nan, H.X.; Lu, Y.; Liu, X.Y.; Huang, J.Q.; He, C.; et al. A Self-Limited Free-Standing Sulfide Electrolyte Thin Film for All-Solid-State Lithium Metal Batteries. Adv. Funct. Mater. 2021, 31, 2101985. [Google Scholar] [CrossRef]
- Busche, M.R.; Weber, D.A.; Schneider, Y.; Dietrich, C.; Wenzel, S.; Leichtweiss, T.; Schröder, D.; Zhang, W.; Weigand, H.; Walter, D.; et al. In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup. Chem. Mater. 2016, 28, 6152–6165. [Google Scholar] [CrossRef]
- Yuan, H.; Nan, H.X.; Zhao, C.Z.; Zhu, G.L.; Lu, Y.; Cheng, X.B.; Liu, Q.B.; He, C.X.; Huang, J.Q.; Zhang, Q. Slurry-Coated Sulfur/Sulfide Cathode with Li Metal Anode for All-Solid-State Lithium-Sulfur Pouch Cells. Batter. Supercaps 2020, 3, 596–603. [Google Scholar] [CrossRef]
- Elizalde-Segovia, R.; Irshad, A.; Zayat, B.; Narayanan, S.R. Solid-State Lithium-Sulfur Battery Based on Composite Electrode and Bi-layer Solid Electrolyte Operable at Room Temperature. J. Electrochem. Soc. 2020, 167, 140529. [Google Scholar] [CrossRef]
- Lei, D.; Shi, K.; Ye, H.; Wan, Z.; Wang, Y.; Shen, L.; Li, B.; Yang, Q.-H.; Kang, F.; He, Y.-B. Progress and Perspective of Solid-State Lithium-Sulfur Batteries. Adv. Funct. Mater. 2018, 28, 1707570. [Google Scholar] [CrossRef]
- Zhang, H.; Oteo, U.; Judez, X.; Eshetu, G.G.; Martinez-Ibañez, M.; Carrasco, J.; Li, C.; Armand, M. Designer Anion Enabling Solid-State Lithium-Sulfur Batteries. Joule 2019, 3, 1689–1702. [Google Scholar] [CrossRef]
- Tao, X.; Liu, Y.; Liu, W.; Zhou, G.; Zhao, J.; Lin, D.; Zu, C.; Sheng, O.; Zhang, W.; Lee, H.W.; et al. Solid-State Lithium-Sulfur Batteries Operated at 37 degrees C with Composites of Nanostructured Li7La3Zr2O12/Carbon Foam and Polymer. Nano Lett. 2017, 17, 2967–2972. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xue, J.; Xiao, M.; Wang, S.; Li, Y.; Zhang, S.; Meng, Y. Comprehensive evaluation of safety performance and failure mechanism analysis for lithium sulfur pouch cells. Energy Storage Mater. 2020, 30, 87–97. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, D.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y.; Song, L.; Niu, Z.; Chen, J. Single Nickel Atoms on Nitro-gen-Doped Graphene Enabling Enhanced Kinetics of Lithium-Sulfur Batteries. Adv. Mater. 2019, 31, 1903955. [Google Scholar] [CrossRef]
- Su, Y.-S.; Manthiram, A. A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Commun. 2012, 48, 8817–8819. [Google Scholar] [CrossRef] [Green Version]
- Bugga, R.; Jones, J.-P.; Jones, S.C.; Krause, F.C.; Pasalic, J.; Ganapathi, D.S.; Hendrickson, M.; Plichta, E.J. New Separators in Lithium/Sulfur Cells with High-Capacity Cathodes. J. Electrochem. Soc. 2018, 165, A6021–A6028. [Google Scholar] [CrossRef]
- Li, W.; Hicks-Garner, J.; Wang, J.; Liu, J.; Gross, A.F.; Sherman, E.; Graetz, J.; Vajo, J.J.; Liu, P. V2O5 Polysulfide Anion Barrier for Long-Lived Li–S Batteries. Chem. Mater. 2014, 26, 3403–3410. [Google Scholar] [CrossRef]
