In Vitro Effects of Papaverine on Cell Proliferation, Reactive Oxygen Species, and Cell Cycle Progression in Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. Cell Proliferation
Cell Number Determination Using Crystal Violet Staining (Spectrophotometry)
2.2. Cell Morphology
Morphology Observation Using Light Microscopy
2.3. Oxidative Stress
Hydrogen Peroxide Production Using 2,7-Dichlorofluoresceindiacetate (DCFDA) (Fluorescent Microscopy)
2.4. Cell Cycle Progression and Cell Death Induction
Cell Cycle Analysis Using Propidium Iodide Staining (Flow Cytometry)
3. Discussion
4. Materials and Methods
4.1. Materials
4.1.1. Cell Lines
4.1.2. Chemicals and Materials
4.2. Methods
4.2.1. Cell Proliferation
Cell Number Determination Using Crystal Violet Staining (Spectrophotometry)
4.2.2. Cell Morphology
Morphology Observation Using Light Microscopy
4.2.3. Oxidative Stress
Hydrogen Peroxide Production Using 2,7 Dichlorofluoresceindiacetate (DCFDA) (Fluorescent Microscopy)
4.3. Cell Cycle Progression and Cell Death Induction
Cell Cycle Analysis Using Propidium Iodide Staining (Flow Cytometry)
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukeshwar, P.; Debnath, M.; Gupta, S.; Chikara, S.K. Phytomedicine: An ancient approach turning into future potential source of therapeutics. J. Pharmacognosy Phytother. 2011, 3, 27–37. [Google Scholar]
- Sajadian, S.; Vatankhah, M.; Majdzadeh, M.; Kouhsari, S.M.; Ghahremani, M.H. Cell cycle arrest and apoptogenic properties of opium alkaloids noscapine and papaverine on breast cancer stem cells. Toxicol. Mech. Methods 2015, 25, 388–395. [Google Scholar] [CrossRef]
- Kingham, T.P.; Alatise, O.I.; Vanderpuye, V.; Casper, C.; Abantanga, F.A.; Kamara, T.B.; Olopade, O.I.; Habeebu, M.; Abdulkareem, F.B.; Denny, L. Treatment of cancer in sub-Saharan Africa. Lancet Oncol. 2013, 14, e158–e167. [Google Scholar] [CrossRef]
- Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci. 2005, 78, 431–441. [Google Scholar] [CrossRef]
- Singh, R. Medicinal plants: A review. J. Plant. Sci. 2015, 3, 50–55. [Google Scholar]
- Rehman, J.u.; Zahra; Ahmad, N.; Khalid, M.; Noor ul Huda Khan Asghar, H.; Gilani, Z.A.; Ullah, I.; Nasar, G.; Akhtar, M.M.; Usmani, M.N. Intensity modulated radiation therapy: A review of current practice and future outlooks. J. Radiat. Res. Appl. Sci. 2018, 11, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Afzali, M.; Ghaeli, P.; Khanavi, M.; Parsa, M.; Montazeri, H.; Ghahremani, M.H.; Ostad, S.N. Non-addictive opium alkaloids selectively induce apoptosis in cancer cells compared to normal cells. DARU J. Pharm Sci. 2015, 23, 16. [Google Scholar] [CrossRef] [Green Version]
- Gümüşçü, A.; Arslan, N.; Sarıhan, E.O. Evaluation of selected poppy (Papaver somniferum L.) lines by their morphine and other alkaloids contents. Eur. Food Res. Technol. 2008, 226, 1213–1220. [Google Scholar] [CrossRef]
