Natural Products from Medicinal Plants against Phytopathogenic Fusarium Species: Current Research Endeavours, Challenges and Prospects
Abstract
:1. Introduction
Pathogen | Crop | Common Disease | Reference |
---|---|---|---|
Fusarium acuminatum | kiwifruit | post-harvest rot | [31] |
Fusarium asiaticum | soybean | head blight or ear rot | [32] |
Fusarium avenaceum | wheat, beans, maize | head blight or ear rot | [33,34,35] |
Fusarium boothii | wheat, maize | head blight or ear rot | [36] |
Fusarium crookwellense | wheat, potatoes | ear rot, head blight, dry rot | [37,38] |
Fusarium culmorum | wheat | seedling blight, ear blight, stalk rot | [35] |
Fusarium equiseti | wheat, barley | crown rot, damping-off | [39] |
Fusarium falciforme | bean | wilt disease, necrosis | [40] |
Fusarium fujikuroi | rice | bakanae disease | [41] |
Fusarium graminearum | wheat, corn | Fusarium head blight | [35] |
Fusarium kuroshium | avocado tree | Fusarium dieback | [42] |
Fusarium kyushuense | tobacco | Fusarium wilt | [43] |
Fusarium langsethiae | oats, wheat, barley | Fusarium head blight | [44] |
Fusarium nivale | wheat, rye | seedling blight, Fusarium head blight | [45] |
Fusarium nygamai | corn, rice, sorghum, bean, cotton | seedling blight, foot rot | [46] |
Fusarium oxysporum | Tomato, cucumber, watermelon | vascular wilt | [47] |
Fusarium poae | wheat | Fusarium head blight | [33,34,35] |
Fusarium proliferatum | wheat, maize, onion, soybean | necrotic leaf, bulb rot, root rot, ear rot diseases | [48,49,50] |
Fusarium sambucinum | potato | sprout rot, dry rot | [51] |
Fusarium semitectum | pineapple, okra, bitter gourd, cucumber, green chill | fusariosis, fruit rot | [52,53] |
Fusarium solani | peas, soybean, beans, potatoes | stem rot, stem rot, dry rot | [54] |
Fusarium sporotrichioides | wheat, cereals | Fusarium head blight | [55] |
Fusarium subglutinans | maize, mango, pineapple, pine, sorghum | pitch canker, | [56,57] |
Fusarium sulphureum | potato | dry rot | [58,59] |
Fusarium thapsinum | sorghum, banana, maize, peanut, soybean | stalk rot | [60] |
Fusarium tricinctum | cereal | root rot disease, Fusarium head blight | [61,62] |
Fusarium verticillioides | maize, wheat, corn | ear and stalk rot | [63,64,65,66,67] |
2. Environmental and Health Implications of Fusarium Control in Crop Production Using Synthetic Chemicals
3. The Potential of Natural Products from Medicinal Plants for Controlling Fusarium Pathogens
Plant Extracts, Essential Oils and Compounds with Antifungal Activity
Plant Species (Family) | Solvents/Plant Parts Used | Method | Organism Tested | Positive Control | Activity of Positive Control | Results | References |
---|---|---|---|---|---|---|---|
Aconitum laeve Royle (Ranunculaceae) | Chloroform/tubers | poisoned food technique | F. oxysporum | Not stated | Not stated | Inhibition of 58.73 at 300 mg/mL | [160] |
Annona squamosa L. (Annonaceae) | Methanol; Chloroform; Aqueous/leaf | broth dilution method | F. solani | 100 mg/mL ketoconazole | Not stated | MIC value of 600; 300; 800 µg/mL | [161] |
Aristolochia elegans Mast (Aristolochiaceae) | Acetone/leaf | serial microdilution assay | F. oxysporum | amphotericin B | 7.5 µg/mL | MIC value of 0.08 mg/mL | [162,163] |
Artemisia absinthium L. (Compositae) | Ethanol; Water/flowers | disk diffusion method | F. oxysporum | carbendazim | inhibition of 100% at 1% of the total volume | Inhibition of 65.69; 53.43 at 500 mg/L | [164] |
Ethanol; Water/leaf | Inhibition of 62.69; 51.33 at 500 mg/L | ||||||
Ethyl acetate; Ethanol/roots | Inhibition of 72.45; 64.63 at 500 mg/L | ||||||
Asparagus officinalis L. (Asparagaceae) | Water | amended plate technique | F. oxysporum | Not stated | Not stated | Inhibition of 53.9 to 85.7 | [165] |
Bauhinia galpinii N.E.Br. (Fabaceae) | Acetone/leaf | microplate dilution method | F. verticilloides | amphotericin B | 1.56 mg/mL | MIC value of 0.20 mg/mL | [166] |
Hot water; Methanol: Dichloromethane (1:1)/leaf | microplate dilution method | F. graminearum | 0.004 mg/mL | MIC value of 0.30; 0.20 mg/mL | [167,168] | ||
F. verticillioides | 0.006 mg/mL | MIC value of 3.13; 0.20 mg/mL | |||||
F. oxysporum | 0.004 mg/mL | MIC value of 3.13; 1.56 mg/mL | |||||
Breonadia salicina (Vahl) Hepper and J.R.I Wood (Rubiaceae) | Acetone; Hexane; Dichloromethane; Methanol/leaf | microplate method | F. oxysporum | amphotericin B | <0.02 mg/mL | MIC value of 0.32; 0.08; 0.16; 0.16 mg/mL | [115,169] |
Bucida buceras L. (Combretaceae) | Acetone; Hexane; Dichloromethane; Methanol/leaf | microplate method | F. oxysporum | amphotericin B | MIC value of 0.02; 0.63; 0.32; 0.04 mg/mL | [115,169] | |
Carpobrotus edulis (L.) N.E.Br. (Aizoaceae) | Hot water; Methanol: Dichloromethane (1:1)/leaf | microplate dilution method | F. graminearum | amphotericin B | 0.004 mg/mL | MIC value of 0.39; 3.13 mg/mL | [167,168] |
F. verticillioides | 0.006 mg/mL | MIC value of 3.13; 0.10 mg/mL | |||||
F. oxysporum | 0.004 mg/mL | MIC value of 3.13; 0.65 mg/mL | |||||
Chromolaena odorata (L.) R.M.King & H.Rob. (Compositae) | Acetone/leaf | serial micro dilution assay | F. oxysporum | amphotericin B | 7.5 µg/mL | MIC value of 0.08 mg/mL | [162,163] |
Combretum caffrum (Eckl. & Zeyh.) Kuntze (Combretaceae) | Acetone/leaf | microplate dilution method | F. verticilloides | amphotericin B | 1.56 mg/mL | MIC value of 0.31 mg/mL | [166] |
Combretum erythrophyllum (Burch.) Sond. (Combretaceae) | Ethyl acetate; Acetone/leaf | microplate dilution method | F. verticillioides | amphotericin B | 2.93 µg/mL | MIC value of 0.04; 0.04 mg/mL | [131] |
Water; Ethyl acetate; Acetone/leaf | F. proliferetum | 0.37 µg/mL | MIC value of 0.31; 0.04; 0.04 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. solani | 0.37 µg/mL | MIC value of 0.16; 0.08; 0.04 mg/mL | ||||
Ethyl acetate; Acetone/leaf | F. graminearum | 187.50 µg/mL | MIC value of 0.16; 0.08 mg/mL | ||||
Petroleum ether; Ethyl acetate; Acetone/leaf | F. equisite | 187.50 µg/mL | MIC value of 0.04; 0.16; 0.04 mg/mL | [125] | |||
Petroleum ether; Ethyl acetate; Acetone/leaf | F. oxysporum | 11.72 µg/mL | MIC value of 0.63; 0.31; 0.31 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. semitectum | 23.44 µg/mL | MIC value of 0.63; 0.63; 0.04; 0.04 mg/mL | ||||
Petroleum ether; Ethyl acetate; Acetone/leaf | F. chlamydosporum | 23.44 µg/mL | MIC value of 0.04; 0.04; 0.08 mg/mL | ||||
Petroleum ether; Ethyl acetate; Acetone/leaf | F. subglutinans | 93.75 µg/mL | MIC value of 0.04; 0.04; 0.08 mg/mL | ||||
Combretum molle R. Br. ex G. Don (Combretaceae) | Ethyl acetate/leaf | microplate dilution method | F. verticillioides | amphotericin B | 2.93 µg/mL | MIC value of 0.61 mg/mL | [131] |
Water; Ethyl acetate; Acetone/leaf | F. proliferetum | 0.37 µg/mL | MIC value of 0.04; 0.04; 0.04 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. solani | 0.37 µg/mL | MIC value of 0.04; 0.04; 0.04 mg/mL | ||||
Ethyl acetate; Acetone/leaf | F. graminearum | 187.50 µg/mL | MIC value of 0.63; 0.63 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. equisite | 187.50 µg/mL | MIC value of 0.63; 0.31; 0.16; 0.31 mg/mL | [125] | |||
Water; Petroleum ether; Ethyl acetate/leaf | F. oxysporum | 11.72 µg/mL | MIC value of 0.31; 0.16; 0.16 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. semitectum | 23.44 µg/mL | MIC value of 0.63; 0.04; 0.08; 0.04 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate/leaf | F. chlamydosporum | 23.44 µg/mL | MIC value of 0.63; 0.04; 0.04 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. subglutinans | 93.75 µg/mL | MIC value of 0.63; 0.16; 0.63; 0.27 mg/ml | ||||
Acetone; Ethyl acetate; Dichloromethane/leaf | serial microplate dilution method | F. oxysporum | Not stated | MIC value of 0.19; 0.21; 0.16 mg/mL | [170] | ||
Euphorbia hirta L. (Euphorbiaceae) | Water; Ethanol/leaf | agar plate dilution method | F. oxysporum vasinfectum | Not stated | Not stated | IC50 of 12.38 mg/mL; MIC value of 0.31 mg/mL and IC50 of 2.93 mg/mL | [171] |
Harpephyllum caffrum Bernh. (Anacardiaceae) | Water; Ethyl acetate/leaf | microplate dilution method | F. verticillioides | amphotericin B | 2.93 µg/mL | MIC value of 0.08; 0.08 mg/mL | [131] |
Water; Ethyl acetate; Acetone/leaf | F. proliferetum | 0.37 µg/mL | MIC value of 0.04; 0.04; 0.04 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. solani | 0.37 µg/mL | MIC value of 0.08; 0.04; 0.63 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. graminearum | 187.50 µg/mL | MIC value of 0.16; 0.08; 0.31 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate/leaf | F. equisite | 187.50 µg/mL | MIC value of 0.31; 0.16; 0.16 mg/mL | [125] | |||
Water; Petroleum ether; Ethyl acetate/leaf | F. oxysporum | 11.72 µg/mL | MIC value of 0.31; 0.16; 0.31 mg/mL | ||||
Water; Ethyl acetate/leaf | F. chlamydosporum | 23.44 µg/mL | MIC value of 0.16; 0.16 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. subglutinans | 23.44 µg/mL | MIC value of 0.31; 0.08; 0.31; 0.78 mg/mL | ||||
Acetone/leaf | microplate dilution method | F. verticilloides | 1.56 mg/mL | MIC value of 0.02 mg/mL | [166] | ||
Acetone; Hexane; Dichloromethane; Methanol/leaf | microplate method | F. oxysporum | <0.02 mg/mL | MIC value of 0.32; 0.16; 0.04; 0.39 mg/mL | [115,169] | ||
Hot water; Methanol: Dichloromethane (1:1)/leaf | microplate dilution method | F. graminearum | 0.004 mg/mL | MIC value of 0.20; 0.78 mg/mL | [167,168] | ||
F. verticillioides | 0.006 mg/mL | MIC value of 0.20; 0.39 mg/mL | |||||
F. oxysporum | 0.004 mg/mL | MIC value of 0.52; 0.24 mg/mL | |||||
Ipomoea alba L. (Convolvulaceae) | Acetone/leaf | serial micro dilution assay | F. oxysporum | amphotericin B | 7.5 µg/mL | MIC value of 0.04 mg/mL | [162,163] |
Lantana camara L. (Verbenaceae) | Water; Ethyl acetate; Acetone/leaf | microplate dilution method | F. verticillioides | amphotericin B | 2.93 µg/mL | MIC value of 0.16; 0.16; 0.04 mg/mL | [131] |
Ethyl acetate; Acetone/leaf | F. proliferetum | 0.37 µg/mL | MIC value of 0.04; 0.16 mg/mL | ||||
Ethyl acetate; Acetone/leaf | F. solani | 0.37 µg/mL | MIC value of 0.04; 0.63 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. graminearum | 187.50 µg/mL | MIC value of 0.08; 0.63; 0.63 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate/leaf | F. equisite | 187.50 µg/mL | MIC value of 0.63; 0.31; 0.16 mg/mL | [125] | |||
Petroleum ether; Ethyl acetate/leaf | F. oxysporum | 11.72 µg/mL | MIC value of 0.31; 0.63 mg/mL | ||||
Petroleum ether; Ethyl acetate/leaf | F. semitectum | 23.44 µg/mL | MIC value of 0.08; 0.04 mg/mL | ||||
Water; Acetone/leaf | F. chlamydosporum | 23.44 µg/mL | MIC value of 0.16; 0.16 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. subglutinans | 93.75 µg/mL | MIC value of 0.04; 0.04; 0.04; 0.39 mg/mL | ||||
Maesa lanceolata Forsk (Primulaceae) | Hot water: Methanol: Dichloromethane (1:1)/leaf | microplate dilution method | F. graminearum | amphotericin B | 0.004 mg/mL | MIC value of 0.20; 0.78 mg/mL | [167,168] |
F. verticillioides | 0.006 mg/mL | MIC value of 0.20; 0.78 mg/mL | |||||
F. oxysporum | 0.004 mg/mL | MIC value of 0.26; 0.08 mg/mL | |||||
Markhamia obtusifolia (Baker) Sprague (Bignoniaceae) | Acetone/leaf | microplate dilution method | F. verticilloides | amphotericin B | 1.56 mg/mL | MIC value of 0.31 mg/mL | [166] |
Melia azedarach L. (Meliaceae) | Water; Ethyl acetate/leaf | microplate dilution method | F. verticillioides | amphotericin B | 2.93 µg/mL | MIC value of 0.16; 0.08 mg/mL | [131] |
Water; Ethyl acetate/leaf | F. proliferetum | 0.37 µg/mL | MIC value of 0.04; 0.08 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. solani | 0.37 µg/mL | MIC value of 0.08; 0.04; 0.63 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. graminearum | 187.50 µg/mL | MIC value of 0.08; 0.16; 0.63 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate/leaf | F. equisite | 187.50 µg/mL | MIC value of 0.31; 0.16; 0.16 mg/mL | [125] | |||
Water; Petroleum ether; Ethyl acetate/leaf | F. oxysporum | 11.72 µg/mL | MIC value of 0.16; 0.08; 0.16 mg/mL | ||||
Petroleum ether; Ethyl acetate/leaf | F. semitectum | 23.44 µg/mL | MIC value of 0.31; 0.63 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. chlamydosporum | 23.44 µg/mL | MIC value of 0.31; 0.63; 0.04; 0.08 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. subglutinans | 93.75 µg/mL | MIC value of 0.16; 0.16; 0.08; 0.63 mg/mL | ||||
