Evaluation of Extraction Procedure of PCDD/Fs, PCBs and Chlorobenzenes from Activated Carbon Fibers (ACFs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Active Carbon-Based Material
2.3. Extraction Procedures
2.3.1. Ultrasonic Assisted Extraction (UAE)
2.3.2. Soxhlet Extraction (SE)
2.3.3. Accelerated Solvent Extraction (ASE)
2.3.4. Microwaves Assisted Exaction (MAE)
2.4. Clean-Up
2.5. Quality Assurance/Quality Control (QA/QC)
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhou, D.; Hai, R.; Wang, W.; Zhao, D.; Wang, S. Activated carbon fiber filler in aerated bioreactor for industrial wastewater treatment. Water Sci. Technol. 2012, 65, 1753–1758. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, Q.; Ye, Z. Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste. Appl. Surf. Sci. 2014, 299, 86–91. [Google Scholar] [CrossRef]
- Marsh, H.; Rodríguez-Reinoso, F. Characterization of Activated Carbon, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2006; p. 554. ISBN 9780080444635. [Google Scholar]
- Duan, F.; Li, Y.; Cao, H.; Wang, Y.; Crittenden, J.C.; Zhang, Y. Activated carbon electrodes: Electrochemical oxidation coupled with desalination for wastewater treatment. Chemosphere 2015, 125, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Guedidi, H.; Lakehal, I.; Reinert, L.; Lévêque, J.-M.M.; Bellakhal, N.; Duclaux, L. Removal of ionic liquids and ibuprofen by adsorption on a microporous activated carbon: Kinetics, isotherms, and pore sites. Arab. J. Chem. 2020, 13, 258–270. [Google Scholar] [CrossRef]
- Hamamoto, Y.; Alam, K.C.A.; Saha, B.B.; Koyama, S.; Akisawa, A.; Kashiwagi, T. Study on adsorption refrigeration cycle utilizing activated carbon fibers. Part 1. Adsorption characteristics. Int. J. Refrig. 2006, 29, 305–314. [Google Scholar] [CrossRef]
- Javaid, A. Activated carbon fiber for energy storage. In Activated Carbon Fiber and Textiles, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 281–303. ISBN 9780081006788. [Google Scholar]
- Mays, T.J. Active Carbon Fibers. Carbon Materials for Advanced Technologies, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 95–118. [Google Scholar]
- Guedidi, H.; Reinert, L.; Soneda, Y.; Bellakhal, N.; Duclaux, L. Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths. Arab. J. Chem. 2017, 10, S3584–S3594. [Google Scholar] [CrossRef] [Green Version]
- Zaini, M.A.A.; Amano, Y.; Machida, M. Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fiber. J. Hazard. Mater. 2010, 180, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Letinski, D.; Parkerton, T.; Redman, A.; Manning, R.; Bragin, G.; Febbo, E.; Palandro, D.; Nedwed, T. Use of passive samplers for improving oil toxicity and spill effects assessment. Mar. Pollut. Bull. 2014, 86, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Mayer, P.; Parkerton, T.F.; Adams, R.G.; Cargill, J.G.; Gan, J.; Gouin, T.; Gschwend, P.M.; Hawthorne, S.B.; Helm, P.; Witt, G.; et al. Passive sampling methods for contaminated sediments: Scientific rationale supporting use of freely dissolved concentrations. Integr. Environ. Assess. Manag. 2014, 10, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Abdulrasheed, A.A.; Jalil, A.A.; Triwahyono, S.; Zaini, M.A.A.; Gambo, Y.; Ibrahim, M. Surface modification of activated carbon for adsorption of SO2 and NOX: A review of existing and emerging technologies. Renew. Sustain. Energy Rev. 2018, 94, 1067–1085. [Google Scholar] [CrossRef]
- Bandosz, T.J.; Jagiello, J.; Schwarz, J.A. Comparison of Methods to Assess Surface Acidic Groups on Activated Carbons. Anal. Chem. 1992, 64, 891–895. [Google Scholar] [CrossRef]
- Chingombe, P. Removal of Organic Micropollutants and Trace Metal from Water Using Modified Activated Carbons. Ph.D. Thesis, Loughborough University, Loughborough, UK, 2006. [Google Scholar]
- Cerasa, M.; Benedetti, P.; De Stefanis, A.; Guerriero, E.; Mosca, S.; Bacaloni, A.; Rotatori, M. Validation studies on activated carbon fiber passive sampler for PCDD/Fs and PCBs in water. Chemosphere 2020, 239, 124666. [Google Scholar] [CrossRef] [PubMed]
- EPA. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd ed.; Compendium Method TO-4A; Determination of Pesticides and Polychlorinated Biphenyls in Ambient Air Using High Volume Polyurethane Foam (PUF) Sampling Followed by Gas Chromatographic/Multi-Detector Detection (GC/MD): Washington, DC, USA, 1999; pp. 1–53. Available online: https://www.epa.gov/sites/default/files/2016-02/documents/to-4ar2r.pdf (accessed on 23 July 2021).
- EPA. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd ed.; Compendium Method TO-9A; Determination of Polychlorinated, Polybrominated and Brominated/Chlorinated Dibenzo-p-Dioxins and Dibenzofurans in Ambient Air: Washington, DC, USA, 1999; pp. 1–94. Available online: https://www3.epa.gov/ttnamti1/files/ambient/airtox/to-9arr.pdf (accessed on 23 July 2021).