- Lawrence, P.F. Chapter 78-Pharmacologic Adjuncts to Endovascular Procedures. In Endovascular Surgery, 4th ed.; Moore, W.S., Ahn, S.S., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2011; pp. 807–813. [Google Scholar]
- Vardanyan, R.S.; Hruby, V.J. 19-Antianginal Drugs. In Synthesis of Essential Drugs; Vardanyan, R.S., Hruby, V.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 257–267. [Google Scholar]
- Kassell, N.F.; Helm, G.; Simmons, N.; Phillips, C.D.; Cail, W.S. Treatment of cerebral vasospasm with intra-arterial papaverine. J. Neurosurg. 1992, 77, 848–852. [Google Scholar] [CrossRef]
- Wilson, R.F.; White, C.W. Intracoronary papaverine: An ideal coronary vasodilator for studies of the coronary circulation in conscious humans. Circulation 1986, 73, 444–451. [Google Scholar] [CrossRef] [Green Version]
- Virag, R.; Frydman, D.; Legman, M.; Virag, H. Intracavernous Injection of Papaverine as a Diagnostic and Therapeutic Method in Erectile Failure. Angiology 1984, 35, 79–87. [Google Scholar] [CrossRef]
- Clouston, J.E.; Numaguchi, Y.; Zoarski, G.H.; Aldrich, E.F.; Simard, J.M.; Zitnay, K.M. Intraarterial papaverine infusion for cerebral vasospasm after subarachnoid hemorrhage. Am. J. Neuroradiol. 1995, 16, 27–38. [Google Scholar]
- Benej, M.; Hong, X.; Vibhute, S.; Scott, S.; Wu, J.; Graves, E.; Le, Q.-T.; Koong, A.C.; Giaccia, A.J.; Yu, B. Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proc. Natl. Acad. Sci. USA 2018, 115, 10756–10761. [Google Scholar] [CrossRef] [Green Version]
- Inada, M.; Shindo, M.; Kobayashi, K.; Sato, A.; Yamamoto, Y.; Akasaki, Y.; Ichimura, K.; Tanuma, S.-I. Anticancer effects of a non-narcotic opium alkaloid medicine, papaverine, in human glioblastoma cells. PLoS ONE 2019, 14, e0216358. [Google Scholar] [CrossRef] [Green Version]
- Berg, G.; Jonsson, K.A.; Hammar, M.; Norlander, B. Variable bioavailability of papaverine. Pharmacol. Toxicol. 1988, 62, 308–310. [Google Scholar] [CrossRef]
- Pöch, G.; Kukovetz, W. Papaverine-induced inhibition of phosphodiesterase activity in various mammalian tissues. Life Sci. 1971, 10, 133–144. [Google Scholar] [CrossRef]
- Hodgson, E. Chapter Fourteen-Toxins and Venoms. In Progress in Molecular Biology and Translational Science; Hodgson, E., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 112, pp. 373–415. [Google Scholar]
- Vodušek, D.B.; Aminoff, M.J. Chapter 30-Sexual Dysfunction in Patients with Neurologic Disorders. In Aminoff’s Neurology and General Medicine, 5th ed.; Aminoff, M.J., Josephson, S.A., Eds.; Academic Press: Boston, MA, USA, 2014; pp. 633–656. [Google Scholar]