Melianthus comosus Vahl. (Melianthaceae) | Carbon tetrachloride; Diethyl ether; Dichloromethane; Chloroform; Acetone; Ethanol; Ethyl acetate/leaf | serial microdilution assay | F. oxysporum | Not stated | Not stated | MIC value of 0.63; 0.63; 0.16; 0.16; 0.04; 0.08; 0.78 mg/mL | [172,173] |
Milletia grandis (E. Mey) Skeels (Fabaceae) | Hot water; Methanol: Dichloromethane (1:1)/leaf | microplate dilution method | F. graminearum | amphotericin B | 0.004 mg/mL | MIC value of 0.01; 0.78; mg/mL | [167,168] |
F. verticillioides | 0.006 mg/mL | MIC value of 0.10; 0.65 mg/mL | |||||
F. oxysporum | 0.004 mg/mL | MIC value of 0.01; 0.01 mg/mL | |||||
Methanol: Dichloromethane (1:1)/leaf | Not stated | F. graminarium | Not stated | Not stated | MIC value of 0.01 mg/mL | [174] | |
Not stated | F. oxysporum | Not stated | Not stated | MIC value of 0.39 mg/mL | [174] | ||
Momordica charantia Linn. (Cucurbitaceae) | Seed | Not stated | F. solani | Not stated | Not stated | MIC value of 0.08 mg/mL and Inhibition of 57.216 at 125 µg/mL | [175,176] |
Mystroxylon aethiopicum (Thunb.) Loes (Celastraceae) | Acetone/leaf | microplate dilution method | F. verticilloides | amphotericin B | 1.56 mg/mL | MIC value of 0.16 mg/mL | [166] |
Nicotiana glauca Graham (Solanaceae) | Water; Ethyl acetate/leaf | microplate dilution method | F. verticillioides | amphotericin B | 2.93 µg/mL | MIC value of 0.04; 0.16 mg/mL | [131] |
Water; Ethyl acetate/leaf | F. proliferetum | 0.37 µg/mL | MIC value of 0.04; 0.04 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. solani | 0.37 µg/mL | MIC value of 0.16; 0.08; 0.63 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. graminearum | 187.50 µg/mL | MIC value of 0.16; 0.16; 0.08 mg/mL | ||||
Olea europaea L. (Oleaceae) | Water; Ethyl acetate; Acetone/leaf | microplate dilution method | F. verticillioides | amphotericin B | 2.93 µg/mL | MIC value of 0.16; 0.16; 0.04 mg/mL | [131] |
Water; Ethyl acetate/leaf | F. proliferetum | 0.37 µg/mL | MIC value of 0.04; 0.04 mg/mL | ||||
Water; Ethyl acetate/leaf | F. solani | 0.37 µg/mL | MIC value of 0.04; 0.04 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. graminearum | 187.50 µg/mL | MIC value of 0.02; 0.02; 0.63 mg/mL | ||||
Petroleum ether; Ethyl acetate/leaf | F. equisite | 187.50 µg/mL | MIC value of 0.31; 0.31 mg/mL | [125] | |||
Water; Petroleum ether; Ethyl acetate/leaf | F. oxysporum | 11.72 µg/mL | MIC value of 0.63; 0.31; 0.31 mg/mL | ||||
Acetone/leaf | F. semitectum | 23.44 µg/mL | MIC value of 0.04 mg/mL | ||||
Water; Acetone/leaf | F. chlamydosporum | 23.44 µg/mL | MIC value of 0.04; 0.3l mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. subglutinans | 93.75 µg/mL | MIC value of 0.31; 0.31; 0.31; 0.08 mg/mL | ||||
Olinia ventosa (L.) Cufod (Penaeaceae) | Acetone; Hexane; Dichloromethane; Methanol/leaf | microplate method | F. oxysporum | amphotericin B | <0.02 mg/mL | MIC value of 0.63; 0.31; 0.16; 0.16 mg/mL | [115,169] |
Passiflora suberosa L. (Passifloraceae) | Acetone/leaf | serial microdilution assay | F. oxysporum | amphotericin B | 7.5 μg/mL | MIC value of 0.04 mg/mL | [162,163] |
Quercus acutissima Carruth. (Fagaceae) | Water; Ethyl acetate/leaf | Microplate dilution method | F. verticillioides | amphotericin B | 2.93 µg/mL | MIC value of 0.08; 0.08 mg/mL | [131] |
Water; Ethyl acetate/leaf | F. proliferetum | 0.37 µg/mL | MIC value of 0.04; 0.04 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. solani | 0.37 µg/mL | MIC value of 0.04; 0.04; 0.31 mg/mL | ||||
Water; Ethyl acetate/leaf | F. graminearum | 187.50 µg/mL | MIC value of 0.02; 0.02 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate/leaf | F. equisite | 187.50 µg/mL | MIC value of 0.31; 0.16; 0.08 mg/mL | [125] | |||
Water; Petroleum ether; Ethyl acetate/leaf | F. oxysporum | 11.72 µg/mL | MIC value of 0.16; 0.08; 0.16 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. semitectum | 23.44 µg/mL | MIC value of 0.63; 0.31; 0.31; 0.16 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate/leaf | F. chlamydosporum | 23.44 µg/mL | MIC value of 0.04; 0.16; 0.04 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate/leaf | F. subglutinans | 93.75 µg/mL | MIC value of 0.16; 0.08; 0.63 mg/mL | ||||
Rhus muelleri Standl. & F.A.Barkley (Anacardiaceae) | Ethanol/leaf | agar dilution method | F. oxysporum f. sp. lycopersici | Not stated | Not stated | MIC value of 0.39 mg/mL and inhibition of 56.8% at 4500 ppm | [177,178] |
Ricinus communis L (Euphorbiaceae) | Acetone/leaf | microplate dilution method | F. verticilloides | amphotericin B | 1.56 mg/mL | MIC value of 0.39 mg/mL | [166] |
Hot water/leaf | F. graminearum | 0.004 mg/mL | MIC value of 0.20 mg/mL | [167,168] | |||
Hot water; Methanol: Dichloromethane (1:1)/leaf | F. verticillioides | 0.006 mg/mL | MIC value of 0.02; 0.78 mg/mL | ||||
Hot water/leaf | F. oxysporum | 0.004 mg/mL | MIC value of 0.16 mg/mL | ||||
Rumex vesicarius L. (Polygonaceae) | Aqueous extract or Water/shoot | agar dilution method | F. oxysporum | Not stated | Not stated | MIC value of 0.625 mg/mL and Inhibition of 50.97 at 25 mg/mL | [179,180] |
Salacia macrosperma Wight. (Celastraceae) | Ethyl acetate; Methanol/leaf | disc diffusion | F. moniliforme | nystatin | 0.078 mg/mL | MIC value of 0.312; 0.312 mg/mL | [181] |
Methanol/leaf | F. oxysporum | 0.156 mg/mL | MIC value of 0.625 mg/mL | ||||
Schotia brachypetala Sond. (Fabaceae) | Water; Ethyl acetate/leaf | microplate dilution method | F. verticillioides | amphotericin B | 2.93 µg/mL | MIC value of 0.31; 0.16 mg/mL | [131] |
Water; Ethyl acetate/leaf | F. proliferetum | 0.37 µg/mL | MIC value of 0.04; 0.04 mg/mL | ||||
Ethyl acetate; Acetone/leaf | F. solani | 0.37 µg/mL | MIC value of 0.63; 0.04 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. graminearum | 187.50 µg/mL | MIC value of 0.16; 0.16; 0.31 mg/mL | ||||
Senna didymobotrya (Fresen.) H.S. Irwin & Barneby (Fabaceae) | Water; Ethyl acetate; Acetone/leaf | microplate dilution method | F. verticillioides | amphotericin B | 2.93 µg/mL | MIC value of 0.16; 0.08; 0.04 mg/mL | [131] |
Ethyl acetate/leaf | microplate dilution method | F. proliferetum | 0.37 µg/mL | MIC value of 0.04 mg/mL | |||
Water; Ethyl acetate; Acetone/leaf | F. solani | 0.37 µg/mL | MIC value of 0.08; 0.08; 0.63 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. graminearum | 187.50 µg/mL | MIC value of 0.16; 0.63; 0.16 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate/leaf | F. equisite | 187.50 µg/mL | MIC value of 0.16; 0.31; 0.31 mg/mL | [125] | |||
Water; Petroleum ether; Ethyl acetate/leaf | F. oxysporum | 11.72 µg/mL | MIC value of 0.31; 0.16; 0.16 mg/mL | ||||
Water; Acetone/leaf | F. chlamydosporum | 23.44 µg/mL | MIC value of 0.63; 0.04 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. subglutinans | 23.44 µg/mL | MIC value of 0.08; 0.04; 0.08; 0.26 mg/mL | ||||
Solanum aculeastrum Dunal (Solanaceae) | Acetone/leaf | microplate dilution method | F. verticilloides | amphotericin B | 1.56 mg/mL | MIC value of 0.39 mg/mL | [166] |
Hot water; Methanol: Dichloromethane (1:1)/leaf | microplate dilution method | F. graminearum | 0.004 mg/mL | MIC value of 0.78; 0.39 mg/mL | |||
F. verticillioides | 0.006 mg/mL | MIC value of 0.40; 0.20 mg/mL | |||||
Hot water/leaf | F. oxysporum | 0.004 mg/mL | MIC value of 0.78 mg/mL | ||||
Solanum mauritianum Scop. (Solanaceae) | Water; Ethyl acetate/leaf | microplate dilution method | F. verticillioides | amphotericin B | 2.93 µg/mL | MIC value of 0.04; 0.16 mg/mL | [131] |
Water; Ethyl acetate/leaf | F. proliferetum | 0.37 µg/mL | MIC value of 0.04; 0.04 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. solani | 0.37 µg/mL | MIC value of 0.04; 0.04; 0.63 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. graminearum | 187.50 µg/mL | MIC value of 0.16; 0.04; 0.16 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate/leaf | F. equisite | 187.50 µg/mL | MIC value of 0.31; 0.08; 0.31 mg/mL | [125] | |||
Water; Petroleum ether; Ethyl acetate/leaf | F. oxysporum | 11.72 µg/mL | MIC value of 0.31; 0.08; 0.04 mg/mL | ||||
Water/leaf | F. semitectum | 23.44 µg/mL | MIC value of 0.63 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. chlamydosporum | 23.44 µg/mL | MIC value of 0.31; 0.31; 0.31; 0.08 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate/leaf | F. subglutinans | 93.75 µg/mL | MIC value of 0.16; 0.04; 0.04 mg/mL | ||||
Solanum panduriforme E. Mey. (Solanaceae) | Hot water; Methanol: Dichloromethane (1:1)/leaf | microplate dilution method | F. graminearum | amphotericin B | 0.004 mg/mL | MIC value of 0.10; 0.78 mg/mL | [167,168] |
F. verticillioides | 0.006 mg/mL | MIC value of 0.20; 0.39 mg/mL | |||||
F. oxysporum | 0.004 mg/mL | MIC value of 0.01; 0.08 mg/mL | |||||
Solanum seaforthianum Andrews (Solanaceae) | Acetone/leaf | serial microdilution assay | F. oxysporum | amphotericin B | 7.5 μg/mL | MIC value of 0.31 mg/mL | [162,163] |
Spirostachys africana Sond. (Euphorbiaceae) | Acetone/leaf | microplate dilution method | F. verticilloides | amphotericin B | 1.56 mg/mL | MIC value of 0.63 mg/mL | [166] |
Strychnos mitis S.Moore (Loganiaceae) | Acetone/leaf | microplate dilution method | F. verticilloides | amphotericin B | 1.56 mg/mL | MIC value of 0.24 mg/mL | [166] |
Vangueria infausta Burch (Rubiaceae) | Water; Ethyl acetate/leaf | microplate dilution method | F. verticillioides | amphotericin B | 2.93 µg/mL | MIC value of 0.08; 0.04 mg/mL | [131] |
Water; Ethyl acetate; Acetone/leaf | F. proliferetum | 0.37 µg/mL | MIC value of 0.04; 0.04; 0.63 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. solani | 0.37 µg/mL | MIC value of 0.04; 0.04; 0.31 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. graminearum | 187.50 µg/mL | MIC value of 0.31; 0.16; 0.32 mg/mL | ||||
Acetone; Hexane; Dichloromethane/leaf | F. oxysporum | < 0.02 mg/mL | MIC value of 0.63; 0.32; 0.32 mg/mL | [115,169] | |||
Vangueria infausta Burch (Rubiaceae) | Water; Petroleum ether; Ethyl acetate; Acetone/leaf | microplate dilution method | F. equisite | amphotericin B | 187.50 µg/mL | MIC value of 0.63; 0.31; 0.16; 0.63 mg/mL | [125] |
Water; Petroleum ether; Ethyl acetate/leaf | F. oxysporum | 11.72 µg/mL | MIC value of 0.31; 0.16; 0.16 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. semitectum | 23.44 µg/mL | MIC value of 0.63; 0.08; 0.16; 0.04 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. chlamydosporum | 23.44 µg/mL | MIC value of 0.63; 0.31; 0.08; 0.16 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. subglutinans | 93.75 µg/mL | MIC value of 0.31; 0.31; 0.31; 0.78 mg/mL | ||||
Warburgia salutaris (G. Bertol) Chiov. (Canellaceae) | Hot water/leaf | microplate dilution method | F. graminearum | amphotericin B | 0.004 mg/mL | MIC value of 0.10 mg/mL | [167,168] |
Hot water; Methanol: Dichloromethane (1:1)/leaf | F. verticillioides | 0.006 mg/mL | MIC value of 0.10; 0.78 mg/mL | ||||
F. oxysporum | 0.004 mg/mL | MIC value of 0.10; 0.10 mg/mL | |||||
Acetone/leaf | F. verticilloides | 1.56 mg/mL | MIC value of 0.63 mg/mL | [166] | |||
Withania somnifera (L.) Dunal (Solanaceae) | Water; Ethyl acetate; Acetone/leaf | microplate dilution method | F. verticillioides | amphotericin B | 2.93 µg/mL | MIC value of 0.08; 0.08; 0.04 mg/mL | [131] |
Water; Ethyl acetate; Acetone/leaf | F. proliferetum | 0.37 µg/mL | MIC value of 0.04; 0.04; 0.63 mg/mL | ||||
Water; Ethyl acetate/leaf | F. solani | 0.37 µg/mL | MIC value of 0.08; 0.04 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate/leaf | F. equisite | 187.50 µg/mL | MIC value of 0.63; 0.16; 0.31 mg/mL | [125] | |||
Water; Petroleum ether; Ethyl acetate/leaf | F. oxysporum | 11.72 µg/mL | MIC value of 0.16; 0.08; 0.08 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate/leaf | F. semitectum | 23.44 µg/mL | MIC value of 0.63; 0.04; 0.08 mg/mL | ||||
Water; Ethyl acetate; Acetone/leaf | F. chlamydosporum | 23.44 µg/mL | MIC value of 0.63; 0.63; 0.16 mg/mL | ||||
Water; Petroleum ether; Ethyl acetate; Acetone/leaf | F. subglutinans | 93.75 µg/mL | MIC value of 0.08; 0.63; 0.31; 0.63 mg/mL | ||||