- ISO. Indoor Air—Part 13: Determination of Total (Gas and Particle-Phase) Polychlorinated Dioxin-Like Biphenyls (PCBs) and Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans (PCDDs/PCDFs)—Collection on Sorbent-Backed Filters; ISO 16000-13:2008; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- ISO. Indoor Air—Part 14: Determination of Total (Gas and Particle-Phase) Polychlorinated Dioxin-Like Biphenyls (PCBs) and Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans (PCDDs/PCDFs)—Extraction, Clean-Up and Analysis by High-Resolution Gas Chromatography and Mass Spectrometry; ISO 16000-14:2009; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- Zlotorzynski, A. The Application of Microwave Radiation to Analytical and Environmental Chemistry. Crit. Rev. Anal. Chem. 1995, 25, 43–76. [Google Scholar] [CrossRef]
- Meredith, R. Engineers’ Handbook of Industrial Microwave Heating; IET: Stevenage, UK, 1998; ISBN 9780852969168. [Google Scholar]
- Haque, K.E. Microwave energy for mineral treatment processes—A brief review. Int. J. Miner. Process. 1999, 57, 1–24. [Google Scholar] [CrossRef]
- Menéndez, J.A.; Arenillas, A.; Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Calvo, E.G.; Bermúdez, J.M. Microwave heating processes involving carbon materials. Fuel Process. Technol. 2010, 91, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sijm, D.T.H.M.; Sinnige, T.L. Experimental octanol/water partition coefficients of chlorinated paraffins. Chemosphere 1995, 31, 4427–4435. [Google Scholar] [CrossRef]
- Sarna, L.P.; Hodge, P.E.; Webster, G.R.B. Octanol-water partition coefficients of chlorinated dioxins and dibenzofurans by reversed-phase HPLC using several C18 columns. Chemosphere 1984, 13, 975–983. [Google Scholar] [CrossRef]
- Jaramillo, J.; Álvarez, P.M.; Gómez-Serrano, V. Oxidation of activated carbon by dry and wet methods surface chemistry and textural modifications. Fuel Process. Technol. 2010, 91, 1768–1775. [Google Scholar] [CrossRef]
- Ania, C.O.; Parra, J.B.; Pis, J.J. Oxygen-induced decrease in the equilibrium adsorptive capacities of activated carbons. Adsorpt. Sci. Technol. 2004, 22, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Contescu, A.; Contescu, C.; Putyera, K.; Schwarz, J.A. Surface acidity of carbons characterized by their continuous pK distribution and Boehm titration. Carbon 1997, 35, 83–94. [Google Scholar] [CrossRef]
- El-Sheikh, A.H.; Newman, A.P.; Al-Daffaee, H.K.; Phull, S.; Cresswell, N. Characterization of activated carbon prepared from a single cultivar of Jordanian Olive stones by chemical and physicochemical techniques. J. Anal. Appl. Pyrolysis 2004, 71, 151–164. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Zhu, T.; Wang, J.; Ye, M. Modeling of dioxin adsorption on activated carbon. Chem. Eng. J. 2016, 283, 1210–1215. [Google Scholar] [CrossRef]
- Kawashima, A.; Katayama, M.; Matsumoto, N.; Honda, K. Physicochemical characteristics of carbonaceous adsorbent for dioxin-like polychlorinated biphenyl adsorption. Chemosphere 2011, 83, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, M. Mechanical properties of activated carbon fibers. Act. Carbon Fiber Text. 2016, 49, 167–180. [Google Scholar] [CrossRef]
- Li, W.; Lin, X.; Yu, M.; Mubeen, I.; Buekens, A.; Li, X. Experimental study on PCDD/Fs adsorption onto nano-graphite. Aerosol Air Qual. Res. 2016, 16, 3281–3289. [Google Scholar] [CrossRef] [Green Version]
- Streat, M.; Horner, D.J. Adsorption of Highly Soluble Herbicides from Water Using Activated Carbon and Hypercrosslinked Polymers. Process. Saf. Environ. Prot. 2000, 78, 363–382. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerasa, M.; Guerriero, E.; Mosca, S. Evaluation of Extraction Procedure of PCDD/Fs, PCBs and Chlorobenzenes from Activated Carbon Fibers (ACFs). Molecules 2021, 26, 6407. https://doi.org/10.3390/molecules26216407
Cerasa M, Guerriero E, Mosca S. Evaluation of Extraction Procedure of PCDD/Fs, PCBs and Chlorobenzenes from Activated Carbon Fibers (ACFs). Molecules. 2021; 26(21):6407. https://doi.org/10.3390/molecules26216407
Chicago/Turabian StyleCerasa, Marina, Ettore Guerriero, and Silvia Mosca. 2021. "Evaluation of Extraction Procedure of PCDD/Fs, PCBs and Chlorobenzenes from Activated Carbon Fibers (ACFs)" Molecules 26, no. 21: 6407. https://doi.org/10.3390/molecules26216407
APA StyleCerasa, M., Guerriero, E., & Mosca, S. (2021). Evaluation of Extraction Procedure of PCDD/Fs, PCBs and Chlorobenzenes from Activated Carbon Fibers (ACFs). Molecules, 26(21), 6407. https://doi.org/10.3390/molecules26216407