- Meyer, M.C.; Gollamudi, R.; Straughn, A.B. The influence of dosage form on papaverine bioavailability. J.Clin. Pharm. 1979, 19, 435–444. [Google Scholar] [CrossRef]
- Huang, H.; Li, L.-J.; Zhang, H.-B.; Wei, A.-Y. Papaverine selectively inhibits human prostate cancer cell (PC-3) growth by inducing mitochondrial mediated apoptosis, cell cycle arrest and downregulation of NF-κB/PI3K/Akt signalling pathway. J. BUON 2017, 22, 112–118. [Google Scholar]
- Triner, L.; Vulliemoz, Y.; Schwartz, I.; Nahas, G.G. Cyclic phosphodiesterase activity and the action of papaverine. Biochem. Biophys. Res. Comm. 1970, 40, 64–69. [Google Scholar] [CrossRef]
- Hebb, A.L.O.; Robertson, H.A.; Denovan-Wright, E.M. Phosphodiesterase 10A inhibition is associated with locomotor and cognitive deficits and increased anxiety in mice. Eur. Neuropsychopharm. 2008, 18, 339–363. [Google Scholar] [CrossRef] [PubMed]
- Fujishige, K.; Kotera, J.; Michibata, H.; Yuasa, K.; Takebayashi, S.-i.; Okumura, K.; Omori, K. Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A). J. Biol. Chem. 1999, 274, 18438–18445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenaz, G.; Fato, R.; Genova, M.L.; Bergamini, C.; Bianchi, C.; Biondi, A. Mitochondrial Complex I: Structural and functional aspects. Biochimica Biophysica Acta (BBA)-Bioenerg. 2006, 1757, 1406–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, H.M.; Nechiporuk, A.V. Lamellipodia-like protrusions and focal adhesions contribute to collective cell migration in zebrafish. Dev. Biol. 2021, 469, 125–134. [Google Scholar] [CrossRef]
- Puig, P.E.; Guilly, M.N.; Bouchot, A.; Droin, N.; Cathelin, D.; Bouyer, F.; Favier, L.; Ghiringhelli, F.; Kroemer, G.; Solary, E. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol. Int. 2008, 32, 1031–1043. [Google Scholar] [CrossRef]
- Noureini, S.; Wink, M. Antiproliferative effect of the isoquinoline alkaloid papaverine in hepatocarcinoma HepG-2 cells—Inhibition of telomerase and induction of senescence. Molecules 2014, 19, 11846–11859. [Google Scholar] [CrossRef]
- Goto, T.; Matsushima, H.; Kasuya, Y.; Hosaka, Y.; Kitamura, T.; Kawabe, K.; Hida, A.; Ohta, Y.; Simizu, T.; Takeda, K. The effect of papaverine on morphologic differentiation, proliferation and invasive potential of human prostatic cancer LNCaP cells. Int. J. Urol. 1999, 6, 314–319. [Google Scholar] [CrossRef]
- Valsecchi, F.; Ramos-Espiritu, L.S.; Buck, J.; Levin, L.R.; Manfredi, G. cAMP and Mitochondria. Physiology 2013, 28, 199–209. [Google Scholar] [CrossRef]