Xylotheca kraussiana Hochst. (Achariaceae) | Acetone/leaf | microplate dilution method | F. verticilloides | amphotericin B | 1.56 mg/mL | MIC value of 0.63 mg/mL | [166] |
Acetone; Hexane; Dichloromethane/leaf | F. oxysporum | <0.02 mg/mL | MIC value of 0.32; 0.32; 0.32 mg/mL | [115,169] | |||
Methanol/leaf | F. oxysporum | MIC value of 0.08 mg/mL | |||||
Ziziphus mucronata Wild. (Rhamnaceae) | Hot water; Methanol: Dichloromethane (1:1)/leaf | microplate dilution method | F. graminearum | amphotericin B | 0.006 mg/mL | MIC value of 0.01; 0.78 mg/mL | [167,168] |
F. oxysporum | 0.004 mg/mL | MIC value of 0.39; 0.39 mg/mL | [167,168] |
Plant Species (Family) Source of Essential Oil | Method | Organism Tested | Positive Control | Activity of Positive Control | Results | Reference |
---|---|---|---|---|---|---|
Achillea biebersteinii Afan. ex Hub.-Mor. (Asteraceae) | disc diffusion method | F. verticilloides | Not stated | Not stated | Inhibition of 92.9% at 25 µL | [182] |
Aconitum laeve Royle (Ranunculaceae) | disc diffusion method | F. oxysporum | amphotericin B; clotrimazole | 200; 300 µg/mL | MIC value of 300 µg/mL | [157] |
Aloysia polystachya (Griseb.) Moldenke Biurrum 8755 (Verbenaceae) | disc diffusion method | F. verticillioides | Not stated | Not stated | IC50 of 1082.43 µg/mL | [158] |
Artemisia sieberi Besser. (Asteraceae) | broth microdilution method | F. solani | Itraconazole; Fluconazole; Ketoconazole | 7; 18; 12 µg/mL | MIC value of 20 µg/mL | [183] |
F. oxysporum | 9; 10; 9 µg/mL | MIC value of 60 µg/mL | ||||
Asarum heterotropoides var. mandshuricum (Aristolochiaceae) | disc diffusion method | F. avenaceum | nystatin | Not stated | MIC50 of 0.61 mg/mL | [184] |
F. trichothecioides | MIC50 of 0.72 mg/mL | |||||
F. sporotrioides | MIC50 of 0.83 mg/mL | |||||
Bupleurum falcatum L. (Apiaceae) | broth microdilution method | F. oxysporum | amphotericin B | 0.5 µg/mL | MIC of 2 µg/mL | [185] |
Chenopodium ambrosioides L. (Chenopodiaceae) | disc diffusion method | F. verticillioides | Not stated | Not stated | IC50 of 243.12 µg/mL | [158] |
Cannabis sativa L. (Cannabidaceae) | agar dilution method | F. oxysporum | Not stated | Not stated | Inhibition of 93.58% at 1 µL/mL | [155] |
F. verticillioides | Inhibition of 88.17% at 1 µL/mL | |||||
Cinnamomum camphora (Lauraceae) | toxic medium assay | F. oxysporum isolate S-1187. | ICA-Thiabendazole® 500SC | Not stated | Inhibition of 49% at 3000 µL/L | [186] |
Cinnamon zeylanicum (Lauraceae) | F. oxysporum isolate S-1187. | Inhibition of 92% at 500 µL/L | ||||
Citrus aurantium (Rutaceae) | agar dilution method. | F. oxysporum | Not stated | Not stated | Inhibition of 57.75% at 1 µL/mL | [155] |
F. verticillioides | Inhibition of 57.40% at 1 µL/mL | |||||
Citrus reticulata L. (Rutaceae) | poisoned food technique | F. oxysporum | Not stated | Not stated | Inhibition of 70% at 0.15 mL/100 mL | [187] |
Citrus sinensis L. (Rutaceae) | disc diffusion method | F. verticillioides | Not stated | Not stated | IC50 of 1604.82 µL/L | [158] |
Coriandrum sativum L. (Apiaceae) | microdilution technique | F. solani | fluconazole | Not stated | MIC value of 0.97 mg/mL | [188] |
Cuminum cyminum (Apiaceae) | broth dilution method | F. solani isolates | Not stated | Not stated | MIC value of 69 µg/mL | [189] |
F. oxysporum isolates | Not stated | Not stated | MIC value of 72 µg/mL | [189] | ||
F. verticillioides isolates | MIC value of 73 µg/mL | |||||
F. poae isolates | MIC value of 130 µg/mL | |||||
F. equiseti isolates | MIC value of 75 µg/mL | |||||
Curcuma longa L. (Zingiberaceae) | microwell dilution method | F. graminearum | Nystatin; Amphotericin B | 2200; 1400 µg/mL | MIC value of 2450 µg/mL | [190] |
Cymbopogon citratus, Stapf. (Poaceae) | toxic medium assay | F. oxysporum isolate S-1187. | ICA-Thiabendazole® 500SC | Not stated | Inhibition of 100% at 2500 µL/L | [186] |
Cymbopogon nardus (L.) Rendle (Poaceae) | agar dilution method | F. oxysporum | Not stated | Not stated | Inhibition of 85.56% at 1 µL/mL | [155] |
F. verticillioides | Inhibition of 75.74% at 1 µL/mL | |||||
Daucus carota L. var. Chantenay (Apiaceae) | agar dilution method | F. verticillioides | Not stated | Not stated | Inhibition of 56.80% at 1 µL/mL | [155] |
Echinophora platyloba DC. (Apiaceae) | agar dilution and disk diffusion methods | F. oxysporum | Not stated | Not stated | Inhibition of 51.8% at 1 µL/L | [191] |
Eucalyptus sp. (Myrtaceae) | disk diffusion method | F. graminearum | Not stated | Not stated | Inhibition of 56% at 1000 µL/L | [192] |
F. asiaticum | Inhibition of 67% at 1500 µL/L | |||||
F. redolens f. sp. dianthus | Inhibition of 55.11% at 1000 µL/L | |||||
F. verticillioides | Inhibition of 72.44% at 1500 µL/L | |||||
F. oxysporum f. sp. lentis | Inhibition of 55.11% at 1500 µL/L | |||||
Foeniculum vulgare Mill. (Apiaceae) | broth dilution method | F. solani isolates | Not stated | Not stated | MIC value of 77 µg/mL | [189] |
F. oxysporum isolates | MIC value of 72 µg/mL | |||||
F. verticillioides isolates | MIC value of 77 µg/mL | |||||
F. poae isolates | MIC value of 96 µg/mL | |||||
F. equiseti isolates | MIC value of 63 µg/mL | |||||
Foeniculum vulgare Mill. (Apiaceae) fruits | agar disk diffusion | F. fujikuroi | Not stated | Not stated | MIC value of 2.0 µL/mL | [193] |
Helichrysum splendidum (Thunb.) Less. (Asteraceae) | toxic medium assay | F. oxysporum isolate S-1187. | ICA-Thiabendazole® 500SC | Not stated | Inhibition of 58% at 3000 µL/L | [186] |
Heracleum persicum Desf. Ex Fischer. (Apiaceae) | broth dilution method | F. solani isolates | Not stated | Not stated | MIC value of 675 µg/mL | [189] |
F. oxysporum isolates | Not stated | Not stated | MIC value of 70 µg/mL | [189] | ||
F. verticillioides isolates | MIC value of 225 µg/mL | |||||
F. poae isolates | MIC value of 952 µg/mL | |||||
F. equiseti isolates | MIC value of 1062 µg/mL | |||||
F. solani | Itraconazole; Fluconazole; Ketoconazole | 7; 18; 12 µg/mL | MIC value of 480 µg/mL | [183] | ||
F. oxysporum | 9; 10; 9 µg/mL | MIC value of 530 µg/mL | ||||
Illicium verum Hook.f. (Schisandraceae) | microdilution technique | F. solani | fluconazole | Not stated | MIC value of 0.93 mg/mL | [188] |
F. verticillioides | MIC value of 0.70 mg/mL | |||||
Laurus nobilis L. (Lauraceae) | disc diffusion method | F. verticillioides | Not stated | Not stated | IC50 of 1846.87 µL/L | [158] |
Lavandula angustifolia Mill. (Lamiaceae) | agar dilution method | F. verticillioides | Not stated | Not stated | Inhibition of 68.64% at 1 µL/mL | [155] |
Cymbopogon citratus, mycorrhizal lemongrass. (Poaceae) | food poisoning method | F. solani | Ridomil plus 44 WP | 100% at 250 ppm | Inhibition of 89% at 250 ppm | [194] |
Cymbopogon citratus, non-mycorrhizal lemongrass. (Poaceae) | Inhibition of 71% at 250 ppm | |||||
Lippia rehmannii H.Pearson (Verbenaceae) | toxic medium assay | F. oxysporum isolate S-1187. | ICA-Thiabendazole® 500SC | Not stated | Inhibition of 72% at 500 µL/L | [186] |
Lippia scaberrima Sond. (Verbenaceae) | Inhibition of 87% at 3000 µL/L | |||||
Matricaria recutita (L.) syn. (Asteraceae) | microbioassay technique | F. oxysporum | ketoconazole | 29.7% at 10 mg/disk | Inhibition of 56.0% at 62.5 µg/mL | [195] |
Melaleuca alternifolia (Myrtaceae) | microdilution technique | F. verticillioides | fluconazole | Not stated | MIC value of 0.86 mg/mL | [188] |
F. oxysporum | MIC value of 0.91 mg/mL | |||||
Melaleuca alternifolia L. (Maiden and Betche) Cheel. (Myrtacea) | agar dilution method | F. oxysporum | Not stated | Not stated | Inhibition of 58.29% at 1 µL/mL | [155] |
F. verticillioides | Inhibition of 56.80% at 1 µL/mL | |||||
Mentha spicata L. (spearmint) (Lamiaceae) | toxic medium assay | F. oxysporum isolate S-1187. | ICA-Thiabendazole® 500SC | Not stated | Inhibition of 79% at 2000 µL/L | [186] |
Minthostachys verticillata Griseb. (Lamiaceae) | disc diffusion method | F. verticillioides | Not stated | Not stated | IC50 of 1552.43 µL/L | [158] |
Myrcia ovata Cambesse (Myrtaceae) | contact | F. solani | Viper 700 (0.07% w/v) | Not stated | Inhibition of 53.9% at 100 µL/mL | [54] |
Nepeta cataria L. (Lamiaceae) | agar dilution method, | F. verticillioides | Not stated | Not stated | Inhibition of 91.72% at 1µL/mL | [155] |
F. oxysporum | Inhibition of 97.86% at 1 µL/mL | |||||
Ocimum basilicum L. (Lamiaceae) | agar dilution method. | F. oxysporum | Not stated | Not stated | Inhibition of 74.87% at 1 µL/mL | [155] |
F. verticillioides | Inhibition of 77.51% at 1 µL/mL | |||||
Origanum heracleoticum L. (Lamiaceae) | microdilution technique | F. solani | fluconazole | Not stated | MIC value of 0.14 mg/mL | [188] |
F. tricinctum | MIC value of 0.14 mg/mL | |||||
F. sporotrichioides | MIC value of 0.28 mg/mL | |||||
F. verticillioides | MIC value of 0.14 mg/mL | |||||
F. oxysporum | MIC value of 0.07 mg/mL | |||||
F. semitectum | MIC value of 0.28 mg/mL | |||||
F. equiseti | MIC value of 0.28 mg/mL | |||||
Origanum majorana L. (Lamiaceae) | agar dilution method | F. oxysporum | Not stated | Not stated | Inhibition of 59.36% at 1 µL/mL | [155] |
F. verticillioides | Inhibition of 75.74% at 1 µL/mL | |||||
Origanum vulgare L. (Lamiaceae) | broth microdilution method | F. solani | Itraconazole; Fluconazole; Ketoconazole | 7; 18; 12 µg/mL | MIC value of 50 µg/mL | [183] |
F. oxysporum | 9; 10; 9 µg/mL | MIC value of 50 µg/mL | ||||
Origanum vulgare L. spp. virens (Lamiaceae) | disc diffusion method | F. verticillioides | Not stated | Not stated | IC50 of 101.71 µL/L | [158] |
Origanum vulgare L. spp. vulgare (Lamiaceae) | F. verticillioides | IC50 of 108.27 µL/L | ||||
Origanum x applii (Domin Boros) (Lamiaceae) | disc diffusion method | F. verticillioides | Not stated | Not stated | IC50 of 66.79 µL/L | [158] |
Pelargonium graveolens L’Heritier. (Geraniaceae) | microdilution technique | F. equiseti | fluconazole | Not stated | MIC value of 0.66 mg/mL | [188] |
Pelargonium odoratissimum (Geraniaceae) | agar dilution method | F. culmorum | Not stated | Not stated | Inhibition of 65.45% at 1 µL/L | [196] |
Pelargonium roseum L. (Geraniaceae) | agar dilution method | F. verticillioides | Not stated | Not stated | Inhibition of 73.96% at 1 µL/mL | [117] |
F. oxysporum | Inhibition of 85.56% at 1 µL/mL | |||||
Mentha piperita L. (Lamiaceae) | microbroth dilution assay | F. oxyporum (MNHN 963917) | Amphotericin | MIC value of 1.50 µg/mL | MIC value of 1.50 µg/mL | [197] |
F. acuminatum | MIC value of 1.50 µg/mL | MIC value of 2.50 µg/mL | ||||
F. solani | MIC value of 1.25 µg/mL | MIC value of 10.0 µg/mL | ||||
F. tabacinum | MIC value of 1.35 µg/mL | MIC value of 1.50 µg/mL | ||||
Pimenta dioica (L.) Merr. (Myrtaceae) | agar dilution method | F. oxysporum | Not stated | Not stated | Inhibition of 100% at 1 µL/mL | [155] |
F. verticillioides | Inhibition of 100% at 1 µL/mL | |||||
Pimpinella anisum L. (Apiaceae) | broth microdilution method | F. solani | Itraconazole; Fluconazole; Ketoconazole | 7; 18; 12 µg/mL | MIC value of 85 µg/mL | [183] |
F. oxysporum | 9; 10; 9 µg/mL | MIC value of 120 µg/mL | ||||
Rosa damascena P. Mill. (Rosaceae) | microdilution technique | F. subglutinans | fluconazole | Not stated | MIC value of 0.62 mg/mL | [188] |
F. solani | MIC value of 0.29 mg/mL | |||||
F. tricinctum | MIC value of 0.14 mg/mL | |||||
F. sporotrichioides | MIC value of 0.29 mg/mL | |||||
F. verticillioides | MIC value of 0.14 mg/mL | |||||
F. oxysporum | MIC value of 0.29 mg/mL | |||||
F. semitectum | MIC value of 0.64 mg/mL | |||||
F. equiseti | MIC value of 0.30 mg/mL | |||||
Rosmarinus officinalis (rosemary) (Lamiaceae) | broth microdilution method | F. solani | Itraconazole; Fluconazole; Ketoconazole | 7; 18; 12 µg/mL | MIC value of 320 µg/mL | [183] |
F. oxysporum | 9; 10; 9 µg/mL | MIC value of 410 µg/mL | ||||
Salvia sclarea L. (Lamiaceae) | agar dilution method | F. oxysporum | Not stated | Not stated | Inhibition of 58.82% at 1 µL/mL | [155] |
F. verticillioides | Inhibition of 65.09% at 1 µL/mL | |||||
Satureja hortensis L. (Lamiaceae) | microdilution technique | F. subglutinans | fluconazole | Not stated | MIC value of 0.95 mg/mL | [188] |
F. solani | MIC value of 0.14 mg/mL | |||||
F. tricinctum | MIC value of 0.14 mg/mL | |||||
F. sporotrichioides | MIC value of 0.27 mg/mL | |||||