- Xue, W.; Yu, D.; Suo, L.; Wang, C.; Wang, Z.; Xu, G.; Xiao, X.; Ge, M.; Ko, M.; Chen, Y.; et al. Manipulating Sulfur Mobility Enables Advanced Li-S Batteries. Matter 2019, 1, 1047–1060. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Chen, Y.; Manthiram, A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries. Energy Environ. Sci. 2018, 11, 2560–2568. [Google Scholar] [CrossRef]
- Li, M.; Wang, C.; Miao, L.; Xiang, J.; Wang, T.; Yuan, K.; Chen, J.; Huang, Y. A separator-based lithium polysulfide recirculator for high-loading and high-performance Li–S batteries. J. Mater. Chem. A 2018, 6, 5862–5869. [Google Scholar] [CrossRef]
- Kang, H.-S.; Park, E.; Hwang, J.-Y.; Kim, H.; Aurbach, D.; Rosenman, A.; Sun, Y.-K. A Scaled-Up Lithium (Ion)-Sulfur Battery: Newly Faced Problems and Solutions. Adv. Mater. Technol. 2016, 1, 1600052. [Google Scholar] [CrossRef]
- Nanda, S.; Bhargav, A.; Manthiram, A. Anode-free, Lean-Electrolyte Lithium-Sulfur Batteries Enabled by Tellurium-Stabilized Lithium Deposition. Joule 2020, 4, 1121–1135. [Google Scholar] [CrossRef]
- Cao, R.; Xu, W.; Lv, D.; Xiao, J.; Zhang, J.-G. Anodes for Rechargeable Lithium-Sulfur Batteries. Adv. Energy Mater. 2015, 5, 1402273. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Qin, X.; Kang, F.; Chen, G.; Li, B. In-Plane Highly Dispersed Cu2O Nanoparticles for Seeded Lithium Dep-osition. Nano Lett. 2019, 19, 4601–4607. [Google Scholar] [CrossRef]
- Wang, A.; Tang, S.; Kong, D.; Liu, S.; Chiou, K.; Zhi, L.; Huang, J.; Xia, Y.-Y.; Luo, J. Bending-Tolerant Anodes for Lithium-Metal Batteries. Adv. Mater. 2018, 30, 1703891. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.L.; Wang, L.; Ni, Z.C.; Liu, S.; Li, G.R.; Gao, X.P. Lithium–Magnesium Alloy as a Stable Anode for Lithium–Sulfur Battery. Adv. Funct. Mater. 2019, 29, 1808756. [Google Scholar] [CrossRef]
- Liu, K.; Liu, W.; Qiu, Y.; Kong, B.; Sun, Y.; Chen, Z.; Zhuo, D.; Lin, D.; Cui, Y. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 2017, 3, e1601978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Coin-Type Cell 1 | Pouch-Type Cell 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Areal Sulfur Loading (mg/cm2) | Diameter (mm) | Current Density | Specific Capacity (mAh g−1) | Cycles/Final Capacity (mAh g−1) | Areal Sulfur Loading (mg cm−2) | Area of Cathode (mm2) | Current Density | Specific Capacity (mAh g−1) | Cycles/Final Capacity (mAh g−1) | Ref. |
– | – | 0.2 C | 1130 | 100/907 | 4 | 77 × 50 | 0.1 C | 995 | 100/891 | [13] |
0.75 | – | 0.2 C | 1067.7 | 100/804.4 | 2.4 | 40 × 30 | 0.1 C | 957.7 | 20/780.9 | [14] |
~1.3 | 12 | 0.5 C | 1154 | 100/832.1 | ~1.3 | 54 × 72 | 0.5 C | ~1000 | 50/~750 | [15] |
~1.7 | 12 | 0.3 C | ~1150 | 200/840 | ~4.0 | – | 0.2 | ~1200 | 20/~800 | [16] |
Cathode Configuration | Areal Sulfur Loading (mg cm−2) | Electrolyte | C Rate | Specific Capacity (mAh g−1) | Ref. |
---|---|---|---|---|---|
Oxidized TiN–ordered mesoporous carbon/S | ~1.4 | DOL/DME | 0.1 | 884 | [41] |
Carbon cloth@carbon-encapsulated CoP nanosheet arrays/S | 3.4 | DOL/DGM | 0.1 | 1100 | [42] |