- Synnott, N.C.; Murray, A.; McGowan, P.M.; Kiely, M.; Kiely, P.A.; O’Donovan, N.; O’Connor, D.P.; Gallagher, W.M.; Crown, J.; Duffy, M.J. Mutant p53: A novel target for the treatment of patients with triple-negative breast cancer? Int. J. Cancer 2017, 140, 234–246. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-H.; Yang, C.-W.; Wang, J.-Y.; Tsai, Y.-F.; Tseng, L.-M.; King, K.-L.; Chen, W.-S.; Chiu, J.-H.; Shyr, Y.-M. Timosaponin AIII Suppresses Hepatocyte Growth Factor-Induced Invasive Activity through Sustained ERK Activation in Breast Cancer MDA-MB-231 Cells. Evid. Based Complement. Alternat. Med. 2013, 2013, 10. [Google Scholar] [CrossRef] [Green Version]
- Foster, K.A.; Oster, C.G.; Mayer, M.M.; Avery, M.L.; Audus, K.L. Characterization of the A549 Cell Line as a Type II Pulmonary Epithelial Cell Model for Drug Metabolism. Exp. Cell Res. 1998, 243, 359–366. [Google Scholar] [CrossRef]
- Stone, K.R.; Mickey, D.D.; Wunderli, H.; Mickey, G.H.; Paulson, D.F. Isolation of a human prostate carcinoma cell line (DU 145). Int. J. Cancer 1978, 21, 274–281. [Google Scholar] [CrossRef]
- Alimirah, F.; Chen, J.; Basrawala, Z.; Xin, H.; Choubey, D. DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: Implications for the androgen receptor functions and regulation. FEBS Lett. 2006, 580, 2294–2300. [Google Scholar] [CrossRef] [Green Version]
- Al-Kadhemy, M. Absorption spectrum of Crystal Violet in Chloroform solution and doped PMMA thin films. Atti della Fondazione Giorgio Ronchi 2012, 3, 359. [Google Scholar]
- Feoktistova Maria, M.; Geserick, P.; Leverkus, M. Crystal Violet Assay for Determining Viability of Cultured Cells. Cold Spring Harb Protoc. 2016, 2016, 343–346. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development. Guidance document on using cytotoxicity tests to estimate starting doses for acute oral systemic toxicity tests. OECD Ser. Test. Assess. 2010, 20, 1–54. [Google Scholar]
- Gillies, R.J.; Didier, N.; Denton, M. Determination of cell number in monolayer-cultures. Anal. Biochem. 1986, 159, 109–113. [Google Scholar] [CrossRef]
- Visagie, M.H.; van den Bout, I.; Joubert, A.M. A bis-sulphamoylated estradiol derivative induces ROS-dependent cell cycle abnormalities and subsequent apoptosis. PLoS ONE 2017, 12, e0176006. [Google Scholar] [CrossRef]
- Visagie, M.; Theron, A.; Mqoco, T.; Vieira, W.; Prudent, R.; Martinez, A.; Lafanechère, L.; Joubert, A. Sulphamoylated 2-Methoxyestradiol Analogues Induce Apoptosis in Adenocarcinoma Cell Lines. PLoS ONE 2013, 8, e71935. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.; Scholer-Dahirel, A.; Mechta-Grigoriou, F. The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Sem. Cancer Biol. 2014, 25, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Rieseberg, M.; Kasper, C.; Reardon, K.F.; Scheper, T. Flow cytometry in biotechnology. Appl. Microbiol. Biotechnol. 2001, 56, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Boyd, L.S.; Gozuacik, D.; Joubert, A.M. The in vitro effects of a novel estradiol analog on cell proliferation and morphology in human epithelial cervical carcinoma. Cell. Mol. Biol. Lett. 2018, 23, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visagie, M.H.; Birkholtz, L.-M.; Joubert, A.M. A 2-methoxyestradiol bis-sulphamoylated derivative induces apoptosis in breast cell lines. Cell Biosci. 2015, 5, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