F. verticillioides | MIC value of 0.14 mg/mL | |||||
F. oxysporum | MIC value of 0.14 mg/mL | |||||
F. semitectum | MIC value of 0.14 mg/mL | |||||
F. equiseti | MIC value of 0.62 mg/mL | |||||
Schinus molle L. (Anacardiaceae) | disc diffusion method | F. verticillioides | Not stated | Not stated | IC50 of 1226.76 µL/L | [158] |
Silene armeria L. (Caryophyllaceae) | disc diffusion method | F. oxysporum KACC 41083 | Not stated | Not stated | MIC value of 500 µg/mL | [198] |
F. solani KACC 41092 | MIC value of 125 µg/mL | |||||
Stachys pubescens Ten. (Lamiaceae) | broth microdilution method | F. oxysporum | amphotericin B | 0.5 µg/mL | MIC value of 1 µg/mL | [185] |
Syzigium aromaticum L. (Myrtaceae) | toxic medium assay | F. oxysporum isolate S-1187. | ICA-Thiabendazole® 500SC | Not stated | Inhibition of 83% at 250 µL/L | [186] |
Tagetes riojana M. Ferraro Biurrum 8753 (Asteraceae) | disc diffusion method | F. verticillioides | Not stated | Not stated | IC50 of 764.75 µL/L | [158] |
Thymus daenensis Celak. (Lamiaceae) | broth microdilution method | F. oxysporum | amphotericin B | 0.5 µg/mL | MIC value of 4 µg/mL | [185] |
Thymus kotschyanus Boiss. & Hohen. (Lamiaceae) | broth microdilution method | F. oxysporum | amphotericin B | 0.5 µg/mL | MIC value of 0.5 µg/mL | [185] |
F. solani | Itraconazole; Fluconazole; Ketoconazole | 7; 18; 12 µg/mL | MIC value of 40 µg/mL | [183] | ||
F. oxysporum | 9; 10; 9 µg/mL | MIC value of 75 µg/mL | ||||
Thymus mastichina L. (Lamiaceae) | agar dilution method. | F. verticillioides | Not stated | Not stated | Inhibition of 51.48% at 1 µL/mL | [155] |
Thymus vulgaris L. (Lamiaceae) | microdilution technique | F. solani | fluconazole | Not stated | MIC value of 0.16 mg/mL | [188] |
F. tricinctum | MIC value of 0.19 mg/mL | |||||
F. sporotrichioides | MIC value of 0.61 mg/mL | |||||
F. verticillioides | MIC value of 0.14 mg/mL | |||||
F. oxysporum | MIC value of 0.14 mg/mL | |||||
F. semitectum | MIC value of 0.19 mg/mL | |||||
F. equiseti | MIC value of 0.98 mg/mL | |||||
Thymus vulgaris L. (Lamiaceae) | toxic medium assay | F. oxysporum isolate S-1187. | ICA-Thiabendazole® 500SC | Not stated | Inhibition of 61% at 250 µL/L | [186] |
Thymus vulgaris L. (Lamiaceae) | agar dilution method | F. culmorum | Not stated | Not stated | Inhibition of 99.71% at 1 µL/L | [196] |
Thymus vulgaris L. (Lamiaceae) | agar dilution method | F. oxysporum | Not stated | Not stated | Inhibition of 98.41% at 1 µL/mL | [155] |
F. verticillioides | Inhibition of 98.22% at 1 µL/mL | |||||
Xylopia aethiopica (Dunal) A. Rich. (Annonaceae) | incorporation method | F. oxysporum | Not stated | Not stated | MIC value of 3000 ppm | [199] |
Zataria multiflora Boiss. (Lamiaceae) | broth dilution method | F. solani isolates | Not stated | Not stated | MIC value of 76 µg/mL | [189] |
F. oxysporum isolates | MIC value of 66 µg/mL | |||||
F. verticillioides isolates | MIC value of 77 µg/mL | |||||
F. poae isolates | MIC value of 99 µg/mL | |||||
F. equiseti isolates | MIC value of 99 µg/mL | |||||
Zataria multiflora Boiss. (Lamiaceae) | broth microdilution method | F. solani | Itraconazole; Fluconazole; Ketoconazole | 7; 18; 12 µg/mL | MIC value of 40 µg/mL | [183] |
F. oxysporum | 9; 10; 9 µg/mL | MIC value of 20 µg/mL | ||||
Zhumeria majdae Rech. f. & Wendelbo (Lamiaceae) | disk diffusion method | F. graminearum | Not stated | Not stated | Inhibition of 75.11% at 1000 µL/L | [192] |
F. asiaticum | Inhibition of 100% at 1500 µL/L | |||||
F. redolens fsp. dianthus | Inhibition of 100% at 1500 µL/L | |||||
F. verticillioides | Inhibition of 70.66% at 1500 µL/L | |||||
F. oxysporum f. sp. lentis | Inhibition of 60.44% at 1500 µL/L | |||||
Zingiber cassumunar Roxb. (Zingiberaceae) | agar dilution method | F. verticillioides | Not stated | Not stated | Inhibition of 67.46% at 1 µL/mL | [155] |
Compound | Chemical Structure | Plant Species (Family) | Plant Part | Organism Tested | Positive Control | Activity of Positive Control | Results | Reference |
---|---|---|---|---|---|---|---|---|
(±)-Qinghaocoumarin A | Artemisia annua L. (Asteraceae) | leaves | F. oxysporum | Hymexazol | 13.02 µg/mL | MIC value of 18.75 µg/mL | [200] | |
F. solani | 41.67 µg/mL | MIC value of 18.75 µg/mL | ||||||
(3R,3aS,6R,6aS,7aR,8aS,9aS,9bR)-decahydro-9b-hydroxy-3,6,8a-trimethyl-oxireno[c]pyrano [4,3,2-jk] benzoxepin-2(3H)-one | F. oxysporum | Hymexazol | 13.02 µg/mL | MIC value of 62.50 µg/mL | ||||
F. solani | 41.67 µg/mL | MIC value of 21.79 µg/mL | ||||||
1,2-dimethoxy-4(2-propenyl) benzene | Acorus tatarinowii Schott (Acoraceae) | whole plant | F. oxysporum f. sp. niveum | Not stated | Not stated | Inhibition of 100% at 0.4 g/L | [201] | |
3,4-dihydroxy-3,4-dimethoxy-6,7- cyclolignan | Larrea divaricata Cav. (Zygophyllaceae) | leaves and stem | F. verticillioides | Not stated | Not stated | MIC value of 250 µg/mL | [202] | |
F. graminearum | MIC value of 15.6 µg/mL | |||||||
F. solani | MIC value of 125 µg/mL | |||||||
5-hydroxy-7,40-dimethoxyflavone | Combretum erythrophyllum (Burch.) Sond. (Combretaceae) | leaves | F. verticilloides | amphotericin B | 0.003 mg/mL | 0.31 mg/mL | [203] | |
F. proliferatum | 0.0004 mg/mL | 0.01 mg/mL | ||||||
F. solani | 1.2 mg/mL | 0.31 mg/mL | ||||||
F. graminearum | 2.3 mg/mL | 0.63 mg/mL | ||||||
F. chlamydosporum | 2.3 mg/mL | 0.63 mg/mL | ||||||
3′, 4′-de- O-methylenehinokinin | Artemisia annua L. (Asteraceae) | leaves | F. oxysporum | Hymexazol | 13.02 µg/mL | MIC value of 31.25 µg/mL | [200] | |
F. solani | 41.67 µg/mL | MIC value of 75.00 µg/mL | ||||||
3α,7α-dihydroxy amorph-4-ene 3-acetate | leaves | F. oxysporum | Hymexazol | 13.02 µg/mL | MIC value of 50.00 µg/mL | |||
F. solani | 41.67 µg/mL | MIC value of 43.75 µg/mL | ||||||
artemetin | F. oxysporum | 13.02 µg/mL | MIC value of >150.00 µg/mL | |||||
F. solani | 41.67 µg/mL | MIC value of >150.00 µg/mL | ||||||
dehydrodiconiferyl alcohol | F. oxysporum | 13.02 µg/mL | MIC value of 150.00 µg/mL | |||||
F. solani | 41.67 µg/mL | MIC value of 37.50 µg/mL | ||||||
denudatin A | F. oxysporum | 13.02 µg/mL | MIC value of 150.00 µg/mL | |||||
F. solani | 41.67 µg/mL | MIC value of 37.5 µg/mL | ||||||
denudatin B | F. oxysporum | 13.02 µg/mL | MIC value of 37.50 µg/mL | |||||
F. solani | 41.67 µg/mL | MIC value of 87.5 µg/mL | ||||||
futokadsurin B | F. oxysporum | 13.02 µg/mL | MIC value of 150.00 µg/mL | |||||
F. solani | 41.67 µg/mL | MIC value of 75.00 µg/mL | ||||||
futokadsurin C | F. oxysporum | 13.02 µg/mL | MIC value of 125.00 µg/mL | |||||
F. solani | 41.67 µg/mL | MIC value of 100.00 µg/mL | ||||||
Gallic acid | Terminalia nigrovenulosa Pierre (Combretaceae) | bark | F. solani | Not stated | Not stated | Inhibition of 75% at 500 ppm | [204] | |
Maslinic acid | Combretum erythrophyllum (Combretaceae) | leaves | F. oxysporum | amphotericin B | 1.2 mg/mL | 0.31 mg/mL | [203] | |
F. verticilloides | 0.003 mg/mL | 0.08 mg/mL | ||||||
F. subglutinans | 9.4 mg/mL | 0.63 mg/mL | ||||||
F. proliferatum | 0.0004 mg/mL | 0.31 mg/mL | ||||||
F. solani | 1.2 mg/mL | 0.63 mg/mL | ||||||
F. graminearum | 2.3 mg/mL | 0.63 mg/mL | ||||||
N1-decarbomethoxy chanofruticosinic acid | Kopsia hainanensis Tsiang (Apocynaceae) | leaves and stem | F. oxysporum f. sp. Cubense | mildothane | EC50 value of 57.0 µg/mL | EC50 value of 15.2 µg/mL | [205] | |
Fusarium oxysporum f. sp. Niveum | EC50 value of 101.0 µg/mL | EC50 value of 43.8 µg/mL | ||||||
EC50 value of 31.8 µg/mL | ||||||||
nordihydroguaiaretic acid | Larrea divaricata Cav. (Zygophyllaceae) | leaves and stem | F. graminearum | Not stated | Not stated | MIC value of 62.5 µg/mL | [202] | |
F. solani | MIC value of 250 µg/mL | |||||||
F. verticillioides | MIC value of 125 µg/mL | |||||||
penduletin | Artemisia annua L. (Asteraceae) | leaves | F. oxysporum | Hymexazol | 13.02 µg/mL | MIC value of 100.00 µg/mL | [200] | |
F. solani | 41.67 µg/mL | MIC value of 100.00 µg/mL | ||||||
Phloroglucinol derivative | F. oxysporum | 13.02 µg/mL | MIC value of 62.50 µg/mL | |||||
F. solani | 41.67 µg/mL | MIC value of 87.50 µg/mL | ||||||
Qinghaocoumarin B | F. oxysporum | 13.02 µg/mL | MIC value of 62.50 µg/mL | |||||
F. solani | 41.67 µg/mL | MIC value of 43.75 µg/mL | ||||||
Withaferin A | Withania somnifera (L.) Dunal. (Solanaceae) | leaves | F. verticilloides | amphotericin B | 0.003 mg/mL | 0.16 mg/mL | [203] | |
Qinghaolignan B | Artemisia annua L. (Asteraceae) | leaves | F. oxysporum | Hymexazol | 13.02 µg/mL | MIC value of 150.00 µg/mL | [200] | |
F. solani | 41.67 µg/mL | MIC value of 37.50 µg/mL |
4. Mechanisms of Action
Extracts/Fungicides | Target Site | Possible Mechanism of Action | Reference |
---|---|---|---|
95% ethanol extract of Curcuma longa (Zingiberaceae) | Protein synthesis and enzymatic pathways | Inhibition of GAPDH, tRNA synthetase family II and Zinc binuclear structural-containing fungal protein | [212] |
Cell membrane synthesis | Inhibition of ergosterol synthesis | ||
Respiratory system | Suppression of the activity of NADH oxidase and SDH | ||
2,5-dicyclopentylidene cyclopentanone | Cell membrane and cell wall | Inhibition of sterol biosynthesis | [213] |
Amoxicillin, Chloramphenicol, Erythromycin and Raficillin | Cell wall enzymatic pathways | Inhibit the polygalacturonase and pectinmethylgalacturonase enzyme activities | [209] |
Rifampin and Rifabutin, members of the Rifamycin class and Azithromycin | Protein synthesis | Inhibition of RNA and protein synthesis | [214,215,216] |
Benzimidazole | Protein synthesis | Binding to fungal β-tubulin and disrupt microtubule dynamic including interference with monomeric tubulin polymerization | [217] |
Peptide Fengycins | Cell membrane | Formation of ion channels on cellular membrane by interfering with synthesis of ergosterol | [208] |
Azole fungicides | Fungal cell membrane | Inhibition of the heme protein and 14α-demethylation of lanosterol | [218] |
5. Challenges and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed Zubi, W.S.; Mohd, M.H.; Mohamed Nor, N.M.I.; Zakaria, L. Fusarium species in mangrove soil in northern peninsular Malaysia and the soil physico-chemical properties. Microorganisms 2021, 9, 497. [Google Scholar] [CrossRef]
- Babadoost, M. Fusarium: Historical and continued importance. In Fusarium—Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers; Askun, T., Ed.; Intech Open: London, UK, 2018. [Google Scholar]
- Segal, B.H.; Walsh, T.J.; Liu, J.M.; Wilson, J.D.; Kwon-Chung, K.J. Invasive infection with Fusarium chlamydosporum in a patient with aplastic Anemia. J. Clin. Microbiol. 1998, 36, 1772–1776. [Google Scholar] [CrossRef] [Green Version]
- Bacon, C.W.; Hinton, D.M. Symptomless endophytic colonization of maize by Fusarium moniliforme. Can. J. Bot. 1996, 74, 1195–1202. [Google Scholar] [CrossRef]
- Summerell, B.A.; Laurence, M.H.; Liew, E.C.Y.; Leslie, J.F. Biogeography and phylogeography of Fusarium: A review. Fungal Divers. 2010, 44, 3–13. [Google Scholar] [CrossRef]
- Summerell, B.A.; Leslie, J.F.; Liew, E.C.Y.; Laurence, M.H.; Bullock, S.; Petrovic, T.; Bentley, A.R.; Howard, C.G.; Peterson, S.A.; Walsh, J.L.; et al. Fusarium species associated with plants in Australia. Fungal Divers. 2011, 46, 1–27. [Google Scholar] [CrossRef]
- Thiel, P.G.; Marasas, W.F.O.; Sydenham, E.W.; Shephard, G.S.; Gelderblom, W.C.A. The implications of naturally occurring levels of fumonisins in corn for human and animal health. Mycopathologia 1992, 117, 3–9. [Google Scholar] [CrossRef]
- Cahagnier, B.; Melcion, D.; Richard-Molard, D. Growth of Fusarium moniliforme and its biosynthesis of fumonisin B1 on maize grain as a function of different water activities. Lett. Appl. Microbiol. 1995, 20, 247–251. [Google Scholar] [CrossRef]
- Lew, H.; Adler, A.; Ediner, W. Moniliformin and the European corn borer (Ostrnia nubilalis). Mycotoxin Res. 1991, 79, 727–731. [Google Scholar]
- Nelson, P.E.; Dignani, M.C.; Anaissie, E.J. Taxonomy, biology, and clinical aspects of Fusarium species. Clin. Microbiol. Rev. 1994, 7, 479–504. [Google Scholar] [CrossRef] [PubMed]
- Logrieco, A.; Mule, G.; Moretti, A.; Bottalico, A. Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur. J. Plant Pathol. 2002, 108, 597–609. [Google Scholar] [CrossRef]