CoS2–sulfurized polyacrylonitrile–CNT | 5.9 | EC/DMC/DEC | 0.2 | ~1600 | [43] |
S@CNTs/CoS nanostraws | 3.8 | DOL/DME | 0.1 | 1330 | [24] |
CNT@nitrogen-enriched carbon/S | 4 | TEGDME | – | 1300 | [44] |
N-doped Ketjenblack/S | 2.4 | DOL/DME | – | ~900 | [45] |
Graphene foam–rGO/S | 10 | DOL/DME | 0.04 | 1235 | [26] |
Polar hierarchical–porous carbon container@S | 4 | DOL/DME | 0.2 | 733 | [46] |
S/(graphene–graphitic carbon nanocages) | 3 | DOL/DME | 0.05 | ~1000 | [35] |
S/conductive carbon | 4.5 | DOL/DME | 0.05 | 1490 | [47] |
S/Ketjenblack–Ni–P layers | 2 | DOL/DME | 0.1 | 1420 | [48] |
Pure sulfur cathode | ~10.4 | DOL/DME | 0.05 | 1160 | [49] |
Sulfurized carbonized polyacrylonitrile | 3 | EC/DEC | 0.5 | ~1300 | [50] |
Cathode | Areal Sulfur Loading (mg cm−2) | Electrolyte | Additive | Anode | C Rate | Specific Capacity (mAh g−1) | Ref. |
---|---|---|---|---|---|---|---|
S/Ketjenblack | ~1.3 | DOL/DME | – | LAGP/Li metal | 0.5 | ~1000 | [15] |
S/Ketjenblack | ~4.0 | DOL/DME | – | Li3PS4/Li | 0.2 | ~1200 | [16] |
S/CNTs | 2.5 | DOL/TMU | 0.3 M LiNO3 | Li metal | 0.05 | 1524 | [53] |
S/Super C65 | ~3.9 | DOL/DME | 0.4 M LiNO3 | Li metal | 0.2 | 1205 | [2] |
S/CNTs | 7.8 | DOL/DME | 1 wt% LiNO3 | Li metal | 0.1 | 1135 | [71] |
S/CoNi@PNCFs | ~1.5 | DOL/DME | 0.1 M LiNO3 | Li/CoNi@PNCFs | 0.2 | ~1200 | [73] |
RGO@S | 5.8 | DOL/DME | 0.2 wt% LiNO3 | Li metal | 0.1 | 1269 | [74] |
Cathode | Areal Sulfur Loading (mg cm−2) | Electrolyte | Additive | E/S Ratio (µL/mg) | Separator | C Rate | Specific Capacity (mAh g−1) | Ref. |
---|---|---|---|---|---|---|---|---|
S/Ketjenblack | 3 | DOL/DME | – | 4.3 | Carbon/PE | 0.01 | 1383.7 | [82] |
S/Ketjenblack | 2.4 | DOL/DME | 0.1 M LiNO3 | – | Graphene /PP/Al2O3 | 0.1 | 957.7 | [14] |
S/Super C65 | ~3.9 | DOL/DME | 0.4 M LiNO3 | ~3.3 | PP@Mo6S8 | 0.2 | 1205 | [87] |
S/Super–P | 2 | DOL/DME | 0.1 M LiNO3 | 10 | Co9S8/PP | – | 1185 | [88] |
S/CNTs | 7.8 | DOL/DME | 1 wt% LiNO3 | 2 mL 2 | PG/PP | 0.1 | 1135 | [71] |
S/CNTs–acetylene black | 4.6 | DOL/DME | 0.4 M LiNO3 | 1.5 mL 2 | MoP/rGO/PP | 0.1 | 1083 | [89] |
RGO@S | 5.8 | DOL/DME | 0.2 wt% LiNO3 | – | MOF@PVDF–HFP | 0.1 | 1269 | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Li, S.; Zhou, A.; Song, H.; Cui, Z.; Du, L. Recent Advances and Perspectives in Lithium−Sulfur Pouch Cells. Molecules 2021, 26, 6341. https://doi.org/10.3390/molecules26216341
Zhang W, Li S, Zhou A, Song H, Cui Z, Du L. Recent Advances and Perspectives in Lithium−Sulfur Pouch Cells. Molecules. 2021; 26(21):6341. https://doi.org/10.3390/molecules26216341
Chicago/Turabian StyleZhang, Weifeng, Shulian Li, Aijun Zhou, Huiyu Song, Zhiming Cui, and Li Du. 2021. "Recent Advances and Perspectives in Lithium−Sulfur Pouch Cells" Molecules 26, no. 21: 6341. https://doi.org/10.3390/molecules26216341
APA StyleZhang, W., Li, S., Zhou, A., Song, H., Cui, Z., & Du, L. (2021). Recent Advances and Perspectives in Lithium−Sulfur Pouch Cells. Molecules, 26(21), 6341. https://doi.org/10.3390/molecules26216341