48 h // 72 h | |||||
---|---|---|---|---|---|
sub-G1 | G1 | S | G2/M | Endoreduplication | |
Cells propagated in growth medium | 2.09 ± 0.61 // 1.65 ± 0.24 | 61.80 ± 2.4 2// 76.00 ± 0.80 | 6.90 ± 0.68 // 5.63 ± 0.48 | 15.77 ± 1.06 // 15.60 ± 0.70 | 0.41 ± 0.26 // 0.85 ± 0.13 |
Vehicle-treated cells | 2.35 ± 0.49 // 2.19 ± 0.22 | 65.43 ± 2.22 // 70.77 ± 0.65 * | 10.70 ± 0.60 * // 7.12 ± 1.87 | 19.40 ± 1.28 // 18.80 ± 0.46 * | 0.48 ± 0.22 // 0.61 ± 0.22 |
10 μM PPV-treated cells | 7.32 ± 0.72 *// 10.32 ± 0.57 * | 59.10 ± 1.37 // 60.93 ± 1.01 * | 7.32 ± 0.25 // 6.18 ± 0.65 | 17.53 ± 1.27 // 13.47 ± 0.99 | 1.50 ± 0.22 * // 4.28 ± 0.46 * |
50 μM PPV-treated cells | 9.00 ± 0.71 *// 7.12 ± 0.78 * | 65.77 ± 1.53 *// 53.43 ± 1.32 * | 10.16 ± 0.47 // 6.09 ± 0.68 | 13.60 ± 0.70 // 18.37 ± 1.00 * | 1.47 ± 0.54 * // 10.83 ± 0.95 * |
100 μM PPV-treated cells | 7.36 ± 1.23 *// 11.25 ± 1.30 * | 56.50 ± 0.85 // 54.07 ± 1.20 * | 10.16 ± 0.47 * // 6.09 ± 0.68 * | 21.80 ± 0.20 * // 16.37 ± 0.61 | 2.55 ± 1.27 * // 10.83 ± 0.95 * |
150 μM PPV-treated cells | 14.07 ± 0.65 *// 47.73 ± 1.46 * | 60.33 ± 0.78 // 34.80 ± 1.57 * | 6.71 ± 0.49 // 3.88 ± 0.32 * | 16.03 ± 0.86 // 10.77 ± 0.21 * | 1.47 ± 0.85 // 5.06 ± 0.53 * |
ESE-ol-treated cells | 28.90 ± 0.87 *// 25.87 ± 0.67 * | 30.83 ± 1.07 * // 40.03 ± 0.72 * | 10.47 ± 0.72 * // 8.39 ± 0.54 * | 29.97 ± 0.81 * // 22.60 ± 1.39 * | 0.18 ± 0.18 // 0.41 ± 0.08 |
48 h // 72 h | |||||
---|---|---|---|---|---|
sub-G1 | G1 | S | G2/M | Endoreduplication | |
Cells propagated in growth medium | 2.93 ± 0.07 // 2.87 ± 0.74 | 71.63 ± 0.70 // 70.87 ± 1.01 | 6.78 ± 0.69 // 11.27 ± 1.26 | 18.30 ± 0.36 // 10.65 ± 2.09 | 0.89 ± 0.11 //0.08 ± 0.01 |
Vehicle-treated cells | 3.42 ± 0.59 // 2.40 ± 0.02 | 70.73 ± 1.37 // 74.30 ± 1.68 * | 9.04 ± 0.90 // 9.18 ± 0.72 * | 17.87 ± 0.76 // 14.77 ± 1.29 * | 0.59 ± 0.09 //0.08 ± 0.01 |
10 μM PPV-treated cells | 7.53 ± 0.10 * // 4.24 ± 2.29 | 57.90 ± 0.82 * // 63.00 ± 1.39 * | 5.97 ± 0.77 // 6.38 ± 0.37 * | 25.17 ± 0.38 * // 16.63 ± 1.39 * | 3.22 ± 0.31 * //3.03 ± 0.90 * |
50 μM PPV-treated cells | 11.23 ± 0.15 * // 8.45 ± 1.23 * | 55.40 ± 0.66 *// 62.27 ± 1.62 * | 7.78 ± 0.46 // 5.05 ± 0.61 * | 23.30 ± 1.35 * // 12.03 ± 1.96 | 3.09 ± 0.66 * //8.37 ± 2.07 * |
100 μM PPV-treated cells | 13.33 ± 0.90 * // 5.12 ± 0.35 * | 60.00 ± 0.53 * // 72.30 ± 2.50 | 7.78 ± 0.46 // 5.05 ± 0.61 * | 16.43 ± 0.64 // 13.10 ± 1.65 | 2.58 ± 0.28 * //1.73 ± 0.40 * |