- Windels, C.E. Economic and social impacts of Fusarium head blight: Changing farms and rural communities in the Northern Great Plains. Phytopathology 2000, 90, 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ploetz, R.C. Fkikm usarium wilt of banana. Phytopathology 1990, 105, 1512–1521. [Google Scholar] [CrossRef] [Green Version]
- Ploetz, R.C. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology 2006, 96, 653–656. [Google Scholar] [CrossRef] [Green Version]
- Headrick, J.; Pataky, J. Maternal influence on the resistance of sweet corn lines to kernel infection by Fusarium moniliforme. Phytopathology 1991, 81, 268–274. [Google Scholar] [CrossRef]
- Munkvold, G.P.; Carlton, M.W. Influence of inoculation method on systemic Fusarium moniliforme infection of maize plants grown from infected seeds. Plant Dis. 1997, 81, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, S.M.; Bushnell, W.R.; Evans, C.K. Distribution of mycelial colonies and lesions in field-grown barley inoculated with Fusarium graminearum. Phytopathology 2006, 96, 567–581. [Google Scholar] [CrossRef] [Green Version]
- Incremona, M.E.; Gonzalez, M.; Pioli, R.N.; Salinas, A. Infection of maize silks by a native Fusarium (Fusarium graminearum) isolate in Argentina. Chil. J. Agric. Anim. Sci. 2014, 30, 203–211. [Google Scholar]
- Voss, K.A.; Plattner, R.D.; Riley, R.T.; Meredith, F.I.; Norred, W.P. In vivo effects of fumonisin B1-producing and fumonisin B1 nonproducing Fusarium moniliforme isolates are similar: Fumonisins B2 and B3 cause hepato- and nephrotoxicity in rats. Mycopathologia 1998, 141, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.K.; Cartwright, R.D.; Xie, W.; Shier, W.T. Aflatoxin and fumonisin contamination of corn (maize, Zea mays) hybrids in Arkansas. Crop. Prot. 2006, 25, 1–9. [Google Scholar] [CrossRef]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual, 1st ed.; Blackwell Publishing Professional: Ames, IA, USA, 2006. [Google Scholar]
- Marasas, W.F.O.; Nelson, P.E.; Toussoun, T.A. Toxigenic Fusarium Species Identity and Mycotoxicology; The Pennsylvania State University Press: Pennsylvania, PA, USA, 1984. [Google Scholar]
- Desjardin, A.E. Fusarium Mycotoxins: Chemistry, Genetics and Biology; American Phytopathological Society Press: Saint Paul, MN, USA, 2006; pp. 335–336. [Google Scholar]
- Garcia, D.; Barros, G.; Chulze, S.; Ramos, A.J.; Sanchis, V.; Marín, S. Impact of cycling temperatures on Fusarium verticillioides and Fusarium graminearum growth and mycotoxins production in soybean. J. Sci. Food Agric. 2012, 92, 2952–2959. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Marasas, W.F.O.; Wehner, F.C.; Van Rensburg, S.J.; Van Schlkwyk, D.J. Mycoflora of corn produced in human oesophageal cancer areas in Transkei. Phytopathology 1981, 71, 792–796. [Google Scholar] [CrossRef]
- Reddy, K.R.N.; Nurdijati, S.B.; Salleh, B. An overview of plant-derived products on control of mycotoxigenic fungi and mycotoxins. Asian J. Plant. Sci. 2010, 9, 126. [Google Scholar] [CrossRef] [Green Version]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2018: Building Climate Resilience for Food Security and Nutrition; FAO: Rome, Italy, 2018. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Economic and Social Council. Progress towards the Sustainable Development Goals—E/2021/58. 2021. Available online: https://undocs.org/en/E/2021/58 (accessed on 17 October 2021).
- Wang, C.W.; Ai, J.; Fan, S.T.; Lv, H.Y.; Qin, H.Y.; Yang, Y.M.; Liu, Y.X. Fusarium acuminatum: A new pathogen causing postharvest rot on stored kiwifruit in China. Am. Phytopathol. Soc. 2015, 99, 1644. [Google Scholar] [CrossRef]
- Zhang, J.B.; Li, H.P.; Dang, F.J.; Qu, B.; Xu, Y.B.; Zhao, C.S.; Liao, Y.C. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycol. Res. 2007, 111, 967–997. [Google Scholar] [CrossRef]
- Casulli, F.; Pancaldi, D.; De Lillo, E.; Alberti, I. Observations on wheat crown rot and head blight caused by Fusarium spp. in Italy. In Proceedings of the Abstracts of International Seminar on Fusarium Mycotoxins, Taxonomy and Pathogenicity, Martina Franca, Italy, 9–13 May 1995; pp. 139–140. [Google Scholar]
- Pancaldi, D.; Casulli, F.; Grazzi, G.; Grifoni, F. Indagine sulla fusariosi della spiga del frumento duro in Emilia Romagna. Inf. Fitopatol. 1997, 47, 43–48. [Google Scholar]
- Menniti, A.M.; Pancaldi, D.; Maccaferri, M.; Casalini, L. Effect of fungicides on Fusarium head blight and deoxynivalenol content in durum wheat grain. Eur. J. Plant Pathol. 2003, 109, 109–115. [Google Scholar] [CrossRef]
- Boutigny, A.L.; Ward, T.J.; Van Coller, G.J.; Flett, B.; Lamprecht, S.C.; O’Donnell, K.; Viljoen, A. Analysis of the Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific differences in host preference. Fungal Genet. Biol. 2011, 48, 914–920. [Google Scholar] [CrossRef]
- Chelkowski, J. Formation of mycotoxins produced by Fusaria in head of wheat, triticale, and rye. In Fusarium, Mycotoxins, Taxonomy and Pathogenicity; Chelkowski, J., Ed.; Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Scott, D.B.; De Jager, E.J.H.; van Wyk, P.S. Head blight of irrigated wheat in South Africa. Phytophylactica 1988, 20, 317–319. [Google Scholar]
- Bencheikh, A.; Rouag, N.; Mamache, W.; Belabed, I. First report of Fusarium equiseti causing crown rot and damping-off on durum wheat in Algeria. Arch. Phytopathol. Plant Prot. 2020, 53, 915–931. [Google Scholar] [CrossRef]
- Díaz-Nájera, J.F.; Ayvar-Serna, S.; Mena-Bahena, A.; Baranda-Cruz, E.; Vargas-Hernández, M.; Alvarado-Gómez, O.G.; Fuentes-Aragón, D. First report of Fusarium falciforme (FSSC 3+4) causing wilt disease of Phaseolus vulgaris in Mexico. Plant Dis. 2021, 105, 710. [Google Scholar] [CrossRef]
- Cen, Y.K.; Lin, J.G.; Wang, Y.L.; Wang, J.Y.; Liu, Z.Q.; Zheng, Y.G. The gibberellin producer Fusarium fujikuroi: Methods and technologies in the current toolkit. Front. Bioeng. Biotechnol. 2020, 8, 232. [Google Scholar] [CrossRef] [PubMed]
- Na, F.; Carrillo, J.D.; Mayorquin, J.S.; Ndinga-Muniania, C.; Stajich, J.E.; Stouthamer, R.; Huang, Y.T.; Lin, Y.T.; Chen, C.Y.; Eskalen, A. Two novel fungal symbionts Fusarium kuroshium sp. nov. and Graphium kuroshium sp. nov. of kuroshio shot hole borer (Euwallacea sp. nr. fornicatus) cause Fusarium dieback on woody host species in California. Plant Dis. 2018, 102, 1154–1164. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, J.; Chen, Q.; Wang, M.; Hsiang, T.; Shang, S.; Yu, Z. Metabolic effects of azoxystrobin and kresoxim-methyl against Fusarium kyushuense examined using the Biolog FF MicroPlate. Pestic. Biochem. Physiol. 2016, 130, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Divon, H.H.; Bøe, L.; Tveit, M.M.N.; Klemsdal, S.S. Infection pathways and penetration modes of Fusarium langsethiae. Eur. J. Plant Pathol. 2019, 154, 259–271. [Google Scholar] [CrossRef]
- Chełkowski, J.; Goliński, P.; Perkowski, J.; Visconti, A.; Rakowska, M.; Wakuliński, W. Toxinogenicity of Microdochium nivale (Fusarium nivale) isolates from cereals in Poland. Mycotoxin Res. 1991, 7, 140–145. [Google Scholar] [CrossRef]
- Balmas, V.; Corda, P.; Marcello, A.; Bottalico, A. Fusarium nygamai associated with Fusarium foot rot of rice in Sardinia. Plant Dis. 2000, 84, 807. [Google Scholar] [CrossRef]
- Martyn, R.D.; Hartz, T.K. Use of soil solarization to control Fusarium wilt of watermelon. Plant Dis. 1986, 79, 762–766. [Google Scholar] [CrossRef] [Green Version]
- Beck, K.D.; Reyes-Corral, C.; Rodriguez-Rodriguez, M.; May, C.; Barnett, R.; Thornton, M.K.; Bates, A.A.; Woodhall, J.W.; Schroeder, B.K. First report of Fusarium proliferatum causing necrotic leaf lesions and bulb rot on storage onion (Allium cepa) in Southwestern Idaho. Plant Dis. 2020, 105, 494. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.F.; Hwang, S.F.; Conner, R.L.; Ahmed, H.U.; Zhou, Q.; Turnbull, G.D.; Strelkov, S.E.; McLaren, D.L.; Gossen, B.D. First report of Fusarium proliferatum causing root rot in soybean (Glycine max L.) in Canada. Crop. Prot. 2015, 67, 52–58. [Google Scholar] [CrossRef]
- Desjardins, A.E.; Manandhar, H.K.; Plattner, R.D.; Manandhar, G.G.; Poling, S.M.; Maragos, C.M. Fusarium species from nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl. Environ. Microbiol. 2000, 66, 1020–1102. [Google Scholar] [CrossRef] [Green Version]
- Wharton, P.S.; Tumbalam, P.; Kirk, W.W. First report of potato tuber sprout rot caused by Fusarium sambucinum in Michigan. disease notes. Am. Phytophalogical Soc. 2006, 90, 1460. [Google Scholar]
- Ibrahim, N.F.; Masratul, H.M.; Nor, N.M.I.M.; Latiffah, Z. Pathogenicity of Fusarium semitectum and Fusarium chlamydosporum associated with pineapple fusariosis. Malays. J. Microbiol. 2016, 12, 164–170. [Google Scholar]
- Latiffah, Z.; Nurul Huda, M.S.; Akram, T.M.A.T.A. Characterization of Fusarium semitectum from isolates vegetable fruits. Sains Malays. 2013, 42, 629–633. [Google Scholar]
- Sampaio, T.S.; de Castro Nizio, D.A.; White, L.A.S.; de Oliveira Melo, J.; Almeida, C.S.; Alves, M.F.; Gagliardi, P.R.; de Fátima Arrigoni-Blank, M.; Junior, A.W.; Sobral, M.E.G.; et al. Chemical diversity of a wild population of Myrcia ovata Cambessedes and antifungal activity against Fusarium solani. Ind. Crop. Prod. 2016, 86, 196–209. [Google Scholar] [CrossRef]
- Leslie, J.; Bandyopadhyay, R.; Visconti, A. (Eds.) Mycotoxins: Detection Method, Management, Public Health and Agricultural Trade; Centre for Agriculture and Biosciences International (CABI): Wallingford, UK, 2008. [Google Scholar]
- Booth, C. Fusarium: Laboratory Guide to the Identification of the Major Species; The Common Wealth Mycological Institute: Kew, UK, 1971; p. 237. [Google Scholar]
- Viljoen, A.; Marasas, W.F.O.; Wingfield, M.J.; Viljoen, C.D. Characterization of Fusarium subglutinans f. sp. pini causing root disease of Pinus patula seedlings in South Africa. Mycol. Res. 1997, 101, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Yang, B.I.; Li, Y.; Han, R.; Ge, Y. Postharvest chitosan treatment induces resistance in potato against Fusarium sulphureum. Agric. Sci. China 2008, 7, 615–621. [Google Scholar] [CrossRef]
- Li, Y.C.; Bi, Y.; Ge, Y.H.; Sun, X.J.; Wang, Y. Antifungal activity of sodium silicate on Fusarium sulphureum and its effect on dry rot of potato tubers. J. Food Sci. 2009, 74, M213–M218. [Google Scholar] [CrossRef]
- Klittich, C.J.R.; Leslie, J.F.; Nelson, P.E.; Marasas, W.F.O. Fusarium thapsinum (Gibberella thapsina): A new species in section liseola from Sorghum. Mycologia 1997, 89, 643–652. [Google Scholar] [CrossRef]
- Castañares, E.; Stenglein, S.A.; Dinolfo, M.I.; Moreno, M.V. Fusarium tricinctum associated with head blight on wheat in Argentina. Plant Dis. 2011, 95, 496. [Google Scholar] [CrossRef]
- Moreira, G.M.; Machado, F.J.; Pereira, C.B.; Neves, D.L.; Tessmann, D.J.; Ward, T.J.; Del Ponte, E.M. First report of the Fusarium tricinctum species complex causing Fusarium head blight of wheat in Brazil. Plant Dis. 2019, 104, 586. [Google Scholar] [CrossRef]
- Bacon, C.W.; Glenn, A.E.; Yates, I.E. Fusarium verticillioides: Managing the endophytic association with maize for reduced fumonisins accumulation. Toxin Rev. 2008, 27, 411–446. [Google Scholar] [CrossRef]
- Munkvold, G.P.; Desjardins, A.E. Fumonisins in maize: Can we reduce their occurrence? Plant Dis. 1997, 81, 556–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De León, C.; Pandey, S. Improvement of resistance to ear and stalk rots and agronomic traits in tropical maize gene pools. Crop Sci. 1989, 29, 12–17. [Google Scholar] [CrossRef]
- King, S.B.; Scott, G.E. Genotypic differences in maize to kernel infection by Fusarium moniliforme. Phytopathology 1981, 71, 1245–1247. [Google Scholar] [CrossRef]
- Ochor, T.E.; Trevathan, L.E.; King, S.B. Relationship of harvest date and host genotype to infection of maize kernels by Fusarium moniliforme. Plant Dis. 1987, 71, 311–313. [Google Scholar] [CrossRef]
- Smith, I.M. (Ed.) Fungicides for Crop Protection: 100 Years of Progress. Proceedings; British Crop Protection Council: London, UK, 1986. [Google Scholar]
- Sumner, D.A. Imperfect information and intervention in farm credit: Discussion. Am. J. Agric. Econ. 1990, 72, 780–781. [Google Scholar] [CrossRef]
- Panth, M.; Hassler, S.C.; Baysal-Gurel, F. Methods for management of soilborne diseases in crop production. Agriculture 2020, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Magan, N.; Hope, R.; Colleate, A.; Baxter, E.S. Relationship between growth and mycotoxin production by Fusarium species, biocides and environment. Eur. J. Plant Pathol. 2002, 108, 685–690. [Google Scholar] [CrossRef]
- Freije, A.N.; Wise, K.A. Impact of Fusarium graminearum inoculum availability and fungicide application timing on Fusarium head blight in wheat. Crop. Prot. 2015, 77, 139–147. [Google Scholar] [CrossRef]
- Zhang, M.; Jeyakumar, J.M.J. Fusarium species complex causing Pokkah Boeng in China. In Fusarium-Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers; Intech Open: London, UK, 2018. [Google Scholar]
- Shi, X.; Qiao, K.; Li, B.; Zhang, S. Integrated management of Meloidogyne incognita and Fusarium oxysporum in cucumber by combined application of abamectin and fludioxonil. Crop. Prot. 2019, 126, 104922. [Google Scholar] [CrossRef]
- Haidukowski, M.; Pascale, M.; Perrone, G.; Pancaldi, D.; Campagna, D.; Visconti, A. Effect of fungicides on the development of Fusarium head blight, yield and deoxynivalenol accumulation in wheat inoculated under field conditions with Fusarium graminearum and Fusarium culmorum. J. Sci. Food Agric. 2005, 85, 191–198. [Google Scholar] [CrossRef]
- Cuypers, E.; Vanhove, W.; Gotink, J.; Bonneure, A.; Van Damme, P.; Tytgat, J. The use of pesticides in Belgian illicit indoor cannabis plantations. Forensic Sci. Int. 2017, 277, 59–65. [Google Scholar] [CrossRef]
- Igbedioh, S.O. Effects of agricultural pesticides on humans, animals and higher plants in developing countries. Arch. Environ. Health 1991, 46, 218. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.A.; Renfrew, M.J.; Woolridge, M.W. Assessing the risk of pesticide residues to consumers: Recent and future developments. Food Addit. Contam. 2001, 18, 1124–1129. [Google Scholar] [CrossRef]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- MartÍnez, J.A. Natural fungicides obtained from plants, fungicides for plant and animal diseases. In Fungicides for Plant and Animal Diseases; Dhanasekaran, D., Ed.; InTech Open: Shanghai, China, 2012. [Google Scholar]
- Wisniewski, M.; Droby, S.; Norelli, J.; Liu, J.; Schena, L. Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biol. Technol. 2016, 122, 3–10. [Google Scholar] [CrossRef]
- Oyeleke, S.B.; Oyewole, O.A.; Dagunduro, J.N. Effect of herbicide (pendimethalin) on soil microbial population. J. Sci. Food Agric. 2011, 1, 40–43. [Google Scholar]
- Wang, X.; Song, M.; Gao, C.; Dong, B.; Zhang, Q.; Fang, H.; Yu, Y. Carbendazim induces a temporary change in soil bacterial community structure. J. Environ. Sci. 2009, 21, 1679–1683. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G., Jr. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018, 616, 255–268. [Google Scholar] [CrossRef]
- Molina, R. Methyl bromide, brief description of its toxicology as a basis for occupational health surveillance. Cienc. Trab. 2007, 26, 182–185. [Google Scholar]
- Meadows, R. Researchers develop alternatives to methyl bromide fumigation. Calif. Agric. 2013, 67, 125–127. [Google Scholar] [CrossRef]
- Backstrom, M.J. Methyl bromide: The problem, the phase out, and the alternatives. Drake J. Agric. L. 2002, 7, 213–239. [Google Scholar]
- Possiede, Y.M.; Gabardo, J.; Kava, V.; Galli-Terasawa, L.V.; Azevedo, J.L.; Glienke, C. Fungicide resistance and genetic variability in plant pathogenic strains of Guignardia citricarpa. Braz. J. Microbiol. 2009, 40, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Ishii, H. Impact of fungicide resistance in plant pathogens on crop disease control and agricultural environment. Jpn. Agric. Res. Q. 2006, 40, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Gea, F.J.; Navarro, M.J.; Tello, J.C. Reduced sensitivity of the mushroom pathogen Verticillium fungicola to prochloraz-manganese in vitro. Mycol Res. 2005, 109, 741–745. [Google Scholar] [CrossRef] [PubMed]
- Gea, F.J.; Tello, J.C.; Navarro, M.J. Efficacy and effects on yield of different fungicides for control of wet bubble disease of mushroom caused by the mycoparasite Mycogone perniciosa. Crop. Prot. 2010, 29, 1021–1025. [Google Scholar] [CrossRef]
- Potočnik, I.S.; Stepanović, M.; Rekanović, E.; Todorović, B.; Milijašević-Marčić, S. Disease control by chemical and biological fungicides in cultivated mushrooms: Button mushroom, oyster mushroom and shiitake. Pestic. Fitomed. 2015, 30, 201–208. [Google Scholar] [CrossRef]
- Francis, P. Targeting cell death in Dementia. Alzheimer Dis. Assoc. Disord. 2006, 20, S3–S7. [Google Scholar] [CrossRef]
- Casida, J.E.; Durkin, K.A. Anticholinesterase insecticide retrospective. Chem. Biol. Interact. 2013, 203, 221–225. [Google Scholar] [CrossRef] [Green Version]
- Fournier, D. Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. Chem. Biol. Interact. 2005, 157, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Syngenta. Safety Data Sheet, According to Regulation (EC) No. 1907/2006. Available online: https://www.syngenta.co.za/sites/g/files/zhg436/f/media/2019/09/25/scholar_sds-_12072017.pdf?token=1569406952 (accessed on 31 March 2021).
- Al-Mughrabi, K. Biological control of Fusarium dry rot and other potato tuber diseases using Pseudomonas fluorens and Enterobacter cloacae. Biol. Control 2010, 53, 280–284. [Google Scholar] [CrossRef]
- WHO. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019; World Health Organization: Geneva, Switzerland, 2020; p. 52. [Google Scholar]
- Prieto, J.A.; Patiño, O.J.; Plazas, E.A.; Pabón, L.C.; Ávila, M.C.; Guzmán, J.D.; Delgado, W.A.; Cuca, L.E. Natural products from plants as potential source agents for controlling Fusarium. In Fungicides, Showcases of Intergrated Plant Disease Management from Around the World; Nita, M., Ed.; Intech Open: London, UK, 2013. [Google Scholar]
- Brent, K.J.; Hollomon, D.W. Fungicide Resistance in Crop Pathogens: How Can It Be Managed? 2nd ed.; FRAC: Brussels, Belgium, 2007; p. 37. [Google Scholar]
- Delp, C.J. Coping with resistance to plant disease control agents. Plant Dis. 1980, 64, 652–657. [Google Scholar] [CrossRef]
- Owusu, A.M.; Owusu, A.M. Consumer willingness to pay a premium for organic fruit and vegetable in Ghana. Int. Food Agribus. Manag. Rev. 2013, 16, 67–86. [Google Scholar]
- Thembo, K.M.; Vismer, H.F.; Nyazema, N.Z.; Gelderblom, W.C.A.; Katerere, D.R. Antifungal activity of four weedy plant extracts against selected mycotoxigenic fungi. J. Appl. Microbiol. 2010, 109, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
- Hubert, J.; Mabagala, R.B.; Mamiro, D.P. Efficacy of selected plant extracts against Pyricularia grisea, causal agent of rice blast disease. Am. J. Plant Sci. 2015, 6, 602–611. [Google Scholar] [CrossRef] [Green Version]
- Ntow, W.J. The Use and Fate of Pesticide in Vegetable-Based Agroecosystems in Ghana; Taylor & Francis: Leiden, The Netherlands, 2008; pp. 10–24. [Google Scholar]
- Coulibaly, O.; Cherry, A.J.; Nouhoheflin, T.; Aitchedji, C.C.; Al-Hassan, R. Vegetable producer perceptions and willingness to pay for biopesticides. J. Veg. Sci. 2007, 12, 27–42. [Google Scholar] [CrossRef]
- Rathi, M.; Gopalakrishnan, S. Insecticidal activity of aerial parts of Synedrella nodiflora Gaertn (Compisitae) on Spodoptera litura (Fab). J. Cent. Eur. Agric. 2006, 6, 223–228. [Google Scholar]
- Wei, S.J.; Shi, B.C.; Gong, Y.J.; Jin, G.H.; Chen, X.X.; Meng, X.F. Genetic structure and demographic history reveal migration of the diamond back moth Plutella xylostella (Lepidoptera: Plutellide) from the Southern to Northern Regions of China. PLoS ONE 2013, 8, e59654. [Google Scholar]
- Kumar, R.; Mishra, A.K.; Dubey, N.K.; Tripathi, Y.B. Evaluation Chenopodium ambrosoides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int. J. Food Microbiol. 2007, 115, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Mahmood., I.; Imadi, S.R.; Shazadi, K.; Gul, A.; Hakeem, K.R. Effects of pesticides on environment. In Plant, Soil and Microbes; Springer: Cham, Switzerland, 2016; pp. 253–269. [Google Scholar]
- Masika, P.J.; Afolayan, A.J. Antimicrobial activity of some plants used for the treatment of livestock disease in the Eastern Cape, South Africa. J. Ethnopharmacol. 2002, 83, 129–134. [Google Scholar] [CrossRef]
- Ribeiro, A.; Romeiras, M.M.; Tavares, J.; Faria, M.T. Ethnobotanical survey in Canhane village, district of Massingir, Mozambique: Medicinal plants and traditional knowledge. J. Ethnobiol. Ethnomed. 2010, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Mdee, L.K.; Masoko, P.; Eloff, J.N. The activity of extracts of seven common invasive plant species on fungal phytopathogens. S. Afr. J. Bot. 2009, 75, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Amadioha, A.C. Controlling Rice Blast in vitro and in vivo with extracts of Azadirachta indica. J. Crop. Prot. 2000, 19, 287–290. [Google Scholar] [CrossRef]
- Mahlo, S.M.; McGaw, L.J.; Eloff, J.N. Antifungal activity of leaf extracts from South African trees against plant pathogens. Crop. Prot. 2010, 29, 1529–1533. [Google Scholar] [CrossRef] [Green Version]
- Harborne, J.B.; Baxter, H.; Moss, G.P. Phytochemical Dictionary: A Handbook of Bioactive Compounds from Plants; Taylor & Francis: London, UK, 1995. [Google Scholar]
- Ahmad, I.; Beg, A.Z. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J. Ethnopharmacol. 2001, 74, 113–123. [Google Scholar] [CrossRef]
- Fandohan, P.; Gbenou, J.D.; Gnonlonfin, B.; Hell, K.; Marasas, W.F.; Wingfield, M.J. Effect of essential oils on the growth of Fusarium verticillioides and fumonisin contamination in corn. J. Agric. Food Chem. 2004, 52, 6824–6829. [Google Scholar] [CrossRef]
- Calvo, M.A.; Arosemena, E.L.; Shiva, C.; Adelantado, C. Antimicrobial activity of plant natural extracts and essential oils. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Méndez-Vilas, A., Ed.; FORMATEX: Barcelona, Spain, 2011; pp. 1179–1185. [Google Scholar]
- Brinker, F. Herb Contraindications and Drug Interactions, 2nd ed.; Eclectic Medical Publications: Sandy, Oregon, 1998. [Google Scholar]
- Villaverde, J.J.; Sevilla-Morán, B.; Sandín-España, P.; López-Goti, C.; Alonso-Prados, J.J. Challenges of biopesticides under the European regulation (EC) No. 1107/2009: An overview of new trends in residue analysis. Stud. Nat. Prod. Chem. 2014, 43, 437–482. [Google Scholar]
- Rishi, K.; Singh, R. Chemical components and insecticidal properties of Bakain (Melia azedarach L.)—A review. Agric. Revolut. 2003, 24, 101–115. [Google Scholar]
- Sultana, S.; Akhtar, N.; Asif, H.M. Phytochemical screening and antipyretic effects of hydro-methanol extract of Melia azedarach leaves in rabbits. Bangladesh J. Pharmacol. 2013, 8, 214–217. [Google Scholar] [CrossRef] [Green Version]
- Cowie, B.W.; Venter, N.; Witkowski, E.T.F.; Bryne, M.J.; Olckers, T. A review of Solanum mauritianum biocontrol: Prospects, promise and problems: A way forward for South Africa and globally. BioControl 2018, 63, 475–491. [Google Scholar] [CrossRef]
- Seepe, H.A.; Amoo, S.O.; Nxumalo, W.; Adeleke, R.A. Antifungal activity of medicinal plant extracts for potential management of Fusarium pathogens. Res. Crop. 2019, 20, 399–406. [Google Scholar]
- Parekh, J.; Chanda, S.V. In vitro antimicrobial activity and phytochemical analysis of some Indian medicinal plants. Turk. J. Biol. 2007, 3, 53–58. [Google Scholar]
- Van Vuuren, S.F.; Naidoo, D. An antibacterial investigation of plants used traditionally in South Africa to treat sexually transmitted infections. J. Ethnopharmacol. 2010, 130, 552–558. [Google Scholar] [CrossRef]
- Kitonde, C.K.; Fidahusein, D.S.; Lukhoba, C.W.; Jumba, M.M. Antimicrobial activity and phytochemical screening of Senna didymobotrya used to treat bacterial and fungal infections in Kenya. Int. J. Educ. Res. 2014, 2, 1–12. [Google Scholar]
- Bhattacharjee, I.; Chatterjee, S.K.; Ghosh, A.; Chandra, G. Antibacterial activities of some plant extracts used in Indian traditional folk medicine. Asian Pac. J. Trop. Biomed. 2011, 1, 165–169. [Google Scholar] [CrossRef]
- Seepe, H.A.; Lodama, K.E.; Sutherland, R.; Nxumalo, W.; Amoo, S.O. In vivo antifungal activity of South African medicinal plant extracts against Fusarium pathogens and their phytotoxicity evaluation. Plants 2020, 9, 1668. [Google Scholar] [CrossRef]