150 μM PPV-treated cells | 11.77 ± 0.32 * // 9.60 ± 0.53 * | 68.77 ± 1.21 * // 66.23 ± 1.91 * | 4.33 ± 0.42 * // 5.29 ± 0.78 * | 14.23 ± 1.37 *// 11.80 ± 2.26 * | 1.66 ± 0.74 //3.21 ± 0.97 * |
ESE-ol-treated cells | 35.97 ± 1.80 * // 24.50 ± 0.75 * | 22.43 ± 0.21 * // 56.20 ± 1.31 * | 7.72 ± 0.54 // 8.08 ± 2.33 | 29.50 ± 1.35 * // 13.87 ± 1.17 | 0.42 ± 0.42 //0.03 ± 0.02 |
48 h // 72 h | |||||
---|---|---|---|---|---|
sub-G1 | G1 | S | G2/M | Endoreduplication | |
Cells propagated in growth medium | 3.22 ± 0.91 // 1.41 ± 0.19 | 64.03 ± 0.96 // 76.70 ± 0.30 | 10.56 ± 0.82 // 5.47 ± 0.36 | 19.67 ± 0.78 // 16.67 ± 0.49 | 0.95 ± 0.03 // 0.52 ± 0.28 |
Vehicle-treated cells | 3.16 ± 0.94 // 1.44 ± 0.07 | 65.90 ± 1.97 // 66.60 ± 2.10 * | 11.30 ± 0.85 * // 9.80 ± 0.54 * | 17.60 ± 0.89 // 18.90 ± 1.74 | 0.52 ± 0.36 // 0.75 ± 0.14 |
10 μM PPV-treated cells | 12.83 ± 1.70 * // 14.30 ± 0.53 * | 58.10 ± 0.26 * // 60.77 ± 2.31 * | 7.47 ± 0.57 * // 9.34 ± 0.36 * | 17.90 ± 0.17 * // 16.37 ± 0.93 | 2.15 ± 0.60 * // 3.63 ± 0.04 * |
50 μM PPV-treated cells | 10.91 ± 0.94 * // 10.90 ± 0.85 * | 54.47 ± 0.81 * // 50.73 ± 1.26 * | 7.15 ± 0.84 * // 7.35 ± 0.45 * | 22.13 ± 1.43 // 20.27 ± 0.65 * | 2.58 ± 0.35 * // 9.34 ± 0.51 * |
100 μM PPV-treated cells | 8.16 ± 0.27 * // 15.13 ± 0.32 * | 63.10 ± 3.05 // 57.83 ± 0.70 * | 7.15 ± 0.84 * // 7.35 ± 0.45 * | 18.23 ± 1.31 * // 17.27 ± 0.78 * | 1.76 ± 0.22 * // 4.57 ± 1.18 * |
150 μM PPV-treated cells | 8.87 ± 0.56 * // 23.97 ± 0.38 * | 56.57 ± 0.55 * // 51.50 ± 0.87 * | 9.62 ± 0.64 * // 5.21 ± 0.63 | 21.23 ± 0.91 // 15.67 ± 0.58 | 2.30 ± 0.82 // 4.62 ± 1.25 * |
ESE-ol-treated cells | 32.70 ± 1.51 * // 36.23 ± 0.81 * | 27.67 ± 1.19 * // 38.03 ± 1.40 * | 8.75 ± 0.62 * // 7.66 ± 0.33 * | 28.53 ± 3.54 // 17.37 ± 0.76 | 0.52 ± 0.64 // 0.08 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, D.A.; Joubert, A.M.; Visagie, M.H. In Vitro Effects of Papaverine on Cell Proliferation, Reactive Oxygen Species, and Cell Cycle Progression in Cancer Cells. Molecules 2021, 26, 6388. https://doi.org/10.3390/molecules26216388
Gomes DA, Joubert AM, Visagie MH. In Vitro Effects of Papaverine on Cell Proliferation, Reactive Oxygen Species, and Cell Cycle Progression in Cancer Cells. Molecules. 2021; 26(21):6388. https://doi.org/10.3390/molecules26216388
Chicago/Turabian StyleGomes, Daniella A., Anna M. Joubert, and Michelle H. Visagie. 2021. "In Vitro Effects of Papaverine on Cell Proliferation, Reactive Oxygen Species, and Cell Cycle Progression in Cancer Cells" Molecules 26, no. 21: 6388. https://doi.org/10.3390/molecules26216388
APA StyleGomes, D. A., Joubert, A. M., & Visagie, M. H. (2021). In Vitro Effects of Papaverine on Cell Proliferation, Reactive Oxygen Species, and Cell Cycle Progression in Cancer Cells. Molecules, 26(21), 6388. https://doi.org/10.3390/molecules26216388