- Seepe, H.A.; Amoo, S.O.; Nxumalo, W.; Adeleke, R.A. Sustainable use of thirteen South African medicinal plants for the management of crop diseases caused by Fusarium species–An in vitro study. S. Afr. J. Bot. 2020, 130, 456–464. [Google Scholar] [CrossRef]
- Eloff, J.N. Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complementary Altern. Med. 2019, 19, 106. [Google Scholar] [CrossRef] [Green Version]
- Ríos, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidou-Doltsinis, S.; Markellou, E.; Kasselaki, A.M.; Fanouraki, M.N.; Koumaki, C.M.; Schmitt, A.; Liopa-Tsakalidis, A. Efficacy of Milsana®, a formulated plant extract from Reynoutria sachalinensis, against powdery mildew of tomato (Leveillula taurica). BioControl 2006, 51, 375–392. [Google Scholar] [CrossRef]
- Copping, L.G.; Duke, S.O. Natural products that have been used commercially as crop protection agents. Pest. Manag. Sci. 2007, 63, 524–554. [Google Scholar] [CrossRef] [PubMed]
- Nukenine, E.N.; Tofel, H.K.; Adler, C. Comparative efficacy of NeemAzal® and local botanicals derived from Azadirachta indica and Plectranthus glandulosus against Sitophilus zeamais on maize. J. Pest. Sci. 2011, 84, 479–486. [Google Scholar] [CrossRef]
- Danga, S.P.Y.; Nukenine, E.N.; Fotso, G.T.; Adler, C. Use of NeemPro®, a neem product to control maize weevil Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae) on three maize varieties in Cameroon. Agric. Food Secur. 2015, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Nuzhat, T.; Vidyasagar, G.M. Antifungal investigations on plant essential oils. A review. Int. J. Pharm. Pharm. Sci. 2013, 5, 19–28. [Google Scholar]
- Bassolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [Green Version]
- Koul, O.; Walial, S.; Dhaliwal, G.S. Essential Oils as Green Pesticides: Potential and Constraints. Biopestic. Int. 2008, 4, 63–84. [Google Scholar]
- UNIDO; FAO. Herbs, Spices and Essential Oils Post-Harvest Operations in Developing Countries; United Nation Industrial Development Organisation: Vienna, Austria, 2005; p. 9. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Braak, S.A.A.J.; Leijten, G.C.J.J. Essential Oils and Oleoresins: A Survey in the Netherlands and other Major Markets in the European Union; CBI, Centre for the Promotion of Imports from Developing Countries: Rotterdam, The Netherlands, 1999; p. 116. [Google Scholar]
- Cowan, M.M. Plant products as antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaika, L.L. Spices and herbs: Their antimicrobial activity and its determination. J. Food Saf. 1988, 9, 97–118. [Google Scholar] [CrossRef]
- Yu, J.; Su, J.; Li, F.; Gao, J.; Li, B.; Pang, M.; Lv, G.; Chen, S. Identification and quantification of pine needle essential oil from different habitats and species of China by GC-MS and GC method. Afr. J. Tradit. Complementary Altern. Med. 2017, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Celikel, N.; Kavas, G. Antimicrobial properties of some essential oils against some pathogenic microorganisms. Czech. J. Food Sci. 2008, 26, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Tajkarimi, M.; Ibrahim, S.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control 2010, 21, 1199–1218. [Google Scholar] [CrossRef]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 2005, 91, 621–632. [Google Scholar] [CrossRef]
- Sokovic’, M.; van Griensven, L.J.L.D. Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. Eur. J. Plant Pathol. 2006, 116, 211–224. [Google Scholar] [CrossRef]
- Kumar, A.; Shukla, R.; Singh, P.; Prasad, C.S.; Dubey, N.K. Assessment of Thymus vulgaris L. essential oil as a safe botanical preservative against post-harvest fungal infestation of food commodities. Innov. Food Sci. Emerg. Technol. 2008, 9, 575–580. [Google Scholar] [CrossRef]
- Mahboubi, M.; Haghi, G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol. 2008, 119, 325–327. [Google Scholar] [CrossRef]
- Mishra, P.K.; Shukla, R.; Singh, P.; Prakash, B.; Kedia, A.; Dubey, N.K. Antifungal, antiaflatoxigenic and antioxidant efficacy of Jamrosa essential oil for preservation of herbal raw materials. Int. Biodeterior. Biodegrad. 2012, 74, 11–16. [Google Scholar] [CrossRef]
- Zabka, M.; Pavela, R.; Slezakova, L. Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi. Ind. Crop. Prod. 2009, 30, 250–253. [Google Scholar] [CrossRef]
- Chutia, M.; Mahanta, J.J.; Saikia, R.C.; Baruah, A.K.S.; Sarma, T.C. Influence of leaf blight disease on yield of oil and its constituents of Java citronella and in-vitro control of the pathogen using essential oils. World J. Agric. Res. 2006, 2, 319–321. [Google Scholar]
- Da Cruz Cabral, L.; Pinto, V.F.; Patriarca, A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int. J. Food Microbiol. 2013, 166, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pizzolitto, R.P.; Jacquat, A.G.; Usseglio, V.L.; Achimón, F.; Cuello, A.E.; Zygadlo, J.A.; Dambolena, J.S. Quantitative-structure-activity relationship study to predict the antifungal activity of essential oils against Fusarium verticillioides. Food Control 2020, 108, 106836. [Google Scholar] [CrossRef]
- Gibbons, S. Plants as a source of bacterial resistance modulators and anti-infective agents. Phytochem. Rev. 2005, 4, 63–78. [Google Scholar] [CrossRef]
- Kumar, S.; Javed, M.S.; Kumar, P.; Gupta, S.; Kumar, R.; Singh, P.K. In-vitro antifungal and anti-bacterial activity of chloroform extract from tubers of Aconitum laeve Royle: Endangered species, India. Mater. Today Proc. 2021, 34, 563–568. [Google Scholar] [CrossRef]
- Kalidindi, N.; Thimmaiah, N.V.; Jagadeesh, N.V.; Nandeep, R.; Swetha, S.; Kalidindi, B. Antifungal and antioxidant activities of organic and aqueous extracts of Annona squamosa Linn. leaves. J. Food Drug Anal. 2015, 23, 795–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meela, M.M.; Mdee, L.K.; Masoko, P.; Eloff, J.N. Acetone leaf extracts of seven invasive weeds have promising activity against eight important plant fungal pathogens. S. Afr. J. Bot. 2019, 121, 442–446. [Google Scholar] [CrossRef]
- Grollman, A.P.; Marcus, D.M. Global hazards of herbal remedies: Lessons from Aristolochia. EMBO Rep. 2016, 17, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.T.; Wu, H.B.; Wu, H.B.; Zhang, J. Wormwood (Artemisia absinthium L.) as a promising nematicidal and antifungal agent: Chemical composition, comparison of extraction techniques and bioassay-guided isolation. Ind. Crop. Prod. 2019, 133, 295–303. [Google Scholar] [CrossRef]
- Rosado-Álvarez, C.; Molinero-Ruiz, L.; Rodríguez-Arcos, R.; Basallote-Ureba, M.J. Antifungal activity of asparagus extracts against phytopathogenic Fusarium oxysporum. Sci. Hortic. 2014, 171, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Dikhoba, P.M.; Mongalo, N.I.; Elgorashi, E.E.; Makhafola, T.J. Antifungal and anti-mycotoxigenic activity of selected South African medicinal plants species. Heliyon 2019, 5, e02668. [Google Scholar] [CrossRef] [Green Version]
- Mongalo, N.I.; Dikhoba, P.M.; Soyingbe, S.O.; Makhafola, T.J. Antifungal, anti-oxidant activity and cytotoxicity of South African medicinal plants against mycotoxigenic fungi. Heliyon 2018, 4, e00973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahwasane, S.; Middleton, L.; Baoduo, N. An ethnobotanical survey of indigenous knowledge on medicinal plants used by the traditional healers of the Lwamondo area, Limpopo province, South Africa. S. Afr. J. Bot. 2013, 88, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Al-Qurainy, F.; Abdel-Rhman, Z.G.; Khan, S.; Nadeem, M.; Tarroum, M.; Alaklabi, A.; Thomas, J. Antibacterial activity of leaf extract of Breonadia salicina (Rubeaceae), an endangered medicinal plant of Saudi Arabia. Genet. Mol. Res. 2013, 12, 3212–3219. [Google Scholar] [CrossRef] [PubMed]
- Mogashoa, M.M.; Masoko, P.; Eloff, J.N. Different Combretum molle (Combretaceae) leaf extracts contain several different antifungal and antibacterial compounds. S. Afr. J. Bot. 2019, 126, 322–327. [Google Scholar] [CrossRef]
- Mekam, P.N.; Martini, S.; Nguefack, J.; Tagliazucchi, D.; Stefani, E. Phenolic compounds profile of water and ethanol extracts of Euphorbia hirta L. leaves showing antioxidant and antifungal properties. S. Afr. J. Bot. 2019, 127, 319–332. [Google Scholar] [CrossRef]
- Eloff, J.N.; Angeh, I.E.; McGaw, L.J. Solvent-solvent fractionation can increase the antifungal activity of a Melianthus comosus (Melianthaceae) acetone leaf extract to yield a potentially useful commercial antifungal product. Ind. Crop. Prod. 2017, 110, 103–112. [Google Scholar] [CrossRef]
- Maroyi, A. A review of the ethnomedicinal uses, phytochemistry and pharmacological properties of Melianthus comosus Vahl. J. Pharm. Sci. Res. 2019, 11, 3655–3660. [Google Scholar]
- Molele, P.K.; Mongalo, N.I.; Dikhoba, P.M.; Makhafola, T.J. Antifungal and antioxidant properties of ten medicinal plants collected from KwaDlangezwa area, KwaZulu-Natal Province. S. Afr. J. Bot 2016, 2, 115. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, Y.; Xiang, F.; Li, S.; Yang, G. Antifungal activity of Momordica charantia seed extracts toward the pathogenic fungus Fusarium solani L. J. Food Drug Anal. 2016, 24, 881–887. [Google Scholar] [CrossRef] [Green Version]
- Krawinkel, M.B.; Keding, G.B. Bitter gourd (Momordica charantia): A dietary approach to hyperglycemia. Nutr. Rev. 2006, 64, 331–337. [Google Scholar] [CrossRef]
- De Rodríguez, D.J.; Trejo-González, A.F.; Rodríguez-García, R.; Díaz-Jimenez, M.L.V.; Sáenz-Galindo, A.; Hernández-Castillo, F.D.; Villarreal-Quintanilla, J.A.; Pena-Ramos, F.M. Antifungal activity in vitro of Rhus muelleri against Fusarium oxysporum f. sp. lycopersici. Ind. Crop. Prod. 2015, 75, 150–158. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arráez-Román, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alotibi, F.O.; Ashour, E.H.; Al-Basher, G. Evaluation of the antifungal activity of Rumex vesicarius L. and Ziziphus spina-christi (L.) Desf. Aqueous extracts and assessment of the morphological changes induced to certain myco-phytopathogens. Saudi J. Biol. Sci. 2020, 27, 2818–2828. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, H.A.M.; EL Bakry, A.A.; Eman, A.A. Evaluation of antibacterial and antioxidant activities of different plant parts of Rumex vesicarius L. (Polygonaceae). Int. J. Pharm. Pharm. Sci. 2011, 3, 109–118. [Google Scholar]
- Mahendra, C.; Murali, M.; Manasa, G.; Sudarshana, M.S. Biopotentiality of leaf and leaf derived callus extracts of Salacia macrosperma Wight—An endangered medicinal plant of Western Ghats. Ind. Crop. Prod. 2020, 143, 111921. [Google Scholar]
- Mirahmadi, S.F.; Norouzi, R. Chemical composition, phenolic content, free radical scavenging and antifungal activities of Achillea biebersteinii. Food Biosci. 2017, 18, 53–59. [Google Scholar] [CrossRef]
- Khosravi, A.R.; Shokri, H.; Saffarian, Z. Anti-fungal activity of some native essential oils against emerging multidrug resistant human non dermatophytic moulds. J. Herb. Med. 2020, 23, 100370. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Z.; Gu, H.; Yang, F.; Zhang, L.; Yang, L. Improved method to obtain essential oil, Asarinin and Sesamin from Asarum heterotropoides var. mandshuricum using microwave-assisted steam distillation followed by solvent extraction and antifungal activity of essential oil against Fusarium spp. Ind. Crop. Prod. 2021, 162, 113295. [Google Scholar] [CrossRef]
- Mohammadi, A.; Nazari, H.; Imani, S.; Amrollahi, H. Antifungal activities and chemical composition of some medicinal plants. J. Mycol. Med. 2014, 24, e1–e8. [Google Scholar] [CrossRef] [PubMed]
- Manganyi, M.C.; Regnier, T.; Olivier, E.I. Antimicrobial activities of selected essential oils against Fusarium oxysporum isolates and their biofilms. S. Afr. J. Bot. 2015, 99, 115–121. [Google Scholar] [CrossRef]
- Chutia, M.; Bhuyan, P.D.; Pathak, M.G.; Sarma, T.C.; Boruah, P. Antifungal activity and chemical composition of Citrus reticulata Blanco essential oil against phytopathogens from North East India, LWT. Food Sci. Technol. 2009, 42, 777–780. [Google Scholar]
- Stević, T.; Berić, T.; Šavikin, K.; Soković, M.; Gođevac, D.; Dimkić, I.; Stanković, S. Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Ind. Crop. Prod. 2014, 55, 116–122. [Google Scholar] [CrossRef]
- Naeini, A.; Ziglari, T.; Shokri, H.; Khosravi, A.R. Assessment of growth-inhibiting effect of some plant essential oils on different Fusarium isolates. J. Mycol Med. 2010, 20, 174–178. [Google Scholar] [CrossRef]
- Kumar, K.N.; Venkataramana, M.; Allen, J.A.; Chandranayaka, S.; Murali, H.S.; Batra, H.V. Role of Curcuma longa L. essential oil in controlling the growth and zearalenone production of Fusarium graminearum, LWT. Food Sci. Technol. 2016, 69, 522–528. [Google Scholar]
- Moghaddam, M.; Taheri, P.; Pirbalouti, A.G.; Mehdizadeh, L. Chemical composition and antifungal activity of essential oil from the seed of Echinophora platyloba DC. Against phytopathogens fungi by two different screening methods, LWT. Food Sci. Technol. 2015, 61, 536–542. [Google Scholar] [CrossRef]
- Davari, M.; Ezazi, R. Chemical composition and antifungal activity of the essential oil of Zhumeria majdae, Heracleum persicum and Eucalyptus sp. against some important phytopathogenic fungi. J. Mycol. Med. 2017, 27, 463–468. [Google Scholar] [CrossRef]
- Chen, F.; Guo, Y.; Kang, J.; Yang, X.; Zhao, Z.; Liu, S.; Ma, Y.; Gao, W.; Luo, D. Insight into the essential oil isolation from Foeniculum vulgare Mill. Fruits using double-condensed microwave-assisted hydrodistillation and evaluation of its antioxidant, antifungal and cytotoxic activity. Ind. Crop. Prod. 2020, 144, 112052. [Google Scholar] [CrossRef]
- Eke, P.; Adamou, S.; Fokom, R.; Nya, V.D.; Fokou, P.V.T.; Wakam, L.N.; Nwaga, D.; Boyom, F.F. Arbuscular mycorrhizal fungi alter antifungal potential of lemongrass essential oil against Fusarium solani, causing root rot in common bean (Phaseolus vulgaris L.). Heliyon 2020, 6, e05737. [Google Scholar] [CrossRef]
- Jamalian, A.; Shams-Ghahfarokhi, M.; Jaimand, K.; Pashootan, N.; Amani, A.; Razzaghi-Abyaneh, M. Chemical composition and antifungal activity of Matricaria recutita flower essential oil against medically important dermatophytes and soil-borne pathogens. J. Mycol. Med. 2012, 22, 308–315. [Google Scholar] [CrossRef]
- Matusinsky, P.; Zouhar, M.; Pavela, R.; Novy, P. Antifungal effect of five essential oils against important pathogenic fungi of cereals. Ind. Crop. Prod. 2015, 67, 208–215. [Google Scholar] [CrossRef]
- Desam, N.R.; Al-Rajab, A.J.; Sharma, M.; Mylabathula, M.M.; Gowkanapalli, R.R.; Albratty, M. Chemical constituents, in vitro antibacterial and antifungal activity of Mentha Piperita L. (peppermint) essential oils. J. King Saud Univ. Sci. 2019, 31, 528–533. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Shukla, S.; Kang, S.C. Chemical composition and antifungal activity of essential oil and various extract of Silene armeria L. Bioresour. Technol. 2008, 99, 8903–8908. [Google Scholar] [CrossRef]
- Tegang, A.S.; Beumo, T.M.N.; Dongmo, P.M.J.; Ngoune, L.T. Essential oil of Xylopia aethiopica from Cameroon: Chemical composition, antiradical and in vitro antifungal activity against some mycotoxigenic fungi. J. King Saud Univ. Sci. 2018, 30, 466–471. [Google Scholar] [CrossRef]
- Li, K.M.; Dong, X.; Ma, Y.N.; Wu, Z.N.; Yan, Y.M.; Cheng, Y.X. Antifungal coumarins and lignans from Artemisia annua. Fitoterapia 2019, 134, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Chen, K.; Yu, Y.; Deng, Z.; Kong, Z. In vitro antifungal activity of the extract and compound from Acorus tatarinowii against seven plant pathogenic fungi. Agric. Sci. China 2010, 9, 71–76. [Google Scholar] [CrossRef]
- Vogt, V.; Cifuente, D.; Tonn, C.; Sabini, L.; Rosas, S. Antifungal activity in vitro and in vivo of extracts and lignans isolated from Larrea divaricata Cav. against phytopathogenic fungus. Ind. Crop. Prod. 2013, 42, 583–586. [Google Scholar] [CrossRef]
- Seepe, H.A.; Ramakadi, T.G.; Lebepe, C.M.; Amoo, S.O.; Nxumalo, W. Antifungal activity of isolated compounds from the leaves of Combretum erythrophyllum (Burch.) Sond. and Withania somnifera (L.) dunal against Fusarium pathogens. Molecules 2021, 26, 4732. [Google Scholar] [CrossRef]
- Nguyen, D.M.C.; Seo, D.J.; Lee, H.B.; Kim, I.S.; Kim, K.Y.; Park, R.D.; Jung, W.J. Antifungal activity of gallic acid purified from Terminalia nigrovenulosa bark against Fusarium solani. Microb. Pathog. 2013, 56, 8–15. [Google Scholar] [CrossRef]
- Chen, J.; Yang, M.L.; Zeng, J.; Gao, K. New broad-spectrum antibacterial and antifungal alkaloids from Kopsia hainanensis. Phytochem. Lett. 2014, 7, 156–160. [Google Scholar] [CrossRef]
- Chamsai, J.; Siegrist, J.; Buchenauer, H. Mode of action of the resistance-inducing 3-aminobutyric acid in tomato roots against Fusarium wilt. J. Plant. Dis. Prot. 2004, 111, 273–291. [Google Scholar]
- Meng, S. Studies on Antifungal Activity and Mechanism of Bio-Active Components from Allium Chinense; Hunan Normal University: Changsha, China, 2006. [Google Scholar]
- Hu, L.B.; Zhou, W.; Zhang, T.; Yang, Z.M.; Xu, J.H.; Shi, Z.Q. Mechanism of inhibition to Fusarium moniliforme by antimicrobial peptide Fengycins. Microbiol. China 2010, 37, 251–255. [Google Scholar]
- Kawakami, K.; Inuzuka, H.; Hori, N.; Takahashi, N.; Ishida, K.; Mochizuki, K.; Ohkusu, K.; Muraosa, Y.; Watanabe, A.; Kamei, K. Inhibitory effects of antimicrobial agents against Fusarium species. Med. Mycol. 2015, 53, 603–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagrouh, F.; Dakka, N.; Bakri, Y. The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. J. Mycol. Med. 2017, 27, 303–311. [Google Scholar] [CrossRef]
- Raveau, R.; Fontaine, J.; Sahraoui, A.L. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods 2020, 9, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Long, L.; Zhang, F.; Chen, Q.; Chen, C.; Yu, X.; Liu, Q.; Bao, J.; Long, Z. Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum. PLoS ONE 2018, 13, e0194284. [Google Scholar] [CrossRef] [Green Version]
- Du, R.; Liu, J.; Sun, P.; Li, H.; Wang, J. Inhibitory effect and mechanism of Tagetes erecta L. fungicide on Fusarium oxysporum f. sp. niveum. Sci. Rep. 2017, 7, 14442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, A.; Chopra, S.; Mehta, P. Antibiotic inhibition of pectolytic and cellulolytic enzyme activity in two Fusarium species. Mycopathologia 1993, 124, 185–188. [Google Scholar] [CrossRef]
- Clancy, C.J.; Nguyen, M.H. The combination of amphotericin B and azithromycin as a potential new therapeutic approach to fusariosis. J. Antimicrob. Chemother. 1998, 41, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Clancy, C.J.; Yu, Y.C.; Lewin, A.; Nguyen, M.H. Inhibition of RNA synthesis as a therapeutic strategy against Aspergillus and Fusarium: Demonstration of in vitro synergy between rifabutin and amphotericin B. Antimicrob. Agents Chemother. 1998, 42, 509–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Xu, J.; Zhu, Y.; Duan, Y.; Zhou, M. Mechnism of action of the benzimidazole fungicides of Fusarium graminearum: Interfering with polymerization of monomeric tubulin but not polymerized microbubes. Phytopathology 2016, 106, 807–813. [Google Scholar] [CrossRef] [Green Version]
- Hitchcock, A.C.; Dickinson, K.; Brown, S.B.; Evans, E.G.; Adams, D.J. Interaction of azole antifungal antibiotics with cytochrome P450-dependent 14 a-sterol demethylase purified from Candida albicans. J. Biochem. 1990, 266, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Mahomoodally, M.F. Traditional medicines in Africa: An appraisal of ten potent African medicinal plants. Evid.-Based Complement. Altern. Med. 2013, 2013, 617459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuping, D.S.S.; Eloff, J.N. The use of plants to protect plants and food against fungal pathogens: A review. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, P.; Dubey, N.K. Exploitation of natural products as alternative strategy to control post-harvest fungal rotting of fruits and vegetables. Postharvest Biol. Technol. 2004, 32, 235–245. [Google Scholar] [CrossRef]
- Castellanos, L.M.; Olivas, N.A.; Ayala-Soto, J.; De La O Contreras, C.M.; Ortega, M.Z.; Salas, F.S.; Hernández-Ochoa, L. In vitro and in vivo antifungal activity of clove (Eugenia caryophyllata) and pepper (Piper nigrum L.) essential oils and functional extracts against Fusarium oxysporum and Aspergillus niger in tomato (Solanum lycopersicum L.). Int. J. Microbiol. 2020, 2020, 1702037. [Google Scholar] [CrossRef]
- Mannai, S.; Benfradj, N.; Karoui, A.; Salem, I.B.; Fathallah, A.; M’Hamdi, M.; Boughalleb-M’Hamdi, N. Analysis of chemical composition and in vitro and in vivo antifungal activity of Raphanus raphanistrum extracts against Fusarium and Pythiaceae, affecting apple and peach seedlings. Molecules 2021, 26, 2479. [Google Scholar] [CrossRef]
- Gonçalves, D.C.; de Queiroz, V.T.; Costa, A.V.; Lima, W.P.; Belan, L.L.; Moraes, W.P.; Iorio, N.L.P.P.; Póvoa, H.C.C. Reduction of fusarium wilt symptoms in tomato seedlings following seed treatment with Origanum vulgare L. essential oil and carvacrol. Crop. Prot. 2021, 141, 105487. [Google Scholar] [CrossRef]
- Drakopoulos, D.; Kägi, A.; Gimeno, A.; Six, J.; Jenny, E.; Forrer, H.R.; Musa, T.; Meca, G.; Vogelgsang, S. Prevention of Fusarium head blight infection and mycotoxins in wheat with cut-and-carry biofumigation and botanicals. Field Crop. Res. 2020, 246, 107681. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, S.A.; Waheed, U.; Raheel, M.; Khan, Z.; Alrefaei, A.F.; Alkhamis, H.H. Morphological and genetic characterization of Fusarium oxysporum and its management using weed extracts in cotton. J. King Saud Univ. Sci. 2021, 33, 101299. [Google Scholar] [CrossRef]
- Tegegne, G.; Pretorius, J.C. In vitro and in vivo antifungal activity of crude extracts and powdered dry material from Ethiopian wild plants against economically important plant pathogens. BioControl 2007, 52, 877–888. [Google Scholar] [CrossRef]
- Isman, M.B. Bridging the gap: Moving botanical insecticides from the laboratory to the farm. Ind. Crop. Prod. 2017, 110, 10–14. [Google Scholar] [CrossRef]
- Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011, 10, S4. [Google Scholar] [CrossRef] [Green Version]
- Mahlo, S.M.; Chauke, H.R.; McGaw, L.; Eloff, J. Antioxidant and antifungal activity of selected medicinal plant extracts against phytopathogenic fungi. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 216–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laher, F.; Aremu, A.O.; Van Staden, J.; Finnie, J.F. Evaluating the effect of storage on the biological activity and chemical composition of three South African medicinal plants. S. Afr. J. Bot. 2013, 88, 414–418. [Google Scholar] [CrossRef] [Green Version]
- Ncube, B.; Finnie, J.F.; Van Staden, J. Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. S. Afr. J. Bot. 2012, 82, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Badi, H.N.; Yazdani, D.; Mohammad Ali, S.; Nazari, F. Effects of spacing and harvesting time on herbage yield and quality/quantity of oil in thyme, Thymus vulgaris L. Ind. Crop. Prod. 2004, 19, 231–236. [Google Scholar] [CrossRef]
- Siddiqui, I.A.; Sanna, V. Impact of nanotechnology on the delivery of natural products for cancar prevention and therapy. Mol. Nutr. Food Res. 2016, 60, 1330–1341. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seepe, H.A.; Nxumalo, W.; Amoo, S.O. Natural Products from Medicinal Plants against Phytopathogenic Fusarium Species: Current Research Endeavours, Challenges and Prospects. Molecules 2021, 26, 6539. https://doi.org/10.3390/molecules26216539
Seepe HA, Nxumalo W, Amoo SO. Natural Products from Medicinal Plants against Phytopathogenic Fusarium Species: Current Research Endeavours, Challenges and Prospects. Molecules. 2021; 26(21):6539. https://doi.org/10.3390/molecules26216539
Chicago/Turabian StyleSeepe, Hlabana A., Winston Nxumalo, and Stephen O. Amoo. 2021. "Natural Products from Medicinal Plants against Phytopathogenic Fusarium Species: Current Research Endeavours, Challenges and Prospects" Molecules 26, no. 21: 6539. https://doi.org/10.3390/molecules26216539
APA StyleSeepe, H. A., Nxumalo, W., & Amoo, S. O. (2021). Natural Products from Medicinal Plants against Phytopathogenic Fusarium Species: Current Research Endeavours, Challenges and Prospects. Molecules, 26(21), 6539. https://doi.org/10.3390/molecules